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Abstract

We prove that the communication complexity of the k-fold composition of the

universal relation on n bits is (1� o(1))kn when k = o(
p
n= logn).

Warning: Essentially this paper has been published in Advances in Computa-

tional Complexity Theory and is hence subject to copyright restrictions. It is

for personal use only.

1 Introduction

Does NC1 6= P ? If so, as most people believe, what are the inherently sequential functions
in P ? One reasonable answer is functions who are complete for P under NC1 reductions,
such as the circuit value problem or maximum ow. However, completeness alone does not
seem to provide a concrete direction in pursuing a depth lower bound for these functions.

In trying to develop a concrete approach, Karchmer, Raz and Wigderson [KRW] proposed
a di�erent class of functions that seems inherently sequential to compute. These functions
are obtained from arbitrary functions by the composition operator. Given a function on (a
vector of) n bits f de�ne the function f � f , the composition of f with itself, of (an n � n
matrix of) n2 bits as follows: Simply apply f to each row of the input matrix, and then
apply f again to the resulting vector. The k-fold composition of f , f (k), of (a k-dimensional
matrix of) nk bits is similarly de�ned by repeatedly applying f to the rows k times - each
time the dimension decreases by one till we get a Boolean value.

If f requires circuit depth d(f), then the de�nition of composition yields a circuit for
f (k) of depth kd(f). Is this sequential way of computing f (k) inherent? [KRW] conjecture
that it is, i.e that d(f (k)) = 
(kd(f)) for every function f and every k. More importantly,
they show that this conjecture (and in fact, much weaker one in which d(f) is replaces by
anything asymptotically larger than its logarithm!) implies that NC1 6= P .

[KRW] presents some evidence in support of their conjecture. One piece of evidence is that
the conjecture holds for some functions in the monotone circuit model. Another is a result
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of Andreev [An] showing that in the nonmonotone model composing a random function with
the parity function (obviously extending the de�nition of composition) requires depth that
is substantially more than the depth of either of the two functions (for exact statement see
e.g. [BS] ). To further explore the intuition for this conjecture [KRW] suggest to understand
it from the communication complexity point of view of [KW], and the notion of universal
relations described below.

Karchmer and Wigderson [KW] proved that the depth d(f) of a function f is exactly
the communication complexity of the following search problem: One player is given an n bit
vector x such that f(x) = 1 and the other a vector y with f(y) = 0. Their task is to �nd a
coordinate in which x and y di�er, i.e. an index i 2 [n] satisfying xi 6= yi.

The simultaneous computation of the communication problems above for all functions
f on n bits is captured by the following universal relation U . Each player gets an n-bit
vector, and their task is to �nd a coordinate where their input di�er (if one exists) or answer
`bad' when x = y (which is \illegal" as it never occurs for functions). The communication
complexity of U is at most n + 2, which says that even though it is harder than the search
problem for each particular f , it is not much harder than most of them.

In a similar way [KRW] abstract the communication problem U2 associated with the
composition of f with itself. One player gets a pair (M;x) where M is an n�n matrix and x
is an n-vector. The other gets a similar pair (N; y). They should �nd a coordinate in which
their matrices di�er, or answer `bad' for \illegal" inputs, namely either x = y or for some
index i 2 [n] xi 6= yi but the corresponding rows Mi and Ni are equal. Again, a natural
extension de�ne the universal relation Uk for k-fold composition. [KRW] conjectured that
the communication complexity c(Uk) is 
(kn). They noted that it is trivially implied by the
stronger conjecture for functions above, and hence can be used to test it.

Very recently Edmonds et al. [EIRS] proved this conjecture in the strong form c(Uk) �
kn�O(k2

p
nlogn). Their proof uses beautiful information theoretic arguments that capture

the progress made by a protocol on each iteration of the composition. Our main result is a
new proof of a somewhat stronger (at least for small k) statement c(Uk) � kn� O(k3logk).
Our proof of the lower bound for U2 is based on a careful analysis of the structure of inputs
arriving to `bad' leaves showing that a certain Neciporuk - like measure [Ne] on them has
to be small. Then we use induction due to a relationship between `bad' answers for Uk and
`good' answers for Uk�1. We stress that though our proof is completely di�erent than that
of [EIRS], we have obtained it after learning about their result and its proof.

Another result in [EIRS] is a lower bound on the composition of the address function
(multiplexor) with itself that is obtained using the same information theoretic methods. We
observe that the standard Neciporuk argument for formula size gives the same bound.

Can we infer something from the inherent sequentiality of composition of the universal
relation about the same for functions? Both proofs, while enriching the arsenal of commu-
nication lower bound techniques, heavily rely on the fact that the input domain for both
players considerably overlaps. This feature is not present in the problem for functions, or
rather, it is present in a subtle form (when one looks at projections). It is not clear thus
that this result or techniques directly apply to the real problem, but we believe that they
motivate a serious confrontation with it.

In section 2 we de�ne protocols and prove some technical lemmas regarding them. Section
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3 contains the formal de�nitions and results. In section 4 we prove the lower bound on U2.
In section 5 we give the intuition behind the general lower bound on Uk, and in section 6
give a proof of this lower bound.

2 Communication Protocols and Subadditive Measures

Let R � X � Y � Z be a relation. For subsets A � X and B � Y we say that A � B is a
rectangle. We call it a monochromatic rectangle (of color z 2 Z) if for all (x; y) 2 A�B we
have (x; y; z) 2 R. A protocol for R is a binary tree in which every node v is labeled with a
rectangle Rv = Av �Bv such that
(1) the root is labeled X � Y
(2) every leaf is labeled with a monochromatic rectangle
(3) the labels of a node v and its two children u and w satisfy either
(i) Av = Au = Aw and Bv = Bu [ Bw, or
(ii) Av = Au [ Aw and Bv = Bu = Bw.

Let the communication complexity of R, c(R) be the depth of the shallowest protocol for
R. Similarly, the (formula) size of R, L(R) is the smallest number of leaves in any protocol
for R. Clearly c(R) � logL(R).

A labeled tree for which only condition (3) is satis�ed is called a protocol. It is convenient
to actually consider more general protocols in which every node v is labeled with a vector
of rectangles �Rv = fRj

v j j 2 Jg for some index set J . Here one of conditions (3i) or (3ii)
applies simultaneously to all rectangles per node. Rectangles of the form A�B with A and
B disjoint subsets of strings of �xed length m are called m-rectangles. A protocol in which
all rectangles involved are m-rectangles is called a Boolean protocol. We proceed to de�ne
a measure on such vectors that will be subadditive on Boolean protocols.

Let �T = fAj �Bj j j 2 Jg be a vector of m-rectangles. A family G of Boolean functions
on m bits is said to cover �T if for every j 2 J there is a function g 2 G such that Aj � g�1(0)
and Bj � g�1(1). Let �( �T ) denote the smallest number of nonconstant functions in any cover
of �T , and ( �T ) = log(1 + �( �T )). Now given a Boolean protocol in which every node v is
labeled by an m-vector �Rv we set (v) = ( �Rv).

Lemma 1 Let v be a node in a Boolean protocol and u; w his two children. Then (v) �
(u) + (w).

Proof: (Similar to [Zw]). Assume that condition (3i) is satis�ed in v. Assume that the
functions 0; 1 and the nonconstant functions Gu cover �Ru and similarly that 0; 1 and Gw

cover �Rw. Then �Rv is covered by the set 0; 1; Gu; Gw and all functions of the form gu ^ gw
for every pair gu 2 Gu and gw 2 Gw. When condition (3ii) is satis�ed, just replace ^ with
_.

We now derive two corollaries to the above lemma. The �rst gives a slightly more general
statement of Neciporuk lower bound on formula size (over the Boolean basis). The second
gives the basic measure that we will use for the composition lower bound. Both arise from
replacing rectangles labeling certain protocols by vectors of rectangles.
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First construction: For a set of m-bit strings W , a set S � [m] and � 2 f0; 1gm�jSj let
W � 2 f0; 1gS be the set of all continuations of � in S. Now an m-rectangle A�B and a set
S � [m] de�ne the vector of rectangles �P (A;B;S) = fA� � B�j� 2 f0; 1gm�jSjg.

Corollary 1 [Ne] For disjoint X; Y � f0; 1gn let R � X�Y � [n] be de�ned by (x; y; i) 2 R
i� xi 6= yi. Further let S1; S2; � � �St be any collection or pairwise disjoint subsets of [n]. Then

L(R) �
tX

j=1

( �P (X; Y ;Sj))

Proof: By the de�nition of �P and the lemma this summation when applied to the rectangles
at the nodes of a protocol is subadditive.

Now observe that this measure can take at most the value 1 at each leaf. To see this
assume that the leaf is labeled with i and that i 2 Sj0 . Then for j 6= j0, ( �P (X; Y ;Sj)) = 0
since for each � either X� or Y � is empty. On the other hand ( �P (X; Y ;Sj0)) � 1 since xi
(or �xi) can be used to cover the rectangle. Finally:

L(R) =
X

all leaves
1 � X

all leaves
weight at leaf �

weight at root = ( �P (X; Y ;Sj)):

Remark: Let us compare this to the ordinary statement of the theorem by Neciporuk.
In that case we are looking at a Boolean function and thus X

S
Y is the entire set. This

means that a function g cannot cover more than one set and ( �P (X; Y ;Sj)) is essentially
the logarithm of the number of di�erent functions we can get on Sj by �xing the bits in the
complement of Sj.

Second construction: Assume A and B are arbitrary (not necessarily disjoint) sets of
m-bit strings. De�ne the vector of m-rectangles �Q(A;B) to be the set f(T \A)� ((f0; 1gm�
T )\B)jT � f0; 1gmg. In words, these are all ways (perhaps with repetitions) of partitioning
A[B into two disjoint sets, one which is a subset of A and one which is a subset of B. Then
the lemma immediately gives:

Corollary 2 The measure ( �Q(A;B)) is subadditive on the nodes of any Boolean protocol.

Another way of deducing the above corollary is to observe that this measure can be
simply computed as follows. Remember that ( �T ) = log (1 + �( �T )).

Lemma 2 �( �Q(A;B)) take the following values:

� �( �Q(A;B)) = 2jA\Bj if A 6� B and B 6� A.

� �( �Q(A;B)) = 2jA\Bj � 1 if A � B or B � A.

� �( �Q(A;B)) = 2jA\Bj � 2 if A = B.
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We conclude this section with a useful structural result about optimal protocols for
relations with binary output. It states informally that the number of leaves of each type
di�er by at most a constant factor. For a protocol P denote d(P ) its depth and L(P ) its
number of leaves. If P computes a relation R � X�Y �Z with Z = f0; 1g denote by L0(P )
and L1(P ) the number of leaves with answer 0 and 1 respectively.

Proposition 1 Let P be any protocol for a relation with binary output. Then there exists
another protocol P 0 for the same relation with

� d(P 0) � d(P )

� L(P 0) � L(P )

� L0(P
0) � 3L1(P

0) (and L1(P
0) � 3L0(P

0)).

Proof: Consider the protocol P , whose leaves are labeled from f0; 1g. Consider a node v
and suppose it has a leaf as one child while its other child is an internal node. Consider the
�rst descendant w of v which has two internal nodes as children or two leaves as children.
It is easy that if all nodes on the path from v to w has one internal node and one leaf as
children. If three consecutive nodes of these nodes have leaf-children with the same label, it
is easy to see that one of these can be eliminated. In fact, two of them must have the same
player acting and they can be merged. Thus if there are l leaf-children labeled 1 on this path
then there at most 2l + 2 leaf-children labeled 0.

If we now eliminate all leaves whose sibling is not a leaf, and bypass vertices with one
child, the result is a full binary tree with leaves that come in sibling pairs in which exactly
one is labeled 0 and the other 1. If there are k such pairs, and if m leaves labelled 1 were
eliminated then we claim that at most 2k+2m leaves labelled 0 were eliminated. To see this
we argue as follows. Suppose that on the path corresponding to edge e in the �nal binary
tree le leaves labelled 1 were eliminated. By the above argument at most 2le + 2 leaves
labelled 0 were eliminated. Since the number of edges is bounded by k and

P
e le = m the

claim, and hence the proposition now follow.

3 Composition and Universal relations : De�nitions

and Results

For j � 0 de�ne Vj to be the set of all binary j-dimensional arrays indexed by [n]j. Thus
V0 is just one bit, V1 is the set of all n bit strings, V2 is all binary n � n matrices etc. For
arrays Mj 2 Vj, Mj+1 2 Vj+1 and a position � 2 [n]j we denote by Mj(�) the bit value in
that position, and by Mj+1(�) the row (n-bit vector) of Mj+1 associated with this position.

Let Xk = Vk�Vk�1�� � ��V1�f0g and Yk = Vk�Vk�1�� � ��V1�f1g. Xk and Yk are the
input domains for the two players, which consists of one array of every dimension between
1 and k, and (for convenience) the bit (0-dimensional array) which is 0 for one player and 1
for the other.
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We say that a pair of inputs �M = (Mk; � � �M1;M0) 2 Xk and �N = (Nk; � � �N1; N0) 2 Yk
is bad if for some j < k we have Mj(�) 6= Nj(�) but Mj+1(�) = Nj+1(�). In this case we say
that � is a witness to the badness the pair ( �M; �N). Other pairs are called good. (bad pairs
never occur in the composition of real functions). Note that since always M0 = 0, N0 = 1,
good pairs always satisfy Mk(�) 6= Nk(�) for some � 2 [n]k, and that such � may exist for
bad pairs too. Such indices � are called legal answers for ( �M; �N).

De�nition 1 The universal relation for k-fold composition Uk � Xk � Yk � ([n]k [ fbadg)
can be de�ned as follows. ( �M; �N; z) 2 Uk if either z = � which is a legal answer for ( �M; �N)
or z = bad and this input pair is bad.

In fact, the standard de�nition of Uk is slightly di�erent, i.e. the answer is always a
position, and it has to be legal only if the input pair is good. However, the communication
complexity of the two problems di�er by at most two bits, so lower bounds for the above
de�nition su�ce. We will now de�ne a relative of the above universal relation, in which
instead of a bad answer the players have to provide a witness to the badness of the input.
This seems to be a harder problem to solve, and a lower bound for it will not su�ce, but it
will provide the intuition to our lower bound.

De�nition 2 The extended universal relation Wk � Xk � Yk � (
Sk
j=0[n]

j) is de�ned as
follows. ( �M; �N;�) 2 Wk with � 2 [n]j if either j = k and � is a legal answer for the input
pair, or j < k and � witnesses the badness of the input pair.

We can now state our main results. For k = 1 it is easy to see that whenever both players
get the same string as input, the resulting (bad) answer must reach a distinct leaf. Therefore
L(U2) � 2n and hence c(U1) � n. For k = 2 we have a somewhat stronger result than for
general k, so we state it separately.

Theorem 1 L(U2) � (1� o(1))22n�1, and so c(U2) � 2n� 1 for su�ciently large n.

Theorem 2 L((Uk) � 2kn�O(k3 log k), and so c(Uk) � kn� O(k3 log k).

Remark: Our result becomes trivial when k = 
(
q
n= logn) (which (by coincidence ?) is

the same point of breakdown as [EIRS]). In particular both proofs succeed in proving an

(kn) lower bound only when the total number of positions, which is roughly nk is much
smaller than the number of values each row can take, which is 2n. It will be interesting to
extend the lower bound for all k, or exhibit a better protocol for some k > n.

Finally, we de�ne the address function (also called the multiplexor) and its composition
with itself, and derive a quadratic lower bound for its size from Corollary 1.

The address function has 2m + m inputs. It has input (T; x) where T of size 2m is
interpreted as a function from f0; 1gm to f0; 1g and an m-bit string x. The output of the
function is T (x). (This function also captures the simultaneous computation of all m-bit
functions, but has exponential in m many variables). We will study a two level partial
composition of this function. To be more precise each of the bits xi will be the output of
address functions while the bits T will remain as inputs.
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De�nition 3 The two level address function (AF2) is a function of (m+1)2m+m2 variables.
These are interpreted as m + 1 functions (called (Ti)

m
i=1 and T ) from f0; 1gm to f0; 1g and

m input vectors (called (xi)
m
i=1) each of length m. The output of the function is de�ned as

T (T1(x1); T2(x2); : : : Tm(xm)).

In [EIRS] it is proved that the function AF2 requires depth 2m�O(pm) (and their proof
can be modi�ed to give a bound on formula size too). We observe that one can directly use
Neciporuk's theorem to obtain a somewhat better bound. If in Corollary 1 we take the
disjoint sets (Si)

2m

i=1 be given of that for i � 2m, Si contains the i'th bit of the description of
each Tj; j � m then a straightforward calculation gives:

Theorem 3 The formula size of AF2 is at least 22m (and so the depth is at least 2m).

M. Karchmer pointed out the following. There is a natural way to extend the de�nition
of the 2-level address function to de�ne the k-level analog AFk for any k, by performing
the same \partial composition" only on the address variables x. Also, let Lx(AFk) denote
the minimum number of leaves labeled by address variables x in any formula for AFk (this
number may be signi�cantly smaller than the formula size). Now a lower bound of (say)
2
(kn) on Lx(AFk) for any k that grows with n will imply NC1 6= P . The proof is essentially
the same as for standard composition of functions [KRW]. An easier task, which still seems
di�cult and very well motivated, is to strengthen the above theorem to a lower bound of
(say) 2(1+�)m on Lx(AF2).

4 Proof of the lower bound for U2

Let P be a protocol for U2, whose nodes are labeled by rectangles A � B with both A;B
families of n2 + n-bit strings, which are pairs (M;x) with M and n � n matrix and x an
n-bit vector. (Note that now we ignore the last bit.) For a �xed value of M denote by AM

(resp. BM) the set of all x such that (M;x) 2 A (resp. 2 B). Recall our second construction
�Q(AM ; BM), and for simplicity denote (AM ; BM) = ( �Q(AM ; BM)). We can now introduce
the weight function on rectangles A�B as above.

(A;B) =
X

M2f0;1gn2

(AM ; BM)

Note that by Lemma 1 this measure is subadditive. Let us �rst give the key properties
of (AM ; BM) we need for the proof. They all follow immediately from Lemma 2.

1. If jAM

T
BM j is big then (AM ; BM) � jAM

T
BM j.

2. If AM = Bm = fxg then (AM ; BM) = 0

3. If AM = ; or BM = ; then (AM ; BM) = 0.

4. If AM

T
BM = ; but both sets are nonempty then (AM ; BM) = 1.
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At the root, AM = BM = f0; 1gn, for every M . Therefore, by Lemma 2, the weight at

the root is 2n
2

log
�
22

n � 1
�
� 2n

2+n. Note that this approximation is o� by at most 1 from

the weight (for n � 4) so for notational convenience we can assume the root weight is exactly
2n

2+n. It remains to upper bound the weight of the leaves. Whenever the leaf gives a legal
answer, i.e. a position in the matrix, then for every M either AM or BM is empty, and thus,
by property 3 above, the weight of such leaves is 0. It remains to bound the weight for bad
leaves. The canonical types of bad leaves are given by the two possible bad answers of a
protocol for the extended problem W2:

� j = 0, which means that there is one �xed string x such that for every matrix M ,
AM = fxg or AM = ; and BM = fxg or BM = ;. In this case, by properties 2 and 3,
the leaf weight is 0.

� j = 1, which means that for some position i 2 [n] all matrices have their ith row �xed
to some string r, but their extensions x in position i has opposite values in A and B.
In this case there are at most 2n

2�n matricesM , and each pair AM ; BM can be covered
by one nonconstant function (xi or �xi). Hence the weight of such a leaf is at most
2n

2�n.

Indeed this argument gives a tight lower bound for W2, namely

Theorem 4 L(W2) � 22n

Proof: By the above analysis the weight at the root is 2n
2+n while the maximal value of

the weight of a leaf in W2 is 2
n2�n. This implies that we have 22n leaves.

The problem is that bad leaves in a protocol for U2 may be more complicated, as the
reason for badness is not necessarily pinned to a �xed position. An example of a heavier leaf
than the above bound is the following. Let �0 and �1 denote respectively the all 0 and all 1
n-bit strings. Let A and B be subsets of all (M;x) with the �rst row ofM and x chosen from
f�0; �1g such that in A they are equal and in B they are di�erent. This is a bad rectangle, of
weight 2n

2�n+1. We will show that no bad rectangle can have weight bigger than the above
example times (1 + o(1)) (in fact the factor is (1 + O(n42�n))). Even though the weight
depends only on input pairs with the same matrix component, the proof that it is small will
heavily rely in the interaction of input pairs with di�erent matrix component.

Let A � B be a bad rectangle. We consider below only matrices M for which both AM

and BM are nonempty, and they do not equal the same singleton set (as the other M 's
contribute 0 to the weight). We also ignore sets of matrices of size o(2n

2�2n) (which we call
small) as they contribute only o(2n

2�n) (which we call negligible) to the weight. We shall
need the following lemma.

Lemma 3 The contribution of any set of matrices with two �xed rows to the weight is
O(n2n

2�2n)

Proof: Assume without loss of generality that the �rst two rows are �xed. Note that
there are at most 2n

2�2n such matrices. Remove from the set all matrices M for which
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jAM

T
BM j � 5 (as each contributes only O(1) to the weight). Classify the remaining

matrices into four classes C00; C01; C10; C11 by putting e.g. M in C00 if there are at least two
strings with 00 in the �rst two coordinates in AM \BM (if an M can be put in many classes
choose one in some arbitrary way). As A � B is bad, every two members of one class have
to agree on a di�erent row than the �rst two. By taking a representative of each class we
see that its size can be at most n2n

2�3n. Since each matrix contributes weight at most 2n we
are done.

Let us return to the proof of Theorem 1. Fix a matrix M , and classify all other (inter-
esting) matrices into three types (0), (1) and (2), according to whether they have no row,
exactly one row, or at least two rows, respectively, in common with M . By the above lemma
the contribution of type (2) matrices is negligible (as there are only n2 ways to pick the
pair of �xed rows). We now bound the weight of the remaining matrices in the two cases
corresponding to whether there is a matrix of type (0) or not. In the second case we may
assume that each pair of interesting matrices have a common row, since otherwise we could
have ended up in the �rst case by changing the choice of M .

Case 1: There is at least one matrix of type (0). Inspection shows this can happen
only if for two di�erent strings a; b AM = fag, BM = fbg, and for every matrix N of type
(0) AN = fbg, BN = fag. If a = b these matrices contributes 0 to the weight so assume
a 6= b which implies that each matrix of this type contributes 1. Now every pair of N 's of
type (0) must have a row in common. Suppose there are two matrices N1 and N2 which
share exactly one row r (if there are no such matrices then the total number of matrices
is O(n22n

2�2n)). Now the remaining matrices go into two types, those that contain r and
those that do not contain r. There are at most 2n

2�n matrices of the �rst kind while there
are at most O(n22n

2�2n) (since they have a di�erent row in common with N1 and N2) of the
second kind. We can conclude that the total contribution from type (0) matrices is at most
(1 + o(1))2n

2�n.
Now pick a �xed matrix of type (0) N . Every matrix of type (1) either has no row in

common with N or has at least one. The contribution of the �rst kind is bounded by an
argument identical to the above. The matrices of the second kind have a row in common with
each ofM and N (which are necessarily distinct), and hence by the lemma their contribution
is negligible. We conclude that in this case the total weight is (1 + o(1))2n

2�n+1.
Case 2: There are no matrices of type (0) and any two matrices have a row in common.
Fix one matrix N which have exactly one row in common with M . Note that if there is

no such matrix we are already done by Lemma 3. Suppose without loss of generality that
N and M have the �rst row in common and its value is r. All other matrices either has r
as �rst row or they have separate rows in common with N and M . For the second type,
again Lemma 3 applies and they have a negligible contribution. Thus all that is needed is
to analyze the possible contribution of the set of matrices with �rst row r.

Let us forget the special choice of M and look at jAM

T
BM j for a generic M . If this

number is at most 1 for all our M then the total weight is at most 2n
2�n log 3, and let us

next suppose it is at least two for some M . There are three cases:

1. AM

T
BM contains two element with �rst coordinate 1.

2. AM

T
BM contains two element with �rst coordinate 0.
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3. AM

T
BM contains exactly one element with �rst coordinate 0 and exactly one with

�rst coordinate 1.

Suppose M1 satis�es the �rst condition, then for all other M , AM

T
BM contains no element

with �rst coordinate 1 or M has a second row in common with M1. By Lemma 3 we can
disregard the second set and disregarding those we can conclude that there is no other
matrix than M1 satisfying the �rst condition, and clearly we can disregard the contribution
of a single matrix. Matrices satisfying the second condition can be treated similarly. Now
let us consider M1 and M2 that satis�es the the third condition. If they have no other row
in common then it is easy to see that we must have AM1

= BM1
= AM2

= BM2
= fv1; v2g for

two vectors v1 and v2. Thus again disregarding a set which contributes a negligible amount,
each such matrix contributes at most weight log 3. In particular, we have established that
the weight in case 2 is at most (log 3 + o(1))2n

2�n.
Thus we have proved that the weight of any bad leaf is at most (1 + o(1))2n

2+1�n and
since the weight at the root is 2n

2+n we have established Theorem 1.

Remark: It is interesting to compare the present proof of the lower bound for U2 with the
lower bound of [EIRS]. Our measure seems to make a soft transition between the two stages
of their proof.

5 Intuition for the lower bound on Uk

The basic idea is to use induction and to prove that it is almost true that the number of
bad leaves for Uk is at least 2n times the number of good leaves for Uk�1. This is argued as
follows.

Given a protocol for extended universal relation Wk. Consider a leaf which answers that
� 2 [n]k�1 is a witness to the badness of the input. Label this leaf (r; �) where r 2 f0; 1gn is
the value of the common row in position �. Each possible value of � may appear at many
leaves and let r� be the string that occurs least often in this position. We construct a matrix
M�

k by setting M�
k (�) = r� for each �.

Consider the following protocol for Uk�1. Both players append M�
k to their inputs and

play the protocol for Wk. Clearly they end up at a bad leaf labeled � 2 [n]j for j < k
(since there are no possible legal answers). If j = k � 1, we have obtained a good answer to
the Uk�1 problem otherwise we answer bad. By the choice of M�

k it is easy to see that the
number of good leaves for this protocol is at most 2�n times the number of bad leaves of the
Wk protocol. In view of Proposition 1 (with output 0 corresponding to good and output 1
corresponding to bad), this completes a proof that the number of bad leaves in aWk protocol
is at least 2n=3 of the number of bad leaves in a Uk�1 protocol.

If we could replace Wk with Uk above we would be done by induction on k. Our problem
is of course that the Uk protocol does not provide witnesses for badness, which allowed the
construction of the matrix M�

k . In the full proof we analyze bad leaves and show that we
can always extract a "small" set of positions who are badness witnesses for "most" pairs
arriving at that leaf. As we cannot get witnesses for all pairs, this will create the additional
complication of having to deal with protocols that make errors. We prove the lower bound
even for such protocols, by showing that choosing the matrix M�

k at random will decrease

10



the number of leaves by O(2�n) as does the optimal choice above, and will not signi�cantly
deteriorate the quality of the new protocol for Uk�1 in terms of errors.

6 Proof of the lower bound on Uk

A position � 2 [n]j will be any of the m = nk�1 + nk�2 + : : : + 1 positions. It will denote
both a row in Mj+1 and the corresponding bit in Mj as before. We will often use the word
density, which will be the fraction the set in question is of a suitable universe. We will denote
density by �.

We need to study bad leaves and let A�B be the set of inputs that arrive at a particular
bad leaf, i.e. player 1 can have any input from A and player 2 any input from B. For any
position � and row r 2 f0; 1gn let PrB(�; r) be the probability that a random element from
B has r in position �. Now for any �M 2 A we have thatX

�

PrB(�; �M(�)) � 1; (�)

where the sum ranges over all m possible positions. The inequality follows since in a bad leaf
every element of A and every element of B have some row in common. Let l be a parameter.
Say that a pair (�; r) is large if PrB(�; r) � 1

4l
. The purpose of the next two lemmas is to

show that unless A or B are extremely small (density less than 2�ln) most inputs in this leaf
will have a large pair as a witness for their badness.

Lemma 4 If �(B) � 2�ln, l � n2 and n is su�ciently large then there are less than 16 � l2
large pairs.

Proof: Suppose there are at least 16 � l2 large pairs. Let ((�i; ri))16�l
2

i=1 be some of these. A
random element from B will on the average contain 4l of these pairs. With probability at
least 1

8l
it will have at least 2l of these large pairs . The density of inputs that contain at

least 2l out of any �xed set of 16 � l2 rows is at most 
16 � l2
2l

!
2�2ln � 22l(4+2 log l�n):

For l � n2 and su�ciently large n the density of this set is much smaller than 1
8l
2�ln and

thus the lemma follows

Next we have:

Lemma 5 For l � n2, k � p
n and su�ciently large n, the subset of A whose elements do

not contain a large pair has density � 2�ln.

Proof: Say that a pair is frequent if PrB(�; r) � 1
4m

. Since there are m positions we
know that there are at most 4m2 frequent pairs. Furthermore, each element of A which does
not contain a large pair must contain at least 2l frequent pairs (using inequality (*)). The
fraction of inputs in A that contain at least 2l frequent pairs is at most 

4m2

2l

!
2�2ln � 22l(2+2 logm�n):

Using logm � k logn and k � p
n the lemma follows.
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Let us now see how to use these lemmas to prove the theorem as outlined in the previous
section. The idea is to replace a bad leaf by large pair witnesses that exist by the lemmas.
These large pair witnesses does not cover all possibilities and hence the procedure will result
in protocols with a few errors.

De�nition 4 A protocol for Uk is �-error if it is correct except that for a set of good inputs
of density at most � the answer bad is given.

A stronger version of our main result (Theorem 2) is:

Theorem 5 Suppose k � p
n, let rk = 2(k + 1)2, lk = k + 2k2, ck = 16k�1Qk

i=2(66 � l2i )li.
Then for su�ciently large n a protocol for Uk which is 2�nrk-error will have at least c�1

k 2kn

leaves.

This gives us

Corollary 3 For su�ciently large n, a protocol for Uk requires 2kn�O(k3 log k) leaves.

We prove the theorem by induction over k. For k = 1 we allow the protocol to make
errors for at most a fraction 2�8n of the inputs. Since there are only 22n possible inputs this
implies that there are no errors and hence any standard proof will apply. For the induction
step we want to use Lemma 4 and Lemma 5 with l = lk. We assume for contradiction that
there is an 2�nrk-error protocol for Uk with fewer than c�1

k 2kn leaves, and obtain a better
protocol for Uk�1 than the induction hypothesis allows.

There is some problem with using these lemmas, as bad leaves potentially have good
inputs reaching them. However, we can use the lemmas nevertheless! To start with Lemma
4 remains true since it had nothing to do with the badness of the leaf. Secondly Lemma 5
remains true as long as we disregard inputs �M 2 A who violateX

�

PrB(�;M(�)) � 3=4:

(we will handle these inputs separately).
We are ready to describe how to change the given protocol. First the protocol for Uk is

changed into a larger protocol for Uk in which the leaves are one of the following types (to
be de�ned): small, incorrect, witnessed, or good. For every bad leaf A � B in the protocol
for Uk, do the following. First, player 1 sends "incorrect" for every input �M 2 A for whichP

� PrB(�; �M(�)) < 3=4 (calling the resulting leaf incorrect) and "correct" otherwise. Each
correct leaf is further split as follows.

If either �(A) or �(B) is smaller than 2�ln call it small and leave it as is. Otherwise, by
Lemma 4, there are at most 16l2 large pairs. If �M 2 A contains one of these large pairs,
then player 1 sends the pair's name. If there is no such pair player 1 lets this be known. By
Lemma 5, the density of the inputs in A, for which the latter is the case, is smaller than
2�ln. Therefore, in this case the protocol will terminate in a small leaf. In the former case
player 2 responds whether this pair is a witness for badness (in which case the conversation
ends in a leaf we call witnessed) or not, in which case we consider this a new bad leaf and
repeat the whole process above again.
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Observe that we can repeat this at most l times, since when giving a row, player 1 reduces
its density by 2�n, so it will become small. As each repetition replaces a leaf with at most
2 + 2 � 2 � 16 � l2 � 66 � l2 leaves we have the following upper bound on the total blow-up:

Lemma 6 Each original bad leaf gives birth to at most (66 � l2)l new leaves.

Using Lemma 6 and the values of ck�1; ck we see that the resulting protocol has at most
(16ck�1)

�12kn leaves. Each leaf has a type which can be one of following.

1. A small leaf. A leaf with either �(A) or �(B) less than 2�ln.

2. An incorrect leaf as described above.

3. A witnessed leaf (with a pair witnessing its badness).

4. A good leaf (these are the original good leaves of the given protocol, and were not
touched by the process above).

Now we show how to use this new protocol for Uk to construct a protocol for Uk�1 that
will violate the inductive assumption. Let (Mk; u) be a generic input to Uk, where Mk 2 Vk
and u stands for the sequence of matrices of dimension less than k. The intuition in the
previous section is made precise in the following lemma.

Lemma 7 There exists a matrix M�
k 2 Vk satisfying all three properties below with respect

to the new protocol.

1. The fraction of inputs of form (M�
k ; v); (M

�
k ; w) that arrive at a small leaf is at most

1
2
2�rk�1n.

2. The fraction of inputs of type (M�
k ; v); (M

�
k ; w) that arrive at an incorrect leaf is at

most 1
2
2�rk�1n.

3. The number of witnessed leaves with witness in M�
k is at most (4ck�1)

�12(k�1)n.

Before proving the lemma we observe that it �nishes the induction since we can construct
the following protocol for Uk�1. Both players start by appending M�

k to their input. They
now play a according to the new protocol for Uk. Since they have the same k-dimensional
matrix, they never reach a good leaf. If they end up at a small or incorrect node they answer
bad. If they end up at a witnessed leaf with witness (�; r), they do the following. If � = k � 1
they supply this position (where they must di�er) as a good leaf. If � < k1 they answer bad,
(and in fact the witness still witnesses this badness).

The fraction of errors in this protocol is at most 2�rk�1n by the �rst two properties of
M�

k . The number of good leaves of this protocol is bounded by (4ck�1)
�12(k�1)n by the third

property. Since we can bound the total number leaves in term of the number of good leaves
using Proposition 1 we are done.

Proof of Lemma 7
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We prove that there is such an M�
k by proving that the probability that a random M

fails any of the three properties is at most 1=4.

Proof for property 1: Suppose that there are SA leaves with A small and SB leaves with
B small (and not A). The overall fraction of inputs to player 1 such there is some possibility
of ending up at a small leaf is SA2

�(l+1)n. Thus the probability for a random M that at
least a fraction 8SA2

�(l+1)n of inputs of the form (M; v) is small is at most 1=8. A similar
argument for player 2 and using that SA+SB � 2kn (since also this new protocol for Uk has
� 2kn leaves) and lk � k = rk�1 �nishes this case.

Proof for property 2: Say that a matrix M is overrepresented at a leaf A � B if the
fraction of A of the form (M; v) is more than 22kn�(A)2�jM j or the corresponding statement
is true for B. Clearly only a fraction 21�2kn of all matrices can be overrepresented at a given
leaf. This implies that only a fraction 21�kn of all matrices is overrepresented at some leaf.
Now look at a matrix M which is not overrepresented anywhere. The fraction of inputs of
the type (M; v); (M;w) which arrive at any incorrect leaf is at most 24kn times the fraction
of inputs overall that arrive at an incorrect leaf. However since at least 1=4 of all inputs
at an incorrect leaf is a good pair with a bad answer this overall fraction is at most 22�rkn.
Using rk � 2� 4k = rk�1 �nishes this case.

Proof for property 3: The total number of witnessed leaves is bounded by (16ck�1)
�12kn

and each witness is in M with probability at most 2�n as every row of M is random. The
property now follows.
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