
Lecture 3 - A theorist’s toolkit

1 Overview of this lecture

In this lecture we first discuss two useful bounds for random variables. Then
we recall Lagrange’s interpolation formula. This is followed by a construc-
tion of a set of k-wise independent random variables, and an application of
these. We then give a negative result. Finally, we consider how a Hadamard
matrix can be used to construct pairwise and 3-wise independent random
variables.

2 Useful Bounds

The most basic of all probability bounds is the following due to Markov.

Theorem 1 (Markov). Let X be a random variable on a space S and
f : S → R+. Then

Pr[f(X) ≥ k] ≤ E [f(X)]
k

.

Proof. Let Y be the indicator variable for the event f(X) ≥ k. Since f
is positive we have Y ≤ f(X)

k . This implies that Pr[f(X) ≥ k] = E [Y ] ≤
E[f(X)]

k .

Markov’s bound can be used to derive a bound on the probability that
a real valued random variable takes a value far from its expectation.

Theorem 2 (Chebychev). Let X be a random variable on R and let σ be
the variance of X. Then

Pr[|X − E [X]| ≥ sσ] ≤ 1
s2
.

Proof. Define f(x) = (x− E [x])2 = x2 − 2xE [x] + E [x]2. Then E [f(X)] =
E

[
X2

] − E [X]2 = σ2. From Markov’s inequality now follows that

Pr[|X − E [X]| ≥ sσ] = Pr[f(X) ≥ s2σ2] ≤ E [f(X)]
s2σ2

=
1
s2
.
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2.1 An Interesting Example

Suppose we have n uniformly and independently distributed random vari-
ables X1, . . . ,Xn taking values in {1,−1}. What is the probability that we
get at least t more ones than minus ones?

Define X =
∑n

i=1Xi. The probability we are looking for is Pr[X ≥ t].
We have

Pr[X ≥ t] = Pr[eλX ≥ eλt] ≤ E
[
eλX

]
eλt

.

Here we use that ex is an increasing function, i.e. x ≥ t is equivalent with
ex ≥ et. Then we use the definition of X and independence to get

E
[
eλX

]
= E

[
n∏

i=1

eλXi

]
=

{
independent Xi

}
=

n∏
i=1

E
[
eλXi

]
.

Finally, we have E
[
eλXi

]
= 1

2 (e
λ + e−λ). This can be bounded by

eλ + e−λ =
(
1 + λ+

λ2

2!
+
λ3

3!
+
λ4

4!
+ . . .

)
+

(
1− λ+ λ

2

2!
− λ

3

3!
+
λ4

4!
− . . .

)

= 2
(
1 +

λ2

2!
+
λ4

4!
+
λ6

6!
+ . . .

)
≤ 2eλ2/2 ,

so E
[
eλXi

] ≤ eλ
2/2. This means that Pr[X ≥ t] ≤ enλ2/2−λt. We find

the minimum λ = t/n to the quadratic expression, which gives the bound

Pr[X ≥ t] ≤ e− t2

2n .
Loosely speaking, it is extremely unlikely that there are more than

√
n

more ones than minus ones. The example can be viewed as a special case
of the more general Chernoff-bounds. A nice source for such bounds is the
appendix of the book The Probabilistic Method by Alon and Spencer.

3 Interpolation and Lagrange’s Formula

Suppose that f ∈ F[x] is a (k− 1)-degree polynomial, and that we are given
the value of f at k distinct points α1, . . . , αk, but no explicit description of
f iself. Can we recover the polynomial f? We can consider the equation
system


1 α1 α2

1 · · · αk−1
1

1 α2 α2
2 · · · αk−1

2
...

...
...

. . .
...

1 αk α2
k · · · αk−1

k







a0
a1
...

ak−1


 =



f(α1)
f(α2)
...

f(αk)


 ,
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and recover the coefficients a0, . . . , ak−1 if the matrix has full rank. This
would give us the polynomial f(x) =

∑k−1
i=0 aix

i. The matrix is a Van-
dermonde matrix and it has determinant

∏
1≤i<j≤n(αj − αi). Thus, the

equation system is solvable, as long as all the αi are different.
Another way to look at this is to try to find a candidate polynomial f ′(x)

such that f ′(αi) = f(αi) for i = 1, . . . , k. Then (f − f ′)(x) is a degree k− 1
polynomial over Fq[x] with k zeros in Fq. From the fundamental theorem of
algebra we know this to be impossible unless f ′ ≡ f .

There is a simple way to find the candidate f ′ due to Lagrange. Set

f ′(x) =
k∑

i=1

f(αi)
∏
l �=i

x− αl

αi − αl
,

where the product is over all l = 1, . . . , i − 1, i + 1, . . . , k. The product is
clearly zero for x = αj with j �= i, but it is one for x = αi, so f ′(αi) =
f(αi) for i = 1, . . . , k. Thus, this is really a alternative description of the
polynomial f we started with. We could in principle expand the expression
and recover the coefficients a0, . . . , ak−1 of f .

4 k-Wise Independence

For independent random variables X1, . . . ,Xn the expected value commutes
with products, i.e., we have E [

∏n
i=1Xi] =

∏n
i=1 E [Xi]. This was a crucial

step in the example above. Independence of all variables is a very strong
property, and sometimes it suffices if all subsets of k variables are indepen-
dent. A set of k-wise independent variables have exactly this property.

Definition 3 (k-Wise Independence). The random variables X1, . . . ,Xn

are k-wise independent if Xi1 , . . . ,Xik are independent for every k-subset
{i1, . . . , ik} ⊂ {1, . . . , n}.

4.1 Construction of k-Wise Independent Variables

Suppose we wish to construct a list X1, . . . ,Xn of n uniformly distributed
k-wise independent random variables taking values in a finite field Fq with
q elements.

We do this as follows. If a = (a0, . . . , ak−1) ∈ F
k
q we write fa(x) =∑k−1

i=0 aix
i ∈ Fq[x] for the corresponding degree k − 1 polynomial. Then we

let α1, . . . , αn be n distinct elements in Fq and define a map

g : Fk
q → F

n
q

g : a �→ (fa(α1), . . . , fa(αn)) .

Note that we require that q ≥ n, but we do not require that αi �= 0.
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Theorem 4. If A0, . . . , Ak−1 are uniformly and independently distributed
random variables taking values in Fq, then (X1, . . . ,Xn) = g(A0, . . . , Ak−1)
is a list of uniformly and k-wise independently distributed random variables
taking values in Fq.

Proof. For every k-subset I = {i1, . . . , ik} ⊂ {1, . . . , n} we define
gI : Fk

q → F
k
q

gI : a �→ (fa(αi1), . . . , fa(αik)) ,

i.e., this is the restriction of g to the indices in I. If gI is a bijection we
are done, since that means that Xi1 , . . . ,Xik are identically distributed to
A0, . . . , Ak−1. It suffices to show that gI is injective, i.e. that for any
(xi1 , . . . , xik) ∈ F

k
q , there exists a unique a ∈ Fq such that (xi1 , . . . , xik) =

gI(a), but this is exactly the problem of interpolating a polynomial consid-
ered above so we are done.

The above is nice, but what if we want n k-wise independent binary
variables? Naively, we would like to set q = 2, but this is not possible due
to the restriction q ≥ n. Instead we set q = 2t as the smallest power of 2
greater than n. Then we do the construction above, but in the final step
we define Xi to equal the ith bit in the string (fa(α1), . . . , fa(αn)) of nq
bits. It is easy to see that all bits in the same word fa(αi) are independent,
and k-wise independence follows from the theorem. From the minimality
of t follows that q ≤ 2n. Thus, the size of the sample space is bounded by
2knk = O(nk), so we can get away with a polynomial sized sample space.

4.2 Approximation of Max-3-SAT and 3-Wise Independence

Consider an instance φ of Max-3-SAT with n variables x1, . . . , xn and m
clauses C1, . . . , Cm, where each clause Cj is on the form lij,1 ∨ lij,2 ∨ lij,3 and
each literal lij,k

is either the variable xij,k
or its negation. We can view φ as

a degree 3 polynomial φ(x1, . . . , xn) =
∑m

j=1Cj(xij,1 , xij,2 , xij,3), with

Cj(xij,1 , xij,2 , xij,3) = 1− (xij,1 − bj,1)(xij,2 − bj,2)(xij,3 − bj,3)
where bj,k = 1 if xij,k

is negated in Cj and bj,k = 0 otherwise. It is easy to
see that the two representations are equivalent.

Proposition 5. The expected number of clauses in φ satisfied by a uniformly
and independently distributed assignment is 7

8m.

Proof. Let X1, . . . ,Xn be uniformly and independently distributed binary
random variables. We then have

E [φ(X1, . . . ,Xn)] =
m∑

j=1

E
[
Cj(Xij,1 ,Xij,2 ,Xij,3)

]
.
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The claim now follows since we have

E
[
Cj(Xij,1 ,Xij,2 ,Xij,3)

]
= 1− E [

(Xij,1 − bj,1)(Xij,2 − bj,2)(Xij,3 − bj,3)
]

= 1− E [
Xij,1 − bj,1

]
E

[
Xij,2 − bj,2

]
E

[
Xij,3 − bj,3

]
= 1− E [

Xij,1

]
E

[
Xij,2

]
E

[
Xij,3

]
= 1− 1

8
=
7
8
.

The second inequality holds since the variables are independent and the
third from uniformity.

There is a derandomization technique to transform the above into a de-
terministic algorithm. The idea is simple and based on conditional expected
values. Note that we have

E [φ(X1, . . . ,Xn) | (X1, . . . ,Xs) = (a1, . . . , as)]

=
1
2
E [φ(X1, . . . ,Xn) | (X1, . . . ,Xs+1) = (a1, . . . , as, 0)]

+
1
2
E [φ(X1, . . . ,Xn) | (X1, . . . ,Xs+1) = (a1, . . . , as, 1)]

for s = 0, . . . , n − 1. We iteratively choose a1, a2, . . . , an to maximize the
conditional expectation. The above equality implies that in doing so the con-
ditional expectation never goes below the starting point 7

8m guaranteed by
Proposition 5. Thus, we have constructed a deterministic algorithm. More
on derandomization techniques can be found in The Probabilistic Method by
Alon and Spencer, or in Randomized Algorithms by Motwani and Raghavan.

Our algorithm is sequential in nature. Suppose we are looking for a
parallel algorithm. We observe that the proof of Proposition 5 would go
through with any distribution, as long as each Xi is uniformly distributed
in {0, 1} and the Xi are 3-wise independent. Thus, we have the following
stronger version of the proposition.

Proposition 6. The expected number of clauses in φ satisfied by a uniformly
and 3-wise independently distributed assignment is 7

8m.

The importance of this proposition is clear from the following applica-
tion where we sketch a parallel random access machine (PRAM) running in
O(log n) time using a polynomial number of processors, and which outputs
an assignment that satisfies at least 7

8m clauses. For each possible assign-
ment a in the sample space of the list X1, . . . ,Xn of 3-wise independent
variables and each clause C we have a processor Pa,C which simply checks
if the assignment a satisfies C, and outputs 1 or 0 accordingly. This is done
in constant time, since Pa,C only checks three literals. We also have a poly-
nomial number of adding processors for each clause C organized in a tree
which simply adds the outputs of the processors Pa,C1 , . . . , Pa,Cm handling
the assignment a. Denote by Pa the final processor in this tree. Finally, we
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have a tree of processors that outputs the assignment a that maximizes the
output of Pa.

Note that a necessary condition for the construction to work is that the
sample space of (X1, . . . ,Xn) is polynomial size. The construction would
fail terribly if we had chosen each Xi uniformly and independently in {0, 1}
as we would need 2n processors.

4.3 More On 3-Wise Independence for Binary Variables

The application in the previous section shows the importance of having a
small sample space. We have showed how to construct a list (X1, . . . ,Xn)
of k-wise independent uniformly distributed binary variables Xi such that
the sample space of the list have size O(nk). It is natural to ask if we can
get away with a smaller sample space by a more clever construction.

We consider an example. We list all strings of 4 bits that have even
parity and assume that we have a uniform distribution on this space.



0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1




Thus, the possible outcomes of Xi corresponds to the ith column. Note that
if we assign Xi some value bi we still have probability 1/2 for each outcome
of Xj for all j �= i. Thus, the variables Xi are at least pairwise independent.
On the other hand they are not 4-wise independent, since we always have
X1 ⊕X2 = X3 ⊕X4.

We can rephrase our argument for 2-wise independence as saying that
for any i �= j, if we pick the ith and jth columns all patterns of two bits have
the same frequency. This leads us to the following more general statement.

Lemma 7. Let (X1, . . . ,Xn) be a list of uniformly distributed pairwise in-
dependent binary random variables. Denote by S ⊂ {0, 1}n the sample space
of (X1, . . . ,Xn). Then |S| ≥ n.
Proof. Consider the table consisting of all elements in the sample space of
(X1, . . . ,Xn), 


b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...
bm,1 bm,2 · · · bm,n


 .
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If we pick any two columns Ci and Cj all patterns must be equally frequent
so m must at least be even. Furthermore, there must be precisely m/2 ones
if we add any two columns Ci and Cj as vectors in F

m
2 . We have an isomor-

phism of vectorspaces h : F
m
2 → {−1, 1}m, h : (bi) → ((−1)bi), that turns

addition modulo 2 into multiplication. Our requirement in multiplicative
notation is that if we “add” h(Ci) and h(Cj) we must have a vector with
the same number of ones and minus ones. This means that if we consider
h(Ci) and h(Cj) as vectors with the usual addition, their inner product must
be zero, i.e. they are orthogonal.

We can clearly have at most m orthogonal vectors in an m-dimensional
vectorspace, so m ≥ n.

A more general theorem follows.

Theorem 8. Let (X1, . . . ,Xn) be a list of uniformly distributed k-wise in-
dependent binary random variables. Denote by S ⊂ {0, 1}n the sample space
of (X1, . . . ,Xn). Then |S| ≥ (

n
�k/2�

)
.

Proof. Consider all �k/2�-subsets A1, . . . , As ⊂ {1, . . . , n}, and define the
random variables Yl =

⊕
i∈Al

Xi. This gives
( n
�k/2�

)
variables Yl. The new

variables are pairwise independent, for if Yl and Yl′ are dependent, the vari-
ables {Xi}i∈Al∪Al′ are dependent and Al ∪ Al′ ≤ k. From Lemma 7 we
conclude m ≥ (

n
�k/2�

)
.

The theorem can be tightend slightly by considering all subsets of size
at most k instead of only all subsets of size k.

5 Independence and Hadamard Matrices

In this section we discuss the relation between Hadamard matrices and pair-
wise and 3-wise independent uniformly distributed binary random variables.

5.1 Definition and Construction of Hadamard Matrices

Recall the definition of a Hadamard matrix.

Definition 9. An n×n-matrix H taking values in {1,−1} such that H	H
is called a Hadamard matrix.

We construct a Hadamard matrix H2t for any t > 1 as follows. Define

H2 =
(
1 1
1 −1

)
.

It is easy to verify that H2 is a Hadamard matrix. Note that if we index
the columns and rows by 0 and 1, the (α, β)th element in H2 is given by
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(−1)α·β , where α and β are bits and α · β is the inner product in F2. In
this simple case the inner product is really the product, but we construct a
larger Hadamard matrix we keep this property.

Suppose now we have a 2t × 2t-Hadamard matrix Ht. We construct a
Ht+1 Hadamard matrix by forming the block-matrix

Ht+1 =
(
Ht Ht

Ht −Ht

)
.

It is easy to see that this is a Hadamard matrix. Suppose that we indexed
the rows and columns of Ht by binary strings α0, . . . , α2t−1 such that the
(α, β)th element is given by (−1)α·β . Then we index the rows and columns
of Ht+1 by ((0, α0), . . . , (0, α2t−1), (1, α0), . . . , (1, α2t−1)). This implies that
the (α, β)th element of Ht+1 is given by (−1)α·β .

5.2 Pairwise Independence from Hadamard Matrices

Our task is to construct n = 2t − 1 pairwise independent uniformly dis-
tributed binary random variables Xα1 , . . . ,Xαn . We do this as follows. Con-
sider the Hadamard matrix Ht = (Cα)α∈{0,1}t , where Cα are the columns.
We denote by S the set of rows in the submatrix (Cα)α∈{0,1}t,α�=0. We have
the following proposition.

Proposition 10. If (X1, . . . ,Xn) is uniformly distributed with sample space
S, then the Xis are uniformly and pairwise independently distributed in
{1,−1}.
Proof. Pick any two columns Cα and Cβ, with α, β �= 0. We need to argue
that each two-bit row is equally frequent and that each column contains as
many ones as minus ones. Denote by #(dα, dβ) the number of rows (dα, dβ)
in the matrix (Cα, Cβ).

First we note that each column Cα with α �= α0 contains precisely 2t−1

ones and 2t−1 minus ones. This follows since its inner product with C0 over
R is zero, and C0 is the all ones vector. Thus, we have

#(1, 1) + #(1,−1) = #(−1, 1) + #(−1,−1)
#(1, 1) + #(−1, 1) = #(1,−1) + #(−1,−1) ,

which implies #(1,−1) = #(−1, 1) and #(1, 1) = #(−1,−1). Furthermore,
the vectors Cα and Cβ are orthogonal so

#(1, 1) + #(−1,−1) = #(−1, 1) + #(1,−1)

which implies #(1, 1) = #(1,−1) = #(−1, 1) = #(−1,−1).
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Alternative Proof. Another way to show that each two-bit row is equally
frequent is as follows.

We know that there are 2t rows, so it suffices to show that exactly 2t/4
rows equal ((−1)bα , (−1)bβ ) for every pair (bα, bβ) ∈ {0, 1}2. This is equiva-
lent to show that there exists exactly 2t/4 solutions to the equation system

(
α0 α2 · · · αn

β0 β2 · · · βn

)


z0
z1
...
zn


 =

(
bα
bβ

)
mod 2 .

This in turn follows as soon as the left most matrix has full rank, which is
the case since α and β are distinct and non-zero.

5.3 3-Wise Independence from Hadamard Matrices

The ideas in the previous section can be generalized to give a 3-wise inde-
pendent distribution. To do this we define S to be the set of rows in the
submatrix (Cα)α∈{0,1}t ,α0=1. This corresponds to the columns in the matrix
consisting of two Hadamard matrices stacked on top of each other(

Ht−1

−Ht−1

)
.

Proposition 11. If (X1, . . . ,Xn) is uniformly distributed with sample space
S, then the Xis are uniformly and 3-wise independently distributed in {1,−1}.
Proof. The first part of the proof is unaltered, i.e. we argue that each column
has equal number of ones as minus ones to show that each Xαi is uniformly
distributed in {0, 1}. Note that the all ones column Cα corresponding to the
all zero index α is not included in the submatrix (Cα)α∈{0,1}t,α0=1.

In the next step we pick three columns Cα, Cβ, and Cγ . We know
that there are 2t rows, so it suffices to show that exactly 2t/8 rows equal
((−1)bα , (−1)bβ , (−1)bγ ) for every triple (bα, bβ, bγ) ∈ {0, 1}3. This is equiv-
alent to show that there exists exactly 2t/8 solutions to the equation system


 α0 α2 · · · αn

β0 β2 · · · βn

γ0 γ2 · · · γn






z0
z1
...
zn


 =

(
bα
bβ

)
mod 2 .

This in turn follows as soon as the left most matrix has full rank, i.e. if
the vectors α, β, and γ are independent. They are pairwise independent
since they are distinct and non-zero. By construction α0 = β0 = γ0 = 1, so
we can not get the zero vector by adding all vectors modulo 2. Thus, the
matrix has full rank and we are done.
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6 Summary On k-Wise Independent Distributions

We have showed using polynomials how to construct n uniformly and k-wise
independently distributed binary random variables Xi such that the sample
space of (X1, . . . ,Xn) is of size nk. On the other hand we have showed that
for any construction of such variables the sample space of (X1, . . . ,Xn) must
have size roughly n�k/2�. For the special cases where k = 2, 3 we have given
constructions where the size of the sample space is linear in n, i.e. these
constructions are optimal up to a constant factor.
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