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Motivated by the pervasiveness of strong inapproximability results for Max-CSPs, we introduce a relaxed

notion of an approximate solution of a Max-CSP. In this relaxed version, loosely speaking, the algorithm is

allowed to replace the constraints of an instance by some other (possibly real-valued) constraints, and then
only needs to satisfy as many of the new constraints as possible.

To be more precise, we introduce the following notion of a predicate P being useful for a (real-valued)

objective Q: given an almost satisfiable Max-P instance, there is an algorithm that beats a random assign-
ment on the corresponding Max-Q instance applied to the same sets of literals. The standard notion of a

nontrivial approximation algorithm for a Max-CSP with predicate P is exactly the same as saying that P
is useful for P itself.

We say that P is useless if it is not useful for any Q. This turns out to be equivalent to the following

pseudo-randomness property: given an almost satisfiable instance of Max-P it is hard to find an assignment
such that the induced distribution on k-bit strings defined by the instance is not essentially uniform.

Under the Unique Games Conjecture, we give a complete and simple characterization of useful Max-CSPs

defined by a predicate: such a Max-CSP is useless if and only if there is a pairwise independent distribution
supported on the satisfying assignments of the predicate. It is natural to also consider the case when no

negations are allowed in the CSP instance, and we derive a similar complete characterization (under the

UGC) there as well.
Finally, we also include some results and examples shedding additional light on the approximability of

certain Max-CSPs.
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1. INTRODUCTION
The motivation for this paper comes from the study of maximum constraint satisfac-
tion problems (Max-CSPs). In a Max-CSP problem, we are given a sequence of con-
straints, each depending on a constant number of variables, and the goal is to find an
assignment that maximizes the number of satisfied constraints. Essentially any such
problem is NP-hard and a large number of papers have studied the question of approx-
imability of this class of problems. The standard concept of approximability is that an
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A:2 P. Austrin and J. Håstad

algorithm is a C-approximation algorithm if, on any instance I, it outputs a number
A(I) such that C ·O(I) ≤ A(I) ≤ O(I), where O(I) is the optimum value of I.

There are finer measures of performance. For example, one can take C above to be
a function of the optimum value O(I). That is, for each fraction of constraints satis-
fied by the optimal solution, we try to determine the best solution that can be found
efficiently. The only problem where this has been fully done explicitly is Max-Cut,
where, assuming the unique games conjecture, O’Donnell and Wu [O’Donnell and Wu
2008] has found the entire curve of approximability. In a remarkable paper, Raghaven-
dra [Raghavendra 2008] showed that, assuming the unique games conjecture, the
best such approximation possible is the one given by a certain natural semidefinite
programming-based (SDP) relaxation of the problem. However, understanding the per-
formance of this SDP is difficult in general and in this paper we are interested in more
explicit bounds.

Max-Cut turns out to be approximable in a very strong sense. To describe these
results note that for Max-Cut it is the case that a random assignment satisfies half of
the constraints on average. Whenever the optimum satisfies a fraction 1/2 + ε of the
constraints then it is possible to efficiently find an assignment that satisfies a fraction
1/2 + c(ε) of the constraints where c(ε) is strictly positive, depending on ε [Charikar
and Wirth 2004]. In other words, whenever the optimal solution satisfies a non-trivial
fraction of the constraints it is possible to efficiently find an assignment that satisfies
a smaller, but still non-trivial, fraction of the constraints.

In this paper the main focus is on the other end of the spectrum. Specifically we
are interested in the following property: even if the optimal solution satisfies (almost)
all the constraints it is still hard to find an assignment that satisfies a non-trivial
fraction. This might sound like an unusual property, but evidence is mounting that
most CSPs have this property. We say that such a CSP is approximation resistant (a
formal definition appears in Section 2).

We shall focus on a special class of CSPs defined by a single predicate P : {−1, 1}k →
{0, 1} (throughout the paper we identify the Boolean value true with −1 and false with
1). Each constraint asserts that P applied to some k literals (each literal being either
a variable or a negated variable) is true. We refer to this problem as Max-P , and say
that P is approximation resistant if Max-P is.

Several predicates are proven to be approximation resistant in [Håstad 2001] and
the most notable cases are when the predicate in question is the XOR, or the usual
OR, of 3 literals. For the latter case, Max-3Sat, it is even the case that the hardness
remains the same for satisfiable instances. This is clearly not the case for XOR since a
satisfying assignment, if one exists, can be found by Gaussian elimination. Hast [Hast
2005] studied predicates of arity 4 and of the (exactly) 400 different predicates, 79 are
proven to be approximation resistant, 275 are found to be non-trivially approximable
while the status of the remaining 46 predicates was not determined. Some results exist
also for larger arity predicates and we return to some of these results in Section 4. If
one is willing to believe the unique games conjecture (UGC) of Khot [Khot 2002] then
it was established in [Austrin and Håstad 2011] that an overwhelming majority of
all predicates are approximation resistant. This paper relies on a result [Austrin and
Mossel 2009] establishing that any predicate P such that the set of accepted strings
P−1(1) supports a pairwise independent distribution is, assuming the UGC, approxi-
mation resistant.

In spite of all these impressive results we want to argue that approximation resis-
tance is not the ultimate hardness condition for a CSP. Approximation can be viewed
as relaxing the requirements: if there is an assignment that satisfies a large number,
or almost all, of a given set of constraints, we are content in finding an assignment
that satisfies a lower but still non-trivial number of the constraints. In some situa-

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.



On the Usefulness of Predicates A:3

tions, instead of relaxing the number of constraints we want to satisfy it might make
more sense to relax the constraints themselves.

Sometimes such relaxations are very natural, for instance if considering a threshold
predicate we might want to lower the threshold in question. It also makes sense to have
a real-valued measure of success. If we give the full reward for satisfying the original
predicate we can have a decreasing reward depending on the distance to the closest
satisfying assignment. This is clearly natural in the threshold predicate scenario but
can also make good sense for other predicates.

It seems like the least we can ask for of a CSP is that when we are given an instance
where we can satisfy (almost) all constraints under a predicate P then we can find an
assignment that does something non-trivial for some, possibly real-valued, relaxation
Q. This brings us to the key definition of our paper.

Definition 1.1. The predicate P is useful for the real-valued function Q : {−1, 1}k →
R, if and only if there is an ε > 0 such that given an instance of Max-P where the
optimal solution satisfies a fraction ≥ 1 − ε of the constraints, there is a polynomial
time algorithm to find an assignment x0 such that

1

m

m∑
j=1

Q(x̄0j ) ≥ E
x∈{−1,1}k

[Q(x)] + ε.

Here x̄0j denotes k-bit string giving the values of the k literals in the j’th constraint of
P under the assignment x0.

Given a notion of “useful” it is natural to define “useless”. We say that P is useless for
Q if, assuming P 6= NP, it is not useful for Q. We choose to build the assumption P 6= NP
into the definition in order not to have to state it for every theorem – the assumption
is in a sense without loss of generality since if P = NP then uselessness is the same
as a related notion we call information-theoretic uselessness which we briefly discuss
in Section 3. Note that uselessness is a generalization of approximation resistance as
that notion is the property that P is useless for P itself.

This observation implies that requiring a predicate to be useless for any relaxation
is a strengthening of approximation resistance. The property of being a relaxation of
a given predicate is somewhat in the eye of the beholder and hence we choose the
following definition.

Definition 1.2. The predicate P is (computationally) useless if and only if it is use-
less for every Q : {−1, 1}k → R.

As described in Section 4, it turns out that almost all approximation resistance proofs
have indeed established uselessness. There is a natural reason that we get this
stronger property. In a standard approximation resistance proof we design a proba-
bilistically checkable proof (PCP) system where the acceptance criteria is given by P
and the interesting step in the proof is to analyze the soundness of this PCP. In this
analysis we use the Fourier expansion of P and it is proved that the only term that
gives a significant contribution is the constant term. The fact that we are looking at the
same P that was used to define the PCP is usually of no importance. It is thus equally
easy to analyze what happens to any real-valued Q. In particular, it is straightforward
to observe that the proof of [Håstad 2001] in fact establishes that parity of size at least
3 is useless. Similarly the proof of [Austrin and Mossel 2009], showing that any pred-
icate that supports a pairwise independent measure is approximation resistant, also
gives uselessness (but of course we still need to assume the unique games conjecture).

The possibly surprising, but technically not very difficult, result that we go on to
establish (in Section 5) is that if the condition of [Austrin and Mossel 2009] is violated
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then we can find a real-valued function for which P is useful. Thus assuming the UGC
we have a complete characterization of the property of being useless!

THEOREM 1.3. Assuming the UGC, a predicate P is (computationally) useless if
and only if there is a pairwise independent distribution supported on P−1(1).

Disallowing negated variables. In Section 6 we briefly discuss what happens in the
case when we do not allow negated variables, which in some cases may be more nat-
ural. In this situation we need to extend the notion of a trivial algorithm in that now
it might make sense to give random but biased values to the variables. A simple ex-
ample is when P accepts the all-one string in which case setting each variable to 1
with probability 1 causes us to satisfy all constraints (regardless of the instance), but
probabilities strictly between 0 and 1 might also be optimal. Taking this into account
our definitions extend.

In the setting without negated variables it turns out that the unique games-based
uselessness proof can be extended with slightly relaxed conditions with minor modifi-
cations. We are still interested in a distribution µ over {−1, 1}k, supported on strings
accepted by P , but we can allow two relaxations to the pairwise independence condi-
tion. The individual bits under µ need not be unbiased but each bit should have the
same bias. Perhaps more interestingly, the bits need not be pairwise independent and
we can allow positive (but for each pair of bits the same) correlations among the bits.

THEOREM 1.4 (INFORMAL). When we do not allow negated variables, P is useless
(assuming UGC) if and only if the accepting strings of P supports such a distribution.

Note that this implies that any predicate that is useless when we allow negations is
also useless when we do not allow negations while the converse is not true.

A basic computationally useless predicate in this setting is odd parity of an even
number of variables (at least 4 variables). With even parity, or with odd parity of an
odd number of variables, the predicate is also useless, but for the trivial reason that we
can always satisfy all constraints (so the guarantee that we can satisfy most applica-
tions of P gives no extra information). Surprisingly we need the UGC to establish the
result for odd parity of an even number of variables. As briefly discussed in Section 6
below it seems like new techniques are needed to establish NP-hardness results in this
situation.

Adaptive uselessness and pseudorandomness. Our definition of uselessness is not the
only possible choice. A stronger definition would be to let the algorithm choose a new
objective Q based on the actual Max-P instance I, rather than just based on P . We
refer to this as adaptive uselessness, and discuss it in Section 7. It turns out that in
the settings discussed, adaptive uselessness is the same as non-adaptive uselessness.

In the adaptive setting when we allow negations clearly the task is to find an assign-
ment such that the k-bit strings appearing in the constraints do not have the uniform
distribution. This is the case as we can choose a Q which takes large values for the
commonly appearing strings. Thus in this situation our results say that even given the
promise that there is an assignment such that almost all resulting k-bit strings satisfy
P , an efficient algorithm is unable to find any assignment for which the distribution
on k-bit strings is not (almost) uniform.

Other results. When we come to investigating useful predicates and to determining
pairs for which P is useful for Q it is of great value to have extensions of the result
[Austrin and Mossel 2009]. These are along the lines of having distributions supported
on the strings accepted by P where most pairs of variables are uncorrelated. Details of
this can be found in Section 8.1.
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Some examples relating to this theorem are given in Appendix B. In Appendix C we
describe a predicate which is the sign of quadratic function but which is still approx-
imation resistant. This shows that the condition of Austrin and Mossel of supporting
a pairwise independent distribution is not necessary and sufficient when it comes to
being approximation resistant.

Finally, in Appendix D, we take a brief look at the other end of the spectrum, and
study CSPs which are highly approximable.

For the record let us point out that a preliminary version of this paper has appeared
at the conference for Computational Complexity [Austrin and Håstad 2012].

2. PRELIMINARIES
We have a predicate P : {−1, 1}k → {0, 1}. The traditional approximation problem to
study is Max-P in which an instance consists of m constraints over n variables. Each
constraint is a k-tuple of literals, where a literal is either a variable or a negated vari-
able. The goal is to find an assignment to the variables so as to maximize the number
of resulting k-bit strings that satisfy the predicate P . To be more formal an instance
is given by a set of indices aij ∈ [n] for 1 ≤ i ≤ k and 1 ≤ j ≤ m and complementa-
tions bij ∈ {−1, 1}. The jth k-tuple of literals contains the variables (xaij )i∈[k] with xaij
negated iff bij = −1. We use the short hand notation P (x

bj
aj ) for the jth constraint.

We do not allow several occurrences of the same variable in one constraint. In other
words, aij 6= ai

′

j for i 6= i′. The reason for this convention is that if the same variable
appears twice we in fact have a different predicate on a smaller number of variables.
This different predicate is of course somewhat related to P but does not share even
basic properties such as the probability that it is satisfied by a random assignment.
Thus allowing repeated variables would take us into a more complicated situation.

In this paper we assume that all constraints have the same weight but it is not hard
to extend the results to the weighted case.

Definition 2.1. For Q : {−1, 1}k → R define

EQ = E
x∈{−1,1}k

[Q(x)] .

Note that for a predicate P , an alternative definition of EP is the probability that
a uniformly random assignment satisfies P . It follows that the trivial algorithm that
just picks a uniformly random assignment approximates Max-P within a factor EP .

Definition 2.2. The predicate P is approximation resistant if and only if, for every
ε > 0, it is NP-hard to approximate Max-P within a factor EP + ε.

Another way to formulate this definition is that, again for any ε > 0, it is NP-hard
to distinguish instances for which the optimal solution satisfies a fraction 1 − ε of the
constraints from those where the optimal solution only satisfies a fraction EP + ε. One
can ask for even more and we have the following definition.

Definition 2.3. The predicate P is approximation resistant on satisfiable instances if
and only if, for any ε > 0, it is NP-hard to distinguish instances of Max-P for which the
optimal solution satisfies all the constraints from those instances where the optimal
solution only satisfies a fraction EP + ε of the constraints.

A phenomenon that often appears is that if P is approximation resistant then any
predicate P ′ that accepts strictly more strings is also approximation resistant. Let us
introduce a concept to capture this fact.
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Definition 2.4. The predicate P is hereditarily approximation resistant if and only
if, for any predicate P ′ implied by P (i.e., whenever P (x) is true then so is P ′(x)) is
approximation resistant.

It turns out that 3-Lin, and indeed any parity of size at least three, is hereditarily
approximation resistant. There are also analogous notions for satisfiable instances
but as this is not the focus of the present paper we do not give the formal definition
here. One of the few examples of a predicate that is approximation resistant but not
hereditarily so is a predicate studied by Guruswami et al [Guruswami et al. 1998]. We
discuss this predicate in more detail in Appendix B below.

Let us recall the definition of pairwise independence.

Definition 2.5. A distribution µ over {−1, 1}k is biased pairwise independent if, for
some p ∈ [0, 1], we have Prµ[xi = 1] = p for every i ∈ [k] and Prµ[xi = 1∧xj = 1] = p2 for
every 1 ≤ i < j ≤ k (i.e., if all two-dimensional marginal distributions are equal and
product distributions).

We say that µ is pairwise independent if it is biased pairwise independent with p =
1/2 (i.e., if the marginal distribution on any pair of coordinates is uniform).

Finally we need a new definition of a distribution that we call uniformly positively
correlated.

Definition 2.6. A distribution µ over {−1, 1}k is uniformly positively correlated if,
for some p, ρ ∈ [0, 1], with ρ ≥ p2, we have Prµ[xi = 1] = p for every i ∈ [k] and
Prµ[xi = 1 ∧ xj = 1] = ρ for every 1 ≤ i < j ≤ k (i.e., if all two-dimensional marginal
distributions are equal and the bits are positively correlated).

Note that we allow ρ = p2 and thus any biased pairwise independent distribution is
uniformly positively correlated.

3. INFORMATION-THEORETIC USEFULNESS
Clearly there must be some relation between P and Q for our notion to be interesting
and let us discuss this briefly in the case when Q is a predicate.

If P and Q are not strongly related then it is possible to have instances where we
can satisfy all constraints when applying P and only an EQ fraction for Q. A trivial
example would be if P is OR of three variables and Q is XOR. Then given the two
constraints (x1, x2, x3) and (x1, x2, x̄3) it is easy to satisfy both constraints under P but
clearly exactly one is always satisfied under Q. Thus we conclude that OR is not useful
for XOR.

As another example let P be equality of two bits and Q non-equality and let the
constraints be all pairs (xi, xj) for 1 ≤ i < j ≤ n (unnegated). It is possible to satisfy all
constraints under P but it is not difficult to see that the maximal fraction goes to 1/2
under Q as n tends to infinity. We can note that the situation is the same for P being
even parity and Q being odd parity if the size is even, while if the size of the parity is
odd the situation is completely the opposite as negating a good assignment for P gives
a good assignment for Q.

After these examples let us take a look in more detail at usefulness in an
information-theoretic sense. It is not difficult to see that perfect and almost-perfect
completeness are equivalent in this situation.

Definition 3.1. A predicate P is information-theoretically useless for Q if, for any
ε > 0 there is an instance such that

max
x

1

m

m∑
j=1

P (xbjaj ) = 1
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while

max
x

1

m

m∑
j=1

Q(xbjaj ) ≤ EQ + ε.

A trivial remark is that in the information-theoretic setting we cannot have total
uselessness as P is always information-theoretically useful for itself or any predicate
implied by P (unless P is trivial).

Let us analyze the above definition. Let µ be a probability measure on {−1, 1}k and
let µp be the distribution obtained by first picking a string according to µ and then
flipping each coordinate with probability p. Note that p need not be small and p = 1 is
one interesting alternative as illustrated by the parity example above.

For a given µ let Opt(Q,µ) be the maximum over p of the expected value of Q(x)
when x is chosen according to µp. We have the following theorem.

THEOREM 3.2. The predicate P is information-theoretically useless for Q if and
only if there exists a measure µ supported on strings accepted by P such thatOpt(Q,µ) =
EQ.

PROOF. Let us first see that if Opt(Q,µ) > EQ for every µ then P is indeed useful
for Q. Note that the space of measures on a finite set is compact and thus we have
Opt(Q,µ) ≥ EQ + δ for some fixed δ > 0 for any measure µ.

Consider any instance with

max
1

m

m∑
j=1

P (xbjaj ) = 1

and let us consider the strings (x
bj
aj )

m
j=1 when x is the optimal solution. These are all

accepted by P and considering with which proportion each string appears we let this
define a measure µ of strings accepted by P . By the definition of Opt(Q,µ), there is
some p such that a random string from µp gives an expected value of at least EQ+ δ for
Q(x). It follows that flipping each bit in the optimal assignment for P with probability
p we get an assignment such that

E

 1

m

m∑
j=1

Q(xbjaj )

 ≥ EQ + δ

and thus P is information-theoretically useful for Q.
For the reverse conclusion we construct a random instance. Let µ be the measure

guaranteed to exist by the assumption of the theorem.
We pick m random constraints independently as follows: aj ∈ [n]k is a uniformly

random set of indices from [n] which are all different, and bj ∈ {−1, 1}k is sampled
according to µ. Note that the all-one solution satisfies all constraints since if xi = 1 for
all i then x

bj
aj is distributed according to µ and therefore satisfies P .

Now we claim that, for an assignment with a fraction 1 − p variables set to 1, the
expected value (over the choice of instance) of 1

m

∑m
j=1Q(x

bj
aj ) is within an additive

O( 1
n ) of E[Q(x)] when x is chosen according to µp. This is more or less immediate from

the definition and the small error comes form the fact that we require the chosen
variables to be different creating a small bias. Taking m sufficiently large compared to
n the theorem now follows from standard large deviation estimates and an application
of the union bound.

Let us return to our main interest of studying usefulness in a computational context.
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4. SOME EXAMPLES AND EASY THEOREMS
We have an almost immediate consequence of the definitions.

THEOREM 4.1. If P is useless then P is hereditarily approximation resistant.

PROOF. Let P ′ be any predicate implied by P . The fact that P is useless for P ′ states
that it is hard to distinguish instances where we can satisfy P (and hence P ′) almost
always from those where we can only satisfy P ′ on an EP ′+ε fraction of the constraints.
The theorem follows.

Clearly we have the similar theorem for satisfiable instances.

THEOREM 4.2. If P is useless on satisfiable instances then P is hereditarily approx-
imation resistant on satisfiable instances.

The standard way to prove that a predicate P is approximation resistant is to design
a Probabilistically Checkable Proof (PCP) where the acceptance criterion is given by
P and to prove that we have almost perfect completeness (i.e., correct proofs of correct
statements are accepted with probability 1−ε) and soundness EP +ε. Usually it is easy
to analyze the completeness and the main difficulty is the soundness. In this analysis
of soundness, P is expanded using the discrete Fourier transform and the expectation
of each term is analyzed separately.

The most robust way of making this analysis is to prove that each non-constant
monomial has expectation at most ε. As any real-valued function can be expanded by
the Fourier transform this argument actually shows that the predicate in question is
computationally useless. To show the principle we give a proof of the following theorem
in Appendix A.

THEOREM 4.3. For any k ≥ 3, parity of k variables is computationally useless.

As stated above, most approximation resistance results turn out to give uselessness
without any or only minor modifications of the proofs. In particular, if one is looking
for sparse useless predicates, the recent result of Chan [Chan 2012] implies that there
is such a predicate of arity d that accepts at most 2d strings.

Turning to satisfiable instances, for arity 3, the predicate “Not-Two” is computation-
ally useless even on satisfiable instances [Håstad 2012]. Considering sparse predicates
of larger arity, the predicates defined by Håstad and Khot [Håstad and Khot 2005]
which accepts 24k inputs and have arity 4k + k2, have the same property. This paper
presents two different predicates with these parameters and although it is likely that
the result holds for both predicates we have only verified this for the “almost disjoint
sets PCP” (Section 3.2.1 of [Håstad and Khot 2005]).

If we are willing to assume the unique games conjecture by Khot [Khot 2002] we can
use the results of [Austrin and Mossel 2009] to get very strong results.

THEOREM 4.4. Let P be a predicate such that the strings accepted by P supports
a pairwise independent measure. Then, assuming the unique games conjecture, P is
computationally useless.

This follows immediately from the proof of [Austrin and Mossel 2009] as the proof
shows that the expectation of each non-constant character is small.

As the unique games conjecture has imperfect completeness there is no natural way
to use it to prove that certain predicates are computationally useless on satisfiable
instances.
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5. THE MAIN USEFULNESS RESULT
In this section we present our main algorithm showing that Theorem 4.4 is best pos-
sible in that any predicate that does not support a pairwise independent measure is
in fact not computationally useless. We have the following result which is proved in
[Austrin and Håstad 2011] but, as it is natural and not very difficult, we suspect that
it is not original to that paper.

THEOREM 5.1. Suppose that the set of inputs accepted by predicate P does not sup-
port a pairwise independent measure. Then there is a real-valued quadratic polynomial
Q such that Q(x) > EQ for any x ∈ P−1(1).

PROOF. The full proof appears in [Austrin and Håstad 2011] but let us give a sketch
of the proof. For each x ∈ {−1, 1}k we can define a point x(2) in k +

(
k
2

)
real dimensions

where the coordinates are given by the coordinates of x as well as any pairwise product
of coordinates xixj . The statement that a set S supports a pairwise independent mea-
sure is equivalent with the origin being in the convex hull of the points {x(2) | x ∈ S}.
If the origin is not in the convex hull of these points then there is a separating hyper-
plane such that its normal vector ~c ∈ Rk+(k2) satisfies (~c, x(2)) > 0 for all x ∈ P−1(1),
and this hyperplane defines the quadratic function Q via Q(x) = (~c, x(2)).

We now have the following theorem.

THEOREM 5.2. Let P be a predicate whose accepting inputs do not support a pair-
wise independent measure and let Q be the quadratic function proved to exist by Theo-
rem 5.1. Then P is useful for Q.

PROOF. To make the situation more symmetric let us introduce a variable x0 which
always takes the value 1 and replace each linear term xi by x0xi and drop any constant
term in Q. This makes Q homogeneous of degree 2. Note that negating all inputs does
not change the value of Q and thus any solution with x0 = −1 can be transformed to a
legitimate solution by negating all variables. As each term is unbiased we have EQ = 0

and thus the goal is to find an assignment that gives
∑
Q(x

bj
aj ) ≥ δm for some absolute

constant δ. Now let

C = max
x∈{−1,1}k

−Q(x) c = min
x∈P−1(1)

Q(x).

By assumption we have that c and C are fixed constants where c is strictly larger than
0. Let D be the sum of the absolute values of all coefficients of Q.

Let us consider our objective function

F (x) =

m∑
i=1

Q(xbjaj )

which is a quadratic polynomial with the sum of the absolute values of coefficients
bounded by Dm. As we are guaranteed that we have an assignment that satisfies at
least (1−ε)m clauses we know that the optimal value of F is at least (1−ε)cm−εCm ≥
cm− (c+ C)εm.

Consider the standard semidefinite relaxation where we replace each product xixj
by an inner product (vi, vj) for unit length vectors vi. This semidefinite program can
be solved with arbitrary accuracy and let us for notational convenience assume that
we have an optimal solution which, by assumption, has an objective value at least
cm− (c+ C)εm.

To round the vector-valued solution back to a Boolean valued solution we use the
following rounding guided by a positive constant B.
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(1) Pick a random vector r by picking each coordinate to be an independent normal
variable with mean 0 and variance 1.

(2) For each i if |(vi, r)| ≤ B set pi = B+(vi,r)
2B and otherwise set pi = 1

2 .
(3) Set xi = 1 with probability pi independently for each i and otherwise xi = −1.

Remember that if x0 gets the value −1 we negate all variables. The lemma below is
the key to the analysis.

LEMMA 5.3. We have ∣∣∣∣E[xixj ]−
1

B2
(vi, vj)

∣∣∣∣ ≤ be−B2/2.

for some absolute constant b.

PROOF. If |(vi, r)| ≤ B and |(vj , r)| ≤ B then E[xixj ] = 1
B2 Er[(vi, r)(vj , r)]. Now

it is not difficult to see that Er[(vi, r)(vj , r)] = (vi, vj) and thus using the fact that
Pr[|(vi, r)| > B] ≤ b

2e
−B2/2 for a suitable constant b, the lemma follows.

Taking all the facts together we get that the obtained Boolean solution has expected
value at least

1

B2
(cm− (c+ C)εm)− be−B

2/2Dm.

If we choose ε = c
2(c+C) and then B a sufficiently large constant we see that this ex-

pected value is at least δm for some absolute constant δ. The theorem follows.

6. THE CASE OF NO NEGATION
In our definition we are currently allowing negation for free. Traditionally this has
not been the choice in most of the CSP-literature. Allowing negations does make many
situations more smooth but both cases are of importance and let us here outline what
happens in the absence of negation. We call the resulting class Max-P+.

In this case the situation is different and small changes in P may result in large
difference in the performance of “trivial” algorithms. In particular, if P accepts the all-
zero or all-one string then it is trivial to satisfy all constraints by setting each variable
to 0 in the first case and each variable to 1 in the second case.

We propose to extend the set of trivial algorithms to allow the algorithm to find a
bias r ∈ [−1, 1] and then set all variables randomly with expectation r, independently.
The algorithm to outperform is then the algorithm with the optimal value of r. Note
that this algorithm is still oblivious to the instance as the optimal r depends solely on
P . We extend the definition of EQ for this setting.

Definition 6.1. For Q: {−1, 1}k 7→ R and r ∈ [−1, 1], define

EQ(r) = E
x∈{−1,1}k

(r)

Q(x), E+
Q = max

r∈[−1,1]
EQ(r),

where {−1, 1}k(r) denotes the r-biased hypercube.

Using this definition we now get extensions of the definitions of approximation re-
sistance and uselessness of Max-P+, and we say that P is positively approximation
resistant or positively useless.

6.1. Positive usefulness in the information theoretic setting
The results of Section 3 are not difficult to extend and we only give an outline. The
main new component to address is the fact that 0 and 1 are not symmetric any longer.
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As before let µ be a probability measure and let µp,q be the distribution obtained by
first picking a string according to µ and then flipping each coordinate that is one to a
zero with with probability p and each coordinate that is zero to one with probability
q (of course all independently). For a given µ let Opt+(Q,µ) be the maximum over p
and q of the expected value of Q(x) when x is chosen according to µp,q. We have the
following theorem.

THEOREM 6.2. The predicate P is positively information-theoretically useless for
Q if and only if there exists a measure supported on strings accepted by P such that
Opt+(Q,µ) = E+

Q .

PROOF. The proof follows the proof of Theorem 3.2, and we leave the easy modifica-
tions to the reader.

Let us return to the more interesting case of studying positive uselessness in the com-
putational setting.

6.2. Positive usefulness in the computational setting
Also in this situation we can extend the result from the situation allowing negations
by using very similar techniques. We first extend the hardness result Theorem 4.4
based on pairwise independence to this setting and we can now even allow a uniformly
positively correlated distribution.

THEOREM 6.3. Let P be a predicate such that the strings accepted by P supports a
uniformly positively correlated distribution. Then, assuming the unique games conjec-
ture, P is positively useless.

A similar theorem was noted in [Austrin 2010], but that theorem only applied for
pairwise independent distributions. The relaxed condition that the distribution only
needs to be positively correlated is crucial to us as it allows us to get a tight character-
ization. As the proof of Theorem 6.3 has much in common with the proof of Theorem 8.3
stated below we give the proofs of both theorems in Section 9.

Let us turn to establishing the converse of Theorem 6.3. We start by extending The-
orem 5.1.

THEOREM 6.4. Suppose that the set of inputs accepted by predicate P does not sup-
port a uniformly positively correlated measure. Then there is a real-valued quadratic
polynomial Q such that Q(x) > E+

Q for any x ∈ P−1(1). Furthermore, Q can be chosen
such that the optimal bias r giving the value E+

Q satisfies |r| < 1.

PROOF. As in the proof of Theorem 5.1 for each x ∈ {−1, 1}k we can define a point
x(2) in k +

(
k
2

)
real dimensions where the coordinates are given by the coordinates of

x as well as any pairwise product of coordinates xixj . We consider two convex bodies,
K1 and K2 where K1 is the same body we saw in the proof of Theorem 5.1 – the convex
hull of x(2) for all x accepted by P .

For each b ∈ [−1, 1] we have a point yb with the first k coordinates equal to b and the
rest of the coordinates equal to b2. We let K2 be the convex hull of all these points.

The hypothesis of the theorem is now equivalent to the fact that K1 and K2 are
disjoint. Any hyperplane separating these two convex sets would be sufficient for the
first part of the theorem but to make sure that the optimal r satisfies |r| < 1 we need
to consider how to find this hyperplane more carefully.

Suppose p2 is a point in K2 such that d(p2,K1), i.e., the distance from p2 to K1, is
minimal. Furthermore let p1 be the point in K1 minimizing d(p1, p2). One choice for
the separating hyperplane is the hyperplane which is orthogonal to the line through
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p1 and p2 and which intersects this line at the midpoint between p1 and p2. As in
Theorem 5.1 we get a corresponding quadratic form, Q, and it is not difficult to see
that the maximum of Q over K2 is taken at p2 (and possibly at some other points).
Thus if we can make sure that p2 does not equal (1k, 1(k2)) or (−1k, 1(k2)) we are done.

We make sure that this is the case by first applying a linear transformation to the
space. Note that applying a linear transformation does not change the property that
K1 and K2 are non-intersecting convex bodies but it does change the identity of the
points p1 and p2.

As P does not support a uniformly positively correlated measure it does not accept
either of the points 1k or −1k as a measure concentrated on such a point is uniformly
positively correlated. This implies that K1 is contained in the strip∣∣∣∣∣

k∑
i=1

yi

∣∣∣∣∣ ≤ k − 2.

We also have that K2 is contained in the strip∣∣∣∣∣
k∑
i=1

yi

∣∣∣∣∣ ≤ k,
and that it contains points with the given sum taking any value in the above interval.
Furthermore the points we want avoid satisfy |

∑k
i=1 yi| = k. Now apply a linear trans-

formation that stretches space by a large factor in the direction of the vector (1k, 0(k2))
while preserving the space in any direction orthogonal to this vector. It is easy to see
that for a large enough stretch factor, none of the points (1k, 1(k2)) or (−1k, 1(k2)) can be
the point in K2 that is closest to K1. The theorem follows.

Given Theorem 5.2 the next theorem should be no surprise.

THEOREM 6.5. Let P be a predicate whose set of accepting inputs does not support
a uniformly positively correlated measure and Q be the quadratic function proved to
exist by Theorem 6.4. Then P is positively useful for Q.

PROOF. The proof is a small modification of the proof of Theorem 5.2 and let us only
outline these modifications.

Let r be the optimal bias of the inputs to get the best expectation of Q and let us
consider the expected value of 1

m

∑
Q(x

bj
aj ) given that we set xi to one with probability

(1 + r + yi)/2. This probability can be written a quadratic form in yi and we want to
optimize this quadratic form under the conditions that |r + yi| ≤ 1 for any i. Note that
the constant term is E+

Q and if we introduce a new variable y0 that always takes the
value 1 we can write the resulting expectation as

E+
Q +

∑
i 6=j

cijyiyj , (1)

for some real coefficients cij . As before we relax this to a semi-definite program by
replacing the products yiyj in (1) by inner products (vi, vj) and relaxing the constraints
to

‖rv0 + vi‖ ≤ 1,

for any i ≥ 1 and ‖v0‖ = 1. Solving this semi-definite program we are now in essentially
the same situation as in the proof of Theorem 5.2. The fact that |r| < 1 ensures that a
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sufficiently large scaling of the inner products results in probabilities in the interval
[0, 1]. We omit the details.

Theorem 6.3 proves that having odd parity on four variables is positively useless but
assumes the UGC. It seems natural to hope that this theorem could be establish based
solely on NP 6= P , but we have been unable to do so.

Let us briefly outline the problems encountered. The natural attempt is to try a long-
code based proof for label cover instance similar to the proof [Håstad 2001]. A major
problem is that all currently known such proofs read two bits from the same long code.
Considering functions Q that benefit from two such bits being equal gives us trouble
through incorrect proofs where each individual long code is constant. For instance we
currently do not know how to show that odd parity is not useful for the “exactly three”
function based only on NP6=P.

7. ADAPTIVE USELESSNESS AND PSEUDORANDOMNESS
We now discuss the adaptive setting, when we allow the algorithm to choose the new
objective function Q based on the Max-P instance. Formally, we make the following
definition.

Definition 7.1. The predicate P is adaptively useful, if and only if there is an ε > 0
such that there is a polynomial time algorithm which given a Max-P instance with
value 1 − ε finds an objective function Q : {−1, 1}k → [0, 1] and an assignment x such
that

1

m

m∑
j=1

Q(xbjaj ) ≥ E
x∈{−1,1}k

[Q(x)] + ε.

Note that we need to require Q to be bounded since otherwise the algorithm can
win by simply scaling Q by a huge constant. Alternatively, it is easy to see that in
the presence of negations, adaptive usefulness is equivalent with requiring that the
algorithm finds an assignment x such that the distribution of the k-tuples {xbjaj}j∈[m]

is ε-far in statistical distance from uniform for some ε > 0 (not the same ε as above).
In fact, since k is constant it is even equivalent with requiring that the min-entropy is
bounded away from k, in particular that there is some α ∈ {−1, 1}k and ε > 0 such that
at least a 2−k + ε fraction of the xbjaj ’s attain the string α.

Adaptive uselessness trivially implies non-adaptive uselessness. In the other direc-
tion, with the interpretation of deviating from the uniform distribution over {−1, 1}k,
it is easy to see that the proof of the hardness result based on pairwise independence
from the non-adaptive setting works also for adaptive uselessness.

This result can, by a slightly more careful argument, be extended also to the case
without negations. The characterization is then that the algorithm is attempting to
produce a distribution on k-tuples that is far from being uniformly positively corre-
lated. In this setting, it does not seem meaningful to think of adaptive uselessness as
a pseudorandomness property.

8. A NEW APPROXIMATION RESISTANCE RESULT
In this section we describe how the pairwise independence condition of [Austrin and
Mossel 2009] can be relaxed somewhat to give approximation resistance for a wider
range of predicates. Some examples illuminating this theorem are given in Appendix
B.
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8.1. Relaxed Pairwise Independence Conditions
We first define the specific kind of distributions whose existence give our hardness
result.

Definition 8.1. A distribution µ over {−1, 1}k covers S ⊆ [k] if there is an i ∈ S such
that Eµ[xi] = 0 and Eµ[xixj ] = 0 for every j ∈ S \ {i}.

Definition 8.2. Fix a function Q : {−1, 1}k → R and a pair of coordinates {i, j} ⊆ [k].
We say that a distribution µ over {−1, 1}k is {i, j}-negative with respect to Q if Eµ[xi] =

Eµ[xj ] = 0 and Covµ[xi, xj ]Q̂({i, j}) ≤ 0.

Our most general condition for approximation resistance (generalizing both Theo-
rem B.3 in the appendix and [Austrin and Mossel 2009]) is as follows.

THEOREM 8.3. Let P : {−1, 1}k → {−1, 1} be a predicate and let Q : {−1, 1}k → R
be a real valued function. Suppose there is a probability distribution µ supported on P
with the following properties:

— For each pair {i, j} ⊆ [k], it holds that µ is {i, j}-negative with respect to Q
— For each S 6= ∅, |S| 6= 2 such that Q̂(S) 6= 0, it holds that µ covers S

Then P is not useful for Q, assuming the Unique Games Conjecture. In particular, if the
conditions are true for Q = P , then P is approximation resistant.

We are not aware of any approximation resistant predicates that do not satisfy the
conditions given in Theorem 8.3. On the other hand we see no reason to believe that it
is tight.

9. PROOFS OF UG-HARDNESS
In this section we give the proofs of the extensions Theorems 6.3 and 8.3 of [Austrin
and Mossel 2009]. It is well-known that the key part in deriving UG-hardness for a
CSP is to design dictatorship tests with appropriate properties — see e.g. [Raghavendra
2008] for details.

9.1. Background: Polynomials, Quasirandomness and Invariance
To set up the dictatorship test we need to mention some background material.

For b ∈ [−1, 1], we use {−1, 1}n(b) to denote the n-dimensional Boolean hypercube
with the b-biased product distribution, i.e., if x is a sample from {−1, 1}n(b) then the
expectation of i’th coordinate is E[xi] = b (equivalently, xi = 1 with probability (1 +
b)/2), independently for each i ∈ [n]). Whenever we have a function f : {−1, 1}n(b) → R
we think of it as a random variable and hence expressions like E[f ], Var[f ], etc, are
interpreted as being with respect to the b-biased distribution. We equip L2({−1, 1}n(b))
with the inner product 〈f, g〉 = E[f · g] for f, g : {−1, 1}n(b) → R.

For S ⊆ [n] define χS : {−1, 1}n(b) → R by

χS(x) =
∏
i∈S

χ(xi),

where χ : {−1, 1}(b) → R is defined by

χ(xi) =
xi − E[xi]√

Var[xi]
=

 −
√

1+b
1−b if xi = −1√

1−b
1+b if xi = 1

.
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The functions {χS}S⊆[n] form an orthonormal basis with respect to the inner product
〈·, ·〉 on L2({−1, 1}n(b)) and thus any function f : {−1, 1}n(b) → R can be written as

f(x) =
∑
S⊆[n]

f̂(S; b)χS(x),

where f̂(S; b) are the Fourier coefficients of f (with respect to the b-biased distribution).
With this view in mind it is convenient to think of functions f in L2({−1, 1}n(b)) as

multi-linear polynomials F : Rn → R in the random variables Xi = χ(xi), viz.,

F (X) =
∑
S⊆[n]

f̂(S; b)
∏
i∈S

Xi.

We say that such a polynomial is (d, τ)-quasirandom if for every i ∈ [n] it holds that∑
i∈S⊆[n]
|S|≤d

f̂(S; b)2 ≤ τ.

A function f : {−1, 1}n(b) → R is said to a be a dictator if f(x) = xi for some i ∈ [n], i.e.,
f simply returns the i’th coordinate. The polynomial F corresponding to a dictator is
F (X) = b +

√
1− b2Xi. Note that a dictator is in some sense the extreme opposite of a

(d, τ)-quasirandom function as a dictator is not (1, τ)-quasirandom for τ < 1− b2.
We are interested in distributions µ over {−1, 1}k. In a typical situation we pick n

independent samples of µ, resulting in k strings ~x1, . . . , ~xk of length n, and to each
such string we apply some function f : {−1, 1}n → {−1, 1}. With this in mind, define
the following k×n matrix X of random variables. The j’th column which we denote by
Xj has the distribution obtained by picking a sample x ∈ {−1, 1}k from µ and letting
Xj
i = χ(xi), independently for each j ∈ [n]. Then, the distribution of (f(~x1), . . . , f(~xk))

is the same as the distribution of (F (X1), . . . , F (Xk)), where Xi denotes the i’th row of
X.

Now, we are ready to state the version of the invariance principle [Mossel et al. 2010;
Mossel 2010] that we need.

THEOREM 9.1. For any α > 0, ε > 0, b ∈ [−1, 1], k ∈ N there are d, τ > 0 such that
the following holds. Let µ be any distribution over {−1, 1}k satisfying:

(1) Ex∼µ[xi] = b for every i ∈ [k] (i.e., all biases are identical).
(2) µ(x) ≥ α for every x ∈ {−1, 1}k (i.e., µ has full support).

Let X be the k× n matrix defined above, and let Y be a k× n matrix of standard jointly
Gaussian variables with the same covariances as X. Then, for any (d, τ)-quasirandom
multi-linear polynomial F : Rn → R, it holds that∣∣∣∣∣E

[
k∏
i=1

F (X)

]
− E

[
k∏
i=1

F (Y )

]∣∣∣∣∣ ≤ ε.
9.2. The Dictatorship Test
The dictatorship tests we use to prove Theorems 6.3 and 8.3 are both instantiations
of the test used in [Austrin and Mossel 2009], with slightly different analyses, so we
start by recalling how this test works.

In what follows we extend the domain of our predicate P : {−1, 1}k → {0, 1} to
[−1, 1]k multi-linearly. Thus, we have P : [−1, 1]k → [0, 1].
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To prove hardness for Max-P , one analyzes the performance of the dictatorship test
in Figure 1, which uses a distribution µ over {−1, 1}k that we assume is supported
on P−1(1) and satisfies condition (1) of Theorem 9.1, which is the case in both Theo-
rems 6.3 and 8.3.

INPUT: A function f : {−1, 1}L → [−1, 1]
OUTPUT: Accept/Reject

(1) Let µε = (1− ε)µ+ εUb, where Ub denotes the product distribution over {−1, 1}k
where each bit has bias b.

(2) Pick L independent samples from µε, giving k vectors ~x1, . . . , ~xk ∈ {−1, 1}L.
(3) Accept with probability P (f(~x1), . . . , f(~xk)).

Fig. 1. Dictatorship test

The completeness property of the test is easy to establish (and only depends on µ
being supported on strings accepted by P ).

LEMMA 9.2. If f is a dictatorship function then A accepts with probability ≥ 1− ε.

For the soundness analysis, the arguments are going to be slightly different for the
two Theorems 6.3 and 8.3. It is convenient to view f in its multi-linear form as de-
scribed in the previous section. Thus, instead of looking at f(~x1), . . . , f(~xk) we look at
F (X1), . . . , F (Xk). In both cases, the goal is to prove that there are d and τ such that if
F is (d, τ)-quasirandom then the expectation of Q(F (X1), . . . , F (Xk)) is small (at most
EQ + ε for Theorem 8.3 and at most E+

Q + ε for Theorem 6.3).
In general, it is also convenient to apply the additional guarantee that F is balanced

(i.e., satisfying E[F (X)] = 0). This can be achieved by the well-known trick of folding,
and is precisely what causes the resulting Max-P instances to have negated literals.
In other words, when we prove Theorem 6.3 on the hardness of Max-P+, we are not
going to be able to assume this.

Theorem 8.3: Relaxed Approximation Resistance Conditions. The precise soundness
property for Theorem 8.3 is as follows.

LEMMA 9.3. Suppose µ is a distribution as in the statement of Theorem 8.3 and
that the function F is folded. Then for every ε > 0 there are d, τ such that whenever F is
(d, τ)-quasirandom then

E[Q(F (X1), . . . , F (Xk))] ≤ EQ + ε.

PROOF. We write Q(x) =
∑
S⊆[k] Q̂(S)

∏
i∈S xi, where Q̂(S) are the Fourier coeffi-

cients of Q with respect to the uniform distribution, and Q̂(∅) = EQ.
We analyze the expectation of Q term by term. Fix a set ∅ 6= S ⊆ [k] and let us

analyze E[
∏
i∈S F (Xi)]. Let d, τ be the values given by Theorem 9.1, when applied with

ε chosen as ε/2k and the α given by the distribution µε (note that this distribution
satisfies the conditions of Theorem 9.1). There are two cases.

Case 1: |S| = 2. Let S = {i, j}. The conditions on µ guarantee that µ is {i, j}-
negative with respect to Q, i.e., for any column a we have E[Xa

i ] = E[Xa
j ] = 0 and

Q̂(S)E[Xa
i X

a
j ] ≤ 0. Let ρ = E[Xa

i X
a
j ] (as each column a is identically distributed

this value does not depend on a). Then we have

Q̂(S)E[F (Xi)F (Xj)] = Q̂(S)Sρ(F )
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where Sρ(F ) is the noise stability of F at ρ. Moreover, since the function F is folded
it is an odd function, which in particular implies that Sρ(F ) is odd as well so that
sgn(Sρ(F )) = sgn(ρ). Since Q̂(S)ρ ≤ 0 it follows that Q̂(S)Sρ(F ) ≤ 0 as well, so S
can not even give a positive contribution to the acceptance probability.
Case 2: S 6= ∅, |S| 6= 2, Q̂(S) 6= 0. This is the more interesting case. The conditions
on µ guarantee that µ covers S, i.e., there is an i∗ ∈ S such that E[Xa

i∗ ] = 0 and
E[Xa

i∗X
a
j ] = 0 for all j ∈ S \ {i∗}. By Theorem 9.1, we know that if F is (d, τ)-

quasirandom we have∣∣∣∣∣E
[∏
i∈S

F (Xi)

]
− E

[∏
i∈S

F (Yi)

]∣∣∣∣∣ ≤ ε/2k,
where Y is a jointly Gaussian matrix with the same first and second moments as
X. But then, for every column a, the conditions on the second moments imply that
Y ai∗ is a standard Gaussian completely independent from all other entries of Y . This
implies that

E

[∏
i∈S

F (Yi∗)

]
= E [F (Yi∗)] · E

 ∏
i∈S\{i∗}

F (Yi)

 = 0,

where the second equality is by the assumption that F is folded. This implies that
S has at most a negligible contribution of ε/2k to the acceptance probability of the
test.

Combining the two cases, it immediately follows that

E[Q(F (X1), . . . , F (Xk))] =
∑
S⊆[k]

Q̂(S)E

[∏
i∈S

F (Xi)

]
≤ EQ + ε.

Theorem 6.3: No Negations. As mentioned earlier, in the case when negated literals
are not allowed, we can no longer assume that F is folded. Furthermore, the distri-
bution µ over {−1, 1}k used is only assumed to be pairwise uniformly correlated. The
precise soundness is as follows.

LEMMA 9.4. Suppose µ is a uniformly positively correlated distribution. Then for
every Q : [−1, 1]k → [−1, 1] and ε > 0 there are d, τ such that whenever F is (d, τ)-
quasirandom then

E[Q(F (X1), . . . , F (Xk))] ≤ E+
Q + ε.

PROOF. Similarly to the previous lemma, we are going to take d, τ to be the values
given by Theorem 9.1 with ε chosen as ε

2·2k .
Note that since µε is a combination of µ and Ub, both being uniformly positively

correlated, µε is also uniformly positively correlated.
Let b = Ex∼µε [xi] and ρ = Ex∼µε [xixj ] ≥ b2 be the bias and correlation of µε, respec-

tively. Define a new distribution η over {−1, 1}k as

η = cU√ρ + (1− c)U−√ρ,

where c =
b+
√
ρ

2
√
ρ ∈ [0, 1] (recall that U√ρ denotes the product distribution where all

biases are √ρ).
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Then η has the same first and second moments as µε and therefore, writing Z for the
corresponding matrix from η, we can apply Theorem 9.1 twice and see that for every
S ⊆ [k] ∣∣∣∣∣E

[∏
i∈S

F (Xi)

]
− E

[∏
i∈S

F (Zi)

]∣∣∣∣∣ ≤ ε/2k,
implying

|E[Q(F (X1), . . . , F (Xk))]− E[Q(F (Z1), . . . , F (Zk))]| ≤ ε.
Now, the column Z1 of Z can be written as a convex combination of two product

distributions R+ and R− over Rk (resulting from applying the character χ to U√ρ and
U−√ρ, respectively). By linearity of expectation, we can replace Z1 with one of R+

and R− without decreasing the expectation of Q(F (·), . . . , F (·)). Repeating this for all
columns, we end up with a random matrix W , each column of which is either dis-
tributed like R+ or like R−, and satisfying

E[Q(F (W1), . . . , F (Wk))] ≥ E[Q(F (Z1), . . . , F (Zk))].

But now since each column of W is distributed according to a product distribution
(with identical marginals), the rows of W are independent and identically distributed,
implying that

E[Q(F (W1), . . . , F (Wk))] ≤ E+
Q .

Combining all our inequalities, we end up with

E[Q(F (X1), . . . , F (Xk))] ≤ E+
Q + ε,

as desired.

10. CONCLUDING REMARKS
We have introduced a notion of (computational) uselessness of constraint satisfaction
problems, and showed that, assuming the unique games conjecture, this notion admits
a very clean and nice characterization. This is in contrast to the related and more
well-studied notion of approximation resistance, where the indications are that a char-
acterization, if there is a reasonable one, should be more complicated.

Our inability to obtain any non-trivial NP-hardness results for positive uselessness,
instead of Unique Games-based hardness is frustrating. While [Håstad 2001] proves
odd parity of four variables to be positively approximation resistant, obtaining positive
uselessness by the same method appears challenging.

Another direction of future research is understanding uselessness in the completely
satisfiable case.

We have focused on CSPs defined by a single predicate P (with or without negated
literals). It would be interesting to generalize the notion of usefulness to a general
CSP (defined by a family of predicates). Indeed, it is not even clear what the correct
definition is in this setting, and we leave this as a potential avenue for future work.
Another possible direction is to consider an analogous notion for the decision version
of a CSP rather than the optimization version.
Acknowledgement. We are grateful to a number of anonymous referees for useful
comments on the presentation of this paper.
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A. PROOF OF THEOREM 4.3
THEOREM 4.3 RESTATED. For any k ≥ 3, parity of k variables is computationally

useless.

PROOF. To avoid cumbersome notation let us only give the proof in the case k = 3.
We assume the reader is familiar with the PCP defined for this case in [Håstad 2001]
to prove that Max-3-Lin is approximation resistant. We claim that the same instances
show that 3-Lin is computationally useless.

Indeed consider an arbitrary Q : {−1, 1}3 → R and consider its Fourier-expansion

Q(x) =
∑
S⊆[3]

Q̂SχS(x). (2)

Now we need to consider 1
m

∑m
i=1Q(x

bj
aj ) and we can expand each term using (2) and

switch the the order of summation. Remember that Q̂∅ = EQ and thus we need to
make sure that

1

m

m∑
i=1

χS(xbjaj ) (3)
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is small for any non-empty S (unless there is a good strategy for the provers in the
underlying two-prover game). This is done in [Håstad 2001] for S = {1, 2, 3} as this is
the only Fourier coefficient that appears in the expansion of parity itself.

For smaller, non-empty, S, it is easy to see that (3) equals 0. Bits read corresponding
A(f) and B(gi) are pairwise independent and pairing terms for f and −f proves that
E[B(g1)B(g2)] = 0.

The result follows in the case of parity of 3 variables and the extension to the general
case is straightforward and left to the reader.

B. SOME EXAMPLES
Let us first recall one of the few known examples of a predicate that is approximation
resistant but not hereditarily approximation resistant.

Example B.1. Consider the predicate GLST : {−1, 1}4 → {0, 1} defined by

GLST (x1, x2, x3, x4) =

{
x2 6= x3 if x1 = −1
x2 6= x4 if x1 = 1

.

This predicate was shown to be approximation resistant by Guruswami et al. [Gu-
ruswami et al. 1998], but there is no pairwise independent distribution supported on
its accepting assignments – indeed it is not difficult to check that x2x3+x2x4+x3x4 < 0
for all accepting inputs. This predicate also implies NAE(x2, x3, x4), the not-all-equal
predicate and this is known to be non-trivially approximable [Zwick 1998].

When the predicate GLST is proved to be approximation resistant in [Guruswami
et al. 1998] the crucial fact is that not all terms appear in the Fourier expansion of P .
We have

GLST (x1, x2, x3, x4) =
1

2
− x2x3

4
− x2x4

4
+
x1x2x3

4
− x1x2x4

4
.

The key is that no term in the expansion contains both of the variables x3 and x4,
corresponding to two questions in the PCP that are very correlated and hence giving
terms that are hard to control.

In other words, when proving approximation resistance it suffices to only analyze
those terms appearing in the Fourier expansion of a predicate P . In the context of
the pairwise independent condition (which only gives UG-hardness, not NP-hardness),
this means that it suffices to find a distribution which is pairwise independent on those
pairs of variables that appear together in some term.

However, these are not the only situations where we can deduce that P is approxi-
mation resistant.

Example B.2. Consider the predicate
P (x1, x2, x3, x4) = GLST (x1, x2, x3, x4) ∨ (x1 = x2 = x3 = x4 = 1),

which is the GLST predicate with the all-ones string as an additional accepting as-
signment. One can check that there is no pairwise independent distribution supported
on P−1(1), and since P has an odd number of accepting assignments, all its Fourier co-
efficients are non-zero. However, Max-P is known to be approximation resistant [Hast
2005].

The result of [Hast 2005] proving that this predicate is resistant is somewhat more
general. In particular, it says the following.

THEOREM B.3 ([HAST 2005], THEOREM 6.5). Let P : {−1, 1}4 → {0, 1} be a pred-
icate on 4 bits. Suppose P̂ ({3, 4}) ≥ 0 and that P accepts all strings x1x2x3x4 with∏3
i=1 xi = −1 and x3 = −x4. Then P is approximation resistant.
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The statement of [Hast 2005], Theorem 6.5 is slightly different. The above statement
is obtained by flipping the sign of x3 in the statement of [Hast 2005]. If is not difficult
to see that Theorem 8.3 extends Theorem B.3 to a much larger class of predicates (but
giving UG-hardness, whereas [Hast 2005] gives NP-hardness).

Example B.4 (Example B.2 continued). Consider the distribution µ used to prove
approximation resistance for GLST , i.e., the uniform distribution over the four strings
x1x2x3x4 satisfying x1x2x3 = −1 and x3 = −x4 (note that the condition of Theorem B.3
is precisely that P should accept these inputs). First, it satisfies

P̂ ({3, 4})E
µ

[x3x4] =
1

16
· (−1) < 0,

and all other pairwise correlations are 0, so µ satisfies the {i, j}-negativity condition of
Theorem 8.3. Further, for |S| > 2 it holds that either x1 or x2 is in S. Since Eµ[x1] = 0
and Eµ[x1xj ] = 0 for all j 6= 1 (and similarly for x2), this shows that any |S| > 2 is
covered by µ. Finally since all Eµ[xi] = 0, all four singleton S are also covered by µ.
Hence Theorem 8.3 implies that Max-P is resistant (under the UGC).

Example B.5. Consider the predicate P (x) = x1 ⊕ ((x2 ⊕ x3) ∨ x4). This predicate
is known to be approximation resistant [Hast 2005]. Let us see how to derive this
conclusion using Theorem 8.3 (albeit only under the UGC). The Fourier expansion of
P is

P (x) =
1

2
+
x1
4
− x1x4

4
− x1x2x3

4
− x1x2x3x4

4
,

and the distribution we use is uniform over:

{x ∈ {−1, 1}4 |x1x2x3 = −1, x4 = 1}.
Each of x1, x2, x3 are unbiased, and x4 is completely biased but as it does not appear as
a singleton in the expansion of P this is not an issue. Further, all pairwise correlations
are 0, and it is easy to check that this is sufficient for Theorem 8.3 to apply.

We only used Theorem 8.3 to get approximation resistance in a few examples. It can
also be used to give interesting examples of P and Q such that P is not useful for Q
but we leave the creation of such examples to the reader.

C. RESISTANT SIGNS OF QUADRATIC FORMS
In this section we consider a slightly different example from the ones considered in
Section B. Suppose that in the definition of uselessness we only considered predicates
Q rather than arbitrary real-valued functions. Would we get the same set of useless
predicates?

The answer to this question is not obvious. Any real-valued functionQ can be written
in the form

Q(x) = q0 +
∑
i

ciPi(x)

where the sum is over different predicates and each coefficient ci is non-negative. This
implies that if P is useful for a real-valued function Q then there is a collection of
predicates {Pi} such that on any instance we can do better than random on one of these
predicates. However, it does not imply that there is a single predicate P ′ for which P
is useful. On the other hand it does imply that the standard proofs of uselessness for
P can not work since these show that P is useless for all P ′ on the same instance.

It is natural for any P that does not support a pairwise independent distribution to
try to find a predicate P ′ such that P is useful for P ′. Given the discussion of Section 5
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a very natural candidate is,
P ′(x) = sgn(Q(x))

where Q is the quadratic form guaranteed by Theorem 5.1. Note that it may or may
not be the case that P = P ′. We now present an example to show that this choice does
not always work.

THEOREM C.1. There is a predicate, P , of the form sgn(Q(x)) whereQ is a quadratic
function without a constant term that is approximation resistant (assuming the UGC).

PROOF. Let L1 and L2 be two linear forms with integer coefficients which only as-
sume odd values and only depends on variables xi for i ≥ 3. Define

Q(x) = 10(L1(x) + x1)(L2(x) + x2) + x1L2(x) + 2x2L1(x), (4)
and let P (x) = sgn(Q(x)). We establish the following properties of P .

(1) For all α such that {1, 2} ⊆ α we have P̂α = 0.
(2) There is a probability distribution µ supported on strings accepted by P such that

Eµ[xi] = 0 for all i and Eµ[xixj ] = 0 for all i < j with (i, j) 6= (1, 2).

These two conditions clearly make it possible to apply Theorem 8.3. Loosely speaking
the second condition makes it possible to construct at PCP such that we can control
sums over all nontrivial characters except those that contain both 1 and 2. The first
conditions implies that these troublesome terms do not appear in the expansion of P
and hence we can complete the analysis.

We claim that property 1 is equivalent to the statement that every setting of the
variables xi for i ≥ 3 results in a function on x1 and x2 that has the Fourier coefficient
of size 2 equal to 0. In other words it should be a constant, one of the variables x1 or
x2 or the negation of such a variable. Let us check that this is the case for Q defined
by (4).

Fix any value of xi, i ≥ 3 and we have the following cases.

(1) |L1| ≥ 3 and |L2| ≥ 3.
(2) |L1| = 1 and |L2| 6= 1.
(3) |L2| = 1.

In first case clearly the first term determines the sign of Q and P = sgn(L1(x)L2(x))
and in particular the sub-function is independent of x1 and x2.

The second case is almost equally straightforward. When x1 = L1(x) then the first
term dominates and the answer is sgn(x1L2(x)). When x1 = −L1(x) the first term is 0
and as |L2(x)x1| ≥ 3 while |L1(x)x2| = 1 the answer also in this case is sgn(x1L2(x)).

Finally let us consider the third case. Then if x2 = L2(x) our function Q reduces to
20(L1(x) + x1)x2 + x2(2L1(x) + x1)

and any nonzero term of this sum has sign sgn(x2L1(x)). Finally if x2 = −L2(x) we get
x2(2L1(x)− x1)

and again the sign is that of sgn(x2L1(x)). We conclude that in each case we have one
of the desired functions and property 1 follows.

We establish property 2 in the case when each Li is the sum of 5 variables not occur-
ring in the other linear form. Thus for example we might take

L1(x) = x3 + x4 + x5 + x6 + x7

and
L2(x) = x8 + x9 + x10 + x11 + x12.
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We describe the distribution µ in a rather indirect way to later be able to analyze it.
Let c = 7−

√
41

8 ≈ .0746.

(1) Fix |L1(x)| to 1,3 or 5 with probabilities 1
2 + 2c, 1

2 − 3c, and c, respectively.
(2) Fix |L2(x)| to 1 or 3 each with a probability 1

2 .
(3) Pick a random b ∈ {−1, 1} taking each value with probability 1

2 .
(4) Suppose |L1(x)| ≥ 3 and |L2(x)| ≥ 3. Set sgn(L1(x)) = sgn(L2(x)) = b and x1 = x2 =
−b.

(5) Suppose |L2| 6= 1 and |L1| = 1. Set sgn(L1(x)) = − sgn(L2(x)) = b and x1 = x2 = −b.
(6) Suppose |L2| = 1. Set sgn(L1(x)) = x1 = x2 = b and sgn(L2(x))) = −b with probabil-

ity 1+12c
2 and sgn(L2(x)) = b with probability 1−12c

2 .
(7) Choose xi for i ≥ 3 uniformly at random given the values L1(x) and L2(x).

Now first note that by the analysis in establishing property 1 we always pick an
assignment such that Q(x) > 0. This follows as in the three cases the output of the
function is sgn(L1(x)L2(x)), sgn(x1L2(x)), and sgn(L1(x)x2), respectively and they are
all chosen to be b2.

As b is a random bit, it is easy to see that E[xi] = 0 for any i and we need to analyze
E[xixj ] for (i, j) 6= (1, 2). In our distribution we always have x1 = x2 and the variables in
L1 and L2 are treated symmetrically and hence it is sufficient to establish the following
five facts.

(1) E[L2
1(x)] = 5.

(2) E[L2
2(x)] = 5.

(3) E[x1L1(x)] = 0.
(4) E[x1L2(x)] = 0.
(5) E[L1(x)L2(x)] = 0.

The first expected value equals(
1

2
+ 2c

)
· 1 +

(
1

2
− 3c

)
· 9 + 25 · c = 5

while the second equals
1 · 1 + 1 · 9

2
= 5.

For the third expected value note that x1L1(x) = −|L1(x)| when L2(x) = 3 while it
equals x1L1(x) = |L1(x)| when L2(x) = 1. The two cases happens each with probability
1/2 and as |L1(x)| is independent of |L2(x)| the equality follows.

To analyze the fourth value, first observe that conditioned on |L2(x)| = 1 we have
E[x1L2(x)] = −12c. On the other hand when |L2(x)| = 3 we have

E[x1L2(x)] = 3(
1

2
+ 2c)− 3(

1

2
− 3c)− 3c = 12c,

giving the result in this case. Finally, conditioned on |L2(x)| = 1 we have

E[L1(x)L2(x)] = −12c

(
(
1

2
+ 2c) + 3(

1

2
− 3c) + 5c

)
= −(24c− 24c2)

and conditioned on |L2(x)| = 3 we have

E[L1(x)L2(x)] = −3(
1

2
+ 2c) + 9(

1

2
− 3c) + 15c = 3− 18c
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giving a total expected value of
1

2
(24c2 − 24c) +

1

2
(3− 18c) = 3/2 + 12c2 − 21c

and c was chosen carefully to make this quantity 0.

D. ONE RESULT AT THE OTHER END OF THE SPECTRUM
We have focused on computationally useless predicates that do not enable us to do
essentially anything. Knowing that there is an assignment that satisfies almost all
the constraints does not enable us to do better for any function.

At the other end of the spectrum we could hope for predicates where even more
moderate promises can be sufficient to find useful assignments efficiently.

One possibility is to ask for a predicate that is useful for all functions Q. This is
too much to ask for, as discussed in Section 3, if P and Q are sufficiently unrelated it
might be the case that there are instances where we can satisfy P on all constraints
while the best assignment when we consider condition Q only satisfies essentially a
fraction EQ. One possible definition is to say that P should be useful for any Q which
is not excluded by this information theoretic argument. This is a potential avenue of
research which we have not explored and hence we have no strong feeling about what
to expect. One complication here is of course that the characterization of Theorem 3.2
is not very explicit and hence might be difficult to work with.

The payoff Q we must always consider is the traditional question of approximability
namely Q = P but let us weaken the promise from the optimum being almost one to
being just slightly above the random threshold.

Definition D.1. A predicate P is fully approximable if for any ε > 0 there is a δ > 0
such that if the optimal value of a Max-P instance is EP + ε then one can efficiently
find an assignment that satisfies an (EP + δ)-fraction of the constraints.

First note that the most famous example of a fully approximable predicate is Max-
Cut and in fact any predicate of arity two is fully approximable. This definition has
been explored previously in [Håstad 2007] but given that this is not a standard venue
for results on Max-CSPs, let us restate the following theorem of [Håstad 2007].

THEOREM D.2. [Håstad 2007] A predicate P is fully approximable if and only if the
Fourier expansion of P contains no term of degree at least 3.

We refer to [Håstad 2007] for the not too difficult proof. It is not difficult to find the
complete list of such predicates. A predicate on three variables is fully approximable
iff it accepts equally many even and odd strings. Up to negations and permutations
of variables, the only predicate that depends genuinely on four variables with this
property is

P (x) =
2 + x1x3 + x1x4 + x2x3 − x2x4

4
.

Let us sketch the argument why this is the case. We are looking for a degree-two poly-
nomial that takes values in {0, 1}. If is has any linear term, introduce a new variable
x0 and replace xi by x0xi. This is a polynomial that depends on one more variable and
still takes values in {0, 1}. This follows as when x0 = 1 is the old polynomial and the
fact that P (−x) = P (x) establishes the same property when x0 = −1. In view of this,
we can assume that the polynomial only has terms of degree 0 and 2. Let us assume
that the monomial x1x2 appears with a nonzero coefficient, which we may assume, by
negation is positive. Then as fixing the other variables and considering all predicates
on two variables, we see that this coefficient must by 1/2 or 1/4. In the former case
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we see that the obtained function must always be the parity of x1 and x2 on thus the
polynomial only depends on two variables. In the latter case x1 must appear in one
other term which we may assume is x1x3/4. Now when x2 = x3, it is not difficult to
see that the induced function must be the parity of x1 and x2 and thus the polynomial
must be of the form c + x1(x2 + x3)/4 + (x2 − x3)L(x) for some linear function L. It is
not difficult to see that we must have c = 1/2 and that L can only contain one new
variable.
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