
An Overview of Cure

John Folkesson1 and Patric Jensfelt2

1 MIT/KTH, Email: johnfolk@mit.edu
2 KTH, Email patric@nada.kth.se

Summary. Cure was meant to help new robotics researchers achieve critical mass
in their robotics software libraries more quickly than if they had to re-invent each
bit of code. It was hoped that certain common programing issues such as basic data
representations could be settled upon and make code more portable between users
of Cure. Programming issues common in robotics include matrices, transformations,
geometry, communication, and data extraction from common sensor types. These
are then used to provide simple working implementations for navigation such as,
dead-reckoning, collision avoidance, SLAM and so on.

1 Introduction

3 There is a certain Cure way of working. One avoids templet functions in
general. We use no external libraries other than standard C++ libraries4.
Data and descriptions of the data should be separate. Thus data is not easily
human readable without a table lookup of what the data is. Data is the driver
of robot apps. Nothing happens with no data input. The regularization and
strict speci�cation of data ow is a major aspect of Cure apps. An attempt
is made at strong data typing to help prevent coding errors. That is a two
edged sword and can be quite annoying when you have not bothered to specify
correctly and mysteriously get no output from your app.

Cure can be useful on a several levels. Some only install the Math library to
use the Matrix family of classes. Others only use the out of the box Cure apps
such as the EKF SLAM implementation. This has proved useful to researchers
who need robust reliable SLAM on their robots but SLAM is not the focus of
their work. A third level is between these two and uses the toolbox libraries
to create new cure modules.
3 This document is meant to be read partially. Start at the begining and stop when
you have gone deep enough.

4 There is some libX11 that is optional



2 John Folkesson and Patric Jensfelt

On the �rst level, the Math library adds useful classes for arrays of double,
short, binary, and long that both help manage the allocation of memory and
provide functionality on those data arrays. This is highly recommended and
once you become comfortable with these classes, you will �nd that the 'a=new
double[n];' will disappear from your code. It is simply much easier to have the
Matrix class do that. As many function calls on Matrices are in-line, they
are very e�cient. When writing that class I actually compared to allocating
doubles in the source code. I found, strangely, that execution time was signif-
icantly faster for using the Matrix class to do matrix multiplication than for
loops over a double array in my source code. The Matrix class was compared
to a some downloaded C++ library by Patric and he found the Cure class to
be faster at matrix inversion for any matrix one might invert in a real-time
app5. For huge matrices the use of the CPU speci�c code mght be better.

These classes all require you to specify the size. This is de�nitely better
than the option of having the size adjust to your request for an element as in
matlab. That option leads to hard to �nd bugs in your code. Be careful and
get it right or it simply wont work at all.

The use of these classes provides debug messages when you try to access
data out of bounds. This saves having such actions hang around unnoticed in
your code for months sometimes.

Other useful basic classes can be found in Geometry and Transformations.
The Pose3D class is another workhorse. It can do lots. So the days of �guring
out the sign of the Jacobian for the Euler angles when subtracting two trans-
formations is over. Its solved once and for all. The same is true for a bunch
of other things like transforming 3D points and so on. One must understand
the CovType of a Pose3D. It is fundamental to using the object e�ectively.
The CovType is 6 binary ags coded as a 6 bit integer. The lsb corresponds
to x and the msb corresponds to Euler angle psi. These specify how the pose
coordinates are treated when calculating Jacobians. So if you are in 2D you
might only want the xy and theta to be treated as variables while z, phi, and
psi are considered �xed values. More speci�c information is given in the class
documentation. This class has a learning curve that is well worth traversing
for a robotics programmer.

The Pose3D class is also an example of a TimestampedData object. Times-
tampedData, TD, is the base class for all Cure data. It has a timestamp, ID,
ClassType, and SubType. It also has the concept of SensorID and SensorType.
The four integers ID, ClassType, SensorID, and SensorType form a data de-
scriptor. This data descriptor is then tied to a string in the DataDescriptor
class. So one can give your data a name but it is not stored and manipulated
with it. You look up its unique DataDescriptor to �nd the name.

TD are of central importance as one gets deeper into using Cure. They
are the objects that get passed between modules to make stu� happen. There

5 The FBI has con�scated theses results and we have not bothered to redo the
experiment. Conspiracy theory anyone?



An Overview of Cure 3

are a number of subtypes de�ned in Transformation, SensorData, and Ad-
dressBank. TD can be cast to speci�c subclasses using virtual methods in the
TimestampedData base class.6 This is recommended practice even if you are
sure its a SICKScan or whatever. The cast will return null if it is the wrong
type.

Most useful TD classes so far are Pose3D, MeasurementSet, SmartData,
DataSet,and GenericData. These can do most of the work you need done.
SmartData can hold any of the other types of data. It is the object used in
general operations like setting up queues and bu�ers.

All TD objects can be easily read from and written to �les and sockets.
This is done using FileAddress and SocketAddress classes. The format for
writing to a �le can be *.tdf or *.dat. The *.tdf �les can be read later by a
FileAddress with no loss of data. The *.dat formatting is user speci�ed in a
Cure con�guration �le *.ccf. These user formated data can not be read by
Cure but may be more user readable and matlab loadable than the original
data. Parsing from a mixed up tdf �le of di�erent types of data to a *.dat �le
can be done easily using the FileParse class which exists now outside of Cure
but will soon be added.

The DataSlotAddress is a circular bu�er of �xed length for TD objects.
It can look up data in a number of ways based on the timestamp. It can
interpolate between data if that is de�ned for the data type. Being of �xed
length, it is not always so useful. There is a SmartDataList for more general
situations but that lacks some of the functionality of the Slot.

We have begun to describe addresses here. That is a major concept in
Cure. It is one for the higher level Cure users. An Address is an interface for
transfer of data between modules. It has push/pull/read/write and a bit more
de�ned. Addresses all exist in speci�ed thread spaces and this can be used to
control multi-threaded apps. So it is not possible to directly push data from
one thread space to another. There are special classes to handle that which
get the thread lock �rst. It is not neccesary to use this locking mechanism but
it is an option7.

Addresses can be deleted and created dynamically and the other addresses
that are set to pull from or push to the address need not be noti�ed of
the deleted address. They will �nd out for themselves next time they try
read/write.

The original Address concept is for within process communication. There
is now a a SocketAddress that can handle pushing data through a socket to
a module in another process. Pull has not been implemented. The nice thing
here is that the SocketAddress is very easy to use. If it is set to be a client it
will try to �nd the server periodically when it has data to send until it �nds
the server and sets up a permanent connection. So you don't need to start

6 These are the getClassPointer(...) and narrow family of methods.
7 That is, you don't have to do it our way but you do have to protect against thread
collisions.



4 John Folkesson and Patric Jensfelt

the server �rst. It just gets sorted out if you are pushing data from the client
side. This sorting out does not involve contacting any central server process.
One can even kill and restart the server or client without any communications
problem.

The AddressMaker class is for the power Cure users. It is the ultimate
Cure object and can create, start, stop and destroy an entire runtime con�g-
urable Cure app as speci�ed in detail in a set of *.ccf �les. It allows specifying
what DevicesAddress, FilesAddress, DataFilter, ServiceAddress, and Filter-
BankAddress are created. Then how they are con�gured and hooked up to one
another. One can then query it by name for speci�c addresses. So your app
becomes a set of *.ccf �les. Still to do is to include in Cure a simple example
of using it. The FileParser is one such and will be added as time permits.

2 Address

The Cure Address concept is heart of the Cure paradigm. It is how Cure can
help bring structure to the data ow in an application. This Address based
data ow forces a great deal of discipline on the programmer to separate the
functional blocks into modules that receive push/pull data only in the Cure
format. This discipline is a good thing and welcome when the system gets
larger and more complicated. Strange stu� can happen at demo time and one
needs to have good program structure to have any hope of debugging on the
y. One can easily verify that good data is owing on any Cure data path
by inserting a DebugAddress or a FileAddress in the path. If good data is
owing in and bad data out the problem is isolated. Timing issues can also
be debugged like this.

Speci�c Address objects are FileAddress, SocketAddress, DebugAddress,
DeviceAddress, DataSlotAddress, ServiceAddress, and DataFilterAddress. One
can make subclasses of Address for special needs like RoboLookAddress or
whatever. All Addresses have DataDescriptors and thus names. The DataDe-
scriptor can be used to both give the address a name and to specify what data
it will handle. It is not necessary for the actual data to match the DataDe-
scriptor but one can enforce such a requirement. That is one relatively weak
data type check that is built into Cure. Stronger type checking can be done
by the typeCheck method of the DataFilter class.

2.1 FileAddress

This class is easy to use and requires little explanation for writing and reading
from *.tdf �les. To read a �le there has to be a thread that calls read on the
FileAddress. That can be just a while loop in main that reads the canned
data and writes it to the input of your app. Writing is easier. Just call push
on the output address giving it the FileAddress and the data will be written
to the �le.



An Overview of Cure 5

The *.dat �les are quite a bit more complicated as there are many op-
tions on formating. This is not fully implemented either but works �ne where
implemented. The FileAddress needs to be con�gured

Here is an example of a ccf section:

FBNout.dat
m Header FBN pose estimate (time x,y,z,theta,phi,psi, covMatrix (x 36))
m MessageString x 1 0 0 6 1
m MessageString Covariance 1 0 0 6 6

It starts with the name of the File. Somewhere else in the ccf �le there
was a section like this:

FILEADDRESS
Write FBNout.dat FBNDataName
Write XYZ.tdf XYZdataname
Read input.tdf inputdataname

that told the AddressMaker to look for this �le and con�gure it for write.
Then it calls con�gure on it with each of the lines after FBNout.dat above.
The m Header line will write a descriptive header at the top of the �le. The
names in the ccf �le such as m Header match the member names in the class
FileAddress. That ties this to the html documentation for the member. The
m MessageString tells the FileAddress to call getMatrix with this string on
the TD object it is writing from. Then it writes what the TD object returns.
So the FileAddress doesn't understand what is after the m MessageString
the TD object does. In this case it is a Pose3D object that will return the 6
rows matrix with its coordinates in. Then a 6x6 Matrix with the Covariance.
This is all written to one line of the �le (in ASCII) which will start with the
timestamp.

Much more complicated formats can be done such as selecting certain
members of a DataSet. One has to look at how the TD object implement
getMatrix to see what will happen. Not all TD objects have implemented
getMatrix. There is lots more on ccf �les later on.

2.2 SocketAddress

One creates the object and sets the few con�g items. You can set it to be
either a server or a client and give it a port/host. Just watch out for your
threads. This object creates a new thread. Then call startDevice and it goes.
You can then push data to the socket or from the socket. The AddressMaker
will do all that for you with a few lines in the ccf �le. So you don't ever need
to create these sockets in your source code at all.



6 John Folkesson and Patric Jensfelt

2.3 DebugAddress

This is inserted in a data path by calling push/pull. It then prints to the screen
information on the TD passing through it. It has various levels of information,
m Level. Higher levels give more information on data passing through it. It can
even pause the program for you. One can set m StartTime and m StopTime
to have the debug info turn on and o� at various timestamps

2.4 ServiceAddress

This was meant to be a sort of backdoor around having to make a full blown
DataFilter for every little thing. It is considerably easier to use. It does not
have the DataFilter's multiple type checked inputs and outputs. It is one
address which is used for both input and output and the subclass just imple-
ments read and write to make it do some work. There is one major di�erence
with Service addresses in that they are registered with the AddressBank8 as
Services with a speci�c name. This allows other modules to �nd the ServiceAd-
dress by querying the AddressBank with the name. DataFilter implements this
with its getService method. Thus one can write modules that simply �nd one
another at run time without the need to call push/pull.

2.5 DataFilter

The DataFilter class is where processing of data is to occur. It provides mul-
tiple input and output ports as well a trigger port. These are all DataFilter-
Address's. There are lots of examples of DataFilters. The base class de�nes
a sequence of virtual methods that are called on read and write and do such
things as type checking, gathering the inputs by reading pull data, doing the
calculation, and pushing the data from the output addresses. Getting one of
these to work can be tricky and requires careful consideration of what will
start the sequence and what will happen then. This class is more complicated
than any other part of Cure. Once this one class is well understood much of
the rest of Cure should be as well.

3 Threads

Cure provides optional help in managing multiple threads. One can do this
outside of Cure and ignore this whole section. One should best ignore this
section until one needs it. Threads are complicated.

Cure::Address's are assigned to thread spaces by an index called Thread.
This allows addresses within the same address space to communicate without
the need for lock and unlock. Calls to read/write/push/pull/isThreadSafe as

8 I know I haven't told you what that is and you really don't need to know



An Overview of Cure 7

well as add/remove on theAddressBank() all require the caller to have the
lock. These methods will be referred to as 'locked methods'.

The convention is if an address has write/read/push/pull called on it then
it has the lock on the thread space. It can then call the locked methods so
long as it stays in its own thread space.

If an object needs to call a locked method outside its thread space it must
�rst call getThread(thread) on theAddressBank() and releaseThread(thread)
when done. An alternative is to call one of the readLocked ect. methods which
get and release the lock for you.

This of course can in principal lead to deadlock if one thread holding its
own lock then calls writeLocked on an address which in turn causes write lock
on the �rst thread. That is how threads work and the programmer must be
aware still of this. We haven't allowed the the programmer to forget about
threads but we have set up a way to manage them with minimal locking.

Here is the main rule to avoid collisions:
'Any object that spawns a thread that then calls a locked method should

get the lock and release the lock.'
So Device A has a thread checking some input. It gets data and wants

to push it out to the world in another thread space. It should call pushDat-
aLocked which gets the lock for it.

Exceptions can be made if the programmer is certain no other thread will
be using the thread space in question. We have set this up as well using the Ad-
dress::isThreadSafe, AddressBank::makePermanent, and ThreadSwitcher::setPushLocked.
Explained a little later.

If Device A knows that the space is free it can just pushData with no lock.
That is if it is using a ThreadMerger for instance to protect and queue. The
input there is safe for multi-threading.



8 John Folkesson and Patric Jensfelt

3.1 theAddressBank()

The process needs to tell the AddressBank how many Address spaces there
are and how deep to make the hash table for each. The hash table is made in
sizes of powers of 2. The size should be about the number of addresses in the
address space for best e�eciency. One speci�es the power of two as a depth.
This can look like this:

unsigned short depths[4];
depths[0]=7;
depths[1]=3;
depths[2]=2;
depths[3]=2;
Cure::AddressBank::theAddressBank(4,depths);

These lines of code should be the �rst Cure thing in main. Calling theAd-
dressBank() the �rst time will create the static object with the arguments
given. Subsequent calls to theAddressBank() just get the static object. If one
is not setting up multi-thread spaces one does not worry about this or call
anything special in main.

3.2 ThreadMerger

The ThreadMerger is another way to manage threads. It takes many threads
on the inputs and creates a single thread output. Typically devices are set
to push to the ThreadMerger inputs and the outputs are pushed from the
ThreadMerger to the rest of the app.

If the ThreadMerger is not going to be deleted until after the device and
no other Address is in the thread space then locking the thread space is not
needed. The input threads are set to match those of the devices and the output
threads match the input thread of the modules being pushed to.

The ThreadMerger then makes most of the mutex calls and organizes
the queue of data. No other objects need to lock except under con�g and
delete. A bunch of input devices pour data on the ThreadMerger inputs.
The inputs are mutex protected by the ThreadMerger itself and the data
put in the queue. The ThreadMerger pusher thread is awaken and it gets
data from the queue and pushes out to its outputs, locked. It would even be
possible to eliminate having the ThreadMerger lock its output space if one
knew that only the ThreadMerger pusher thread was operating here. Then
set ThreadMerger.m PushLocked=0. Not really to be recommended since you
may later start assuming the thread space in question is protected and write
to it from some other thread getting the now pointless lock.

The ThreadMerger can write to di�erent thread spaces on its di�erent
outputs. Each output pushes the data written to the corresponding input but
the data is now sequenced by being passed through the single ThreadMerger
queue.



An Overview of Cure 9

3.3 Permanent Addresses

Device addresses often can have two way data ow. In those cases they would
normally have to protect their data internally from multi-thread access. In
that case again no lock is needed if the device is going to be permanent. It
must be permanent in the sense that it will be assigned a special address
Index that will not be a�ected by other threads adding or deleting addresses
in its address space while a second address is trying to write to this thread.
In principle that could cause a segmentation fault if this make permanent
procedure is not followed.

This is how you set up such a no locking push/pull. The address, lets call
it A, that doesn't need to have the address space locked must be set up as
permanent. This is done by calling:

A->setCanPermit()
on the address A. This should only be done if one knows it will be safe

either by internal protection in A or the way the program is set up. A can
NOT now assume it has the lock on its thread space when written to.

Then if one uses an AddressMaker subclass to do the hookup from a ccf
�le one can just say

HOOKUP
Push B to A

Where B is some other address in some other Thread space. The Address-
Maker will see the problem of pushing between two thread spaces and insert
a ThreadSwitcher between them. The ThreadSwitcher will then do:

A->isThreadSafe(B)
on A when it gets its �rst data to push out. If A succeded in setCanPermit()

it will now return true to isThreadSafe and record B's Thread index. After
this the thread switcher will just call write on A without any locking. A can
NOT assume it has the lock on its thread space when written to. (I know I
just said that.)

When A is deleted it will lock B's Address space to be sure that B doesn't
try to write to A during removing A from the AddressBank. Once A is removed
B has no way of �nding A anymore and will disconnect automatically.

So the trick is to just push between the two thread spaces as if you were
not aware of it, after having setCanPermit. This can be set up as part of the
con�guration of A and done in the ccf �le. Alternatively without an Address-
Maker just do

A->setCanPermit();
ThreadSwitcher ts(B->Thread,A->Thread);
B->push(ts.in(0));
ts.out(0)->push(A);

If you want it to use the locks just leave out the A->setCanPermit().



10 John Folkesson and Patric Jensfelt

If data is owing both in and out of the process a separate ThreadMerger
can be used for the output devices. This would work the same except the in-
ner application thread computing the output data would write to the Thread-
Merger queueing the data to be written to the output. This can also be han-
dled by the device itself as in the SocketAddress which has no di�culty with
multiple threads writing to it while it is reading its socket. So the Socket can
be A and the application thread output address B above.

3.4 More Thread Advice

The addresses themselves need to be clear about their own threads. So if an
address is on a �lter and calls write on the �lter then the �lter has the lock
and can do only things in that thread space. Most �lters operate in only one
thread space and can be totally indi�erent to threads. If that is not the case
the �lter must set up critical regions and mutex protect its data. The �lter has
its own thread index which is the thread that its constructor and destructor
runs in. It will try to get any other locks it needs to be made or deleted.

So if �terX is made with thread=4 and it will �rst
make all its addresses on thread 4.
It then can do any setup on the ports.
Then if the �lter subclass is multi-threaded (rarely the case): To change

the Ports threads the subClass would call initPorts which gets locks as needed.
This is all handled in the DataFilter base class constructor/destructor/initPorts.

When destroyed it will get the lock again on any addressess that are not in
its thread space and change them to its thread space. Then delete them.

4 Cure Con�guration and the AddressMaker

Cure give a lot of support for con�guration of Cure apps. We have our older
con�g style which is used by WrappedSLAM and other popular apps and we
have since developed that into a language for creating custom applications at
run time.

The con�guration �les are organized in sections with section names, (tags),
followed by lines of ascii text. The apps can then ask the Con�gFileReader
for a list of these lines which it must then parse and interpret.

The *.ccf �les can include other *.ccf �les and the Con�gFileReader will
search for a tag until it �nds it. So the search path matters. If the same tag
appears twice in the path it is the �rst one that is used. This allows overriding
of default settings. The search path is a recursive depth �rst on the include
list.

The more detailed and powerful con�guration uses the Con�gFileReader
together with a subclass of AddressMaker to give run time con�guration con-
trol on such aspects as which modules get created and how the individual
module input and outputs are connected. For instance, one can created sock-
ets or �les and send speci�ed data to them in the *.ccf �les.



An Overview of Cure 11

The main program might look like this:

1. SubclassOfAddressMaker am;
2. am.con�gure(con�g�le);
3. am.startDevices();
4. pthread mutex lock(&signal mutex);
5. pthread mutex lock(&signal mutex);
6. am.stopDevices();
7. am.deleteAll();

Lines 4 and 5 are just one way to have the main thread wait for an exit
signal and of course require some more code elsewhere to unlock the mutex. We
start with line 1. The SubclassOfAddressMaker must be written which is easy.
It has to provide the makeDeviceSubClass(..), makeServiceSubClass(...), and
makeFilterSubClass(...) methods which call the constructors of the modules
you want to be able to make. The parent class, AddressMaker, will then know
how to do the rest. One also has a place to add quick hacks to the con�guration
of these modules in this subclass if one wants to.

Line 2 sets in motion the parsing of the con�g�le which is a *.ccf �le. This
will now be explained.

AddressMaker::con�gure(const std::string &cfgFile):

1. checkDescriptors(cfgFile);
2. makeServices(cfgFile);
3. makeFiles(cfgFile);
4. makeDebugs(cfgFile);
5. makeBanks(cfgFile);
6. makeFilters(cfgFile);
7. makeDevices(cfgFile);
8. hookup(cfgFile);

It starts by examining the de�ned DATADESCRIPTORS. These are a
list of 'Name Class ID SensorName'. That bind a Name to a DataDescriptor
object. Then the rest of the *.ccf �les can refer to the name instead of spec-
ifying the entire descriptor. These should be set up to be unique, one to one
bindings. A warning is printed if that is not true.

The SensorName is looked up in another section of the *.ccf tagged SEN-
SORS. This section binds a SensorName to a SensorType and SensorID. The
sensor type is speci�ed in:

getSensorType(const std::string &match,unsigned short &sensortype)
which can be found in SensorData.cc. As of writing this we have:

� "LongBaseLine" SensorData::SENSORTYPE LONG BASELINE;
� "Unknown" SensorData::SENSORTYPE UNKNOWN;
� "Sick" SensorData::SENSORTYPE SICK;
� "Camera" SensorData::SENSORTYPE CAMERA;
� "Sonar" SensorData::SENSORTYPE SONAR;



12 John Folkesson and Patric Jensfelt

� "Contact" SensorData::SENSORTYPE CONTACT;
� "GPS" SensorData::SENSORTYPE GPS;
� "Inertial" SensorData::SENSORTYPE INERTIAL;
� "RangeBearing" SensorData::SENSORTYPE RANGEBEARING;
� "Compass" SensorData::SENSORTYPE COMPASS;
� "Robot" SensorData::SENSORTYPE ROBOT;
� "Odometry" SensorData::SENSORTYPE ODOMETRY;
� "Position" SensorData::SENSORTYPE POSITION;
� "Actuation" SensorData::SENSORTYPE ACTUATION
� "Altitude" SensorData::SENSORTYPE ALTITUDE
� "Depth" SensorData::SENSORTYPE DEPTH

It is not really neccesary that the sensor type name string be the actual
sensor used but the SensorData SENSORTYPE enumerator should be the
same as the SensorType member of the data. So some TimestampedData have
no SensorType at all such as Pose3D. Other such as SICKScan will always
be a particular sensor type while others such as SensorPose might have any
sensor type.

Each of the make methods work similarly9. Each has a section that con-
tains a list of 'Create tag thread', where tag is a header to another section
of the *.ccf �les that speci�es how to create and con�gure this object. The
thread is the thread index of the address space to create this object in. The
tag is looked up and the information in its section interpreted.

For example the Services are speci�ed in the SERVICEADDRESS section
of the *.ccf. That section might look like:

SERVICEADDRESS
Create LatLongService 0
Create PoseInitService 0

The Create line tells the AddressMaker that it must look for a section
with tag LatLongService and run makeServiceSubClass(...) using what it �nds
there. The LatLongService section might look like this:

LatLongService
Create LatLongService
Global GPSOrigin LatLongOrigin
m SomeClassMember 3.987

It is the Create line that is passed to makeSeviceSubClass. The Global
line is used to set up any global parameters that this service might use. The
values of these are speci�ed in yet another section of the *ccf �le, the GLOBAL
section. In that section GPSOrigin is bound to a set of values and possibly a
Covariance matrix. The string LatLongOrigin is de�ned in the LatLongService
class and gives the binding internal to this particular service class. So another

9 Except for FileAddresses which are slightly di�erently created, see section 2.1.



An Overview of Cure 13

class might also want the GPSOrigin but it might be bound to something with
another name internally. Global con�guration can be done to DataFilters as
well as Services and works the same way.

The AddressMaker assigns integer id's to all the global parameters which
are passed to the objects along with the values. This id can then be used
to match parameters being estimated by di�erent modules. So one global
might be air temperature. Two modules may need the initial value of this
temperature. Later one of the modules may be able to estimate a better
temperature. Having the id allows the other module to understand that this
better value is for the temperature. The binding is made indirectly by using
the same global initial value.

This particular Service10 has a simple con�guration. Any number of con�g
lines can be added and each line will be passed to the object con�gService
method which de�nes how it is interpreted. In this case the member called
m SomeClassMember will be set to 3.987.

Besides Global there is one other keyword that is understood by the Ser-
viceAddress base class as requiring lookup in the *.ccf �le. That is the Sensor
keyword. This will look up the SENSOR section to bind a name to a particular
Sensor that the class will be using. The o�set to the sensor can be speci�ed
as a Global parameter. This also works the same for DataFilters.

The other types of addresses are con�gured in similar ways. The FileAd-
dress allows detailed formating of the data written to the �le. The DebugAd-
dress allows one to specify the debug level and start and stop timestamps for
debug output.

The MakeFilterBank looks up a section that might look like:

FILTERBANKADDRESS
Create FilterBank1 0
Create FilterBank2 3

This tells the AddressMaker to look for the named sections and make �lter
bank objects based on what is there.

FilterBank1
addPort 10 IMURaw
addPort 10 OdometryRaw

This says to add two ports to the FilterBank one that will bu�er the
IMURaw data and one that will bu�er the OdometryRaw data. Those names
would be de�ned in DATADESCRIPTORS. Now one can write a stream of
data to the FilterBank and it will parse it (ie. send the di�ernt data to di�erent
ports) according to the DataDesecriptor de�nition. The ports can then be set
to push to (or be pulled from) appropriate addresses. There is no limit on
the number of ports. The bu�er size is set here to 10 by the number after

10 The actual LatLongService is not in Cure at all but is used for illustrating here.



14 John Folkesson and Patric Jensfelt

addPort. It is implemented as a DataSlotAddress so the oldest data is simply
overwritten by the newest data.

MakeFilters is the most complicated con�guration sequence. It allows one
to specify the DataDescriptor for each input and output, global parameters,
sensors, as well as arbitrary con�guration lines that are parsed by the individ-
ual DataFilter subclass. All the inputs and outputs should at least be given
names. These names need not appear in the DATADESCRIPTORS section
but if they do then the �lter can set the entire DataDescriptor allowing some
type checking on the port.

The names are used by the Hookup method to �nd the right address on
the �lter. So both DataFilters and FilterBanks have multiple ports and need
to have strings assigned for specifying them in Hookup. The FilterBank takes
its names from the DATADESCRIPTOR name. The DataFilter takes them
from the InputData and OutputData lines of its con�g section.

DeviceAddress also has an OutputData con�guration line but it has only
one address so the DataDescriptors speci�ed on that line are used di�erently.
They are assigned to the various data being pushed out of the device and the
order they are speci�ed in the OutputData con�g line is used to bind them to
a particular data being produced by this device. By assigning DataDescriptors
to the output of the device one can parse the data in a FilterBank downstream.
The data stream will by then have passed a ThreadMerger or some other
protection.

The Devices are started in the order they are given in the DEVICEAD-
DRESS section. They are stopped in the reverse order. The deleteAll method
deletes the objects in the reverse order from that which they were created in.

Hookup will read the �nal section of the ccf:

HOOKUP
Push ThreadMerger MergeOut1 to FilterBank1
Push ThreadMerger MergeOut2 to FilterBank1
Push OdoSerial to ThreadMerger MergeIn1
Push IMUSock to ThreadMerger MergeIn2
Push FilterBank OdometryRaw to OdoFilter OdometryRaw
...

This speci�es the address by name. The name is that already given and
for FilterBank1's input it is its tag. The DataFilters need two strings so the
tag of the �lter and the input or output name. Pull can be done the same
way. All the addresses that were created can be hooked up in this section.
Interprocess communication consists of creating SocketAddresses and pushing
the data to/from them. The Address Maker object will always be able to �nd
a particular address so it would be easy to set up a simple name service
that listens to a socket and sends data as requested. This allows one to write
monitor programs that can get at any data owing inside your app. We should
do that.



An Overview of Cure 15

5 Conclusion

Cure is a wonderful thing! Use it.


