

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 3

Masters thesis of John Folkesson,
d98-jfo@nada.kth.se,
 601025-8637
Advisor Örjan Ekeberg, SANS
Department of numerical analysis and computer science,
Royal Institute of Technology, Sweden

(Numerisk analys och datalogi
Kungliga Tekniska högskolan
100 44 Stockholm)

Abstract

In this work we have examined an application from
the insurance industry. We first reformulate it into a
problem of projecting a markov process. We then
develop a method of carrying out the projection
many steps into the future by using a combination of
neural networks trained using a maximum entropy
principle. This methodology improves on current
industry standard solution in four key areas:
variance, bias, confidence level estimation, and the
use of inhomogeneous data.

The neural network aspects of the methodology
include the use of a generalization error estimate that
does not rely on a validation set. We also develop
our own approximation to the hessian matrix, which
seems to be significantly better than assuming it to
be diagonal and much faster than calculating it
exactly. This hessian is used in the network pruning
algorithm. The parameters of a conditional proba-
bility distribution were generated by a neural
network, which was trained to maximize the
log-likelihood plus a regularization term.

In preparing the data for training the neural networks
we have devised a scheme to decorrelate input
dimensions completely, even non-linear correlations,
which should be of general interest in its own right.

The results we found indicate that the bias inherent
in the current industry-standard projection technique
is very significant. This work may be the only
accurate measurement made of this important source
of error.

Projektion av en Markovprocess
med Neurala nät

Sammanfattning

Jag har undersökt en tillämpning från försäkrings
industrin. Först har jag omformulaerat den som en
markovprocess. Sedan har jag utvecklat en metod
för projektion av processen I flera steg med en
kombination av neurala nät. Denna metod innebär
en förbättring av den inom industrin vanliga använda
metoder inom fyra områden: varians, bias,
uppskattning av säkerhetsmarginalen, och
möjligheten att använda inhomogena data.

De dataologiska aspekterna av metoden omfattar en
feluppskattning som inte behöver en
valideringsmängd. Jag har också använt ett sätt att
skära bort grenar från nätverken.

Resultatet har visat att biasen i de standardmetoder
som finns är stor. Denna undersökning är kanske
den enda uppskattning som gjörts av denna viktiga
felkälla.

January, 2001

John Folkesson4

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 5

Preface

I have been working as a consultant doing actuarial work, mostly with workers' compensation, for
over ten years. My background before that was in electrical engineering and physics. After
learning about the advances in neural networks through my studies at KTH, I began to think about
applying them to the actuarial problems that I am so familiar with. I believe that the actuarial
profession has not quite managed to keep up with the rapid changes to what can and can not be
calculated. Modern computer methods and hardware have indeed made much progress in the last
20 years and these gains need to be applied. I hope this work will help move things in that
direction.

I would like to thank my wonderful wife and four children for their patience and support while I
carried out this project.

John Folkesson,
January 2001

January, 2001

John Folkesson6

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 7

Table of Contents:

Overview.. 9
Background Information... 10

The Application ... 10
The Markov Process... 11
Training a Multi-layer Perceptron... 12
Heuristics for Better Convergence .. 13
Generalization.. 14
The Network Information Criteria .. 15
Network Pruning.. 16

Methodology .. 17
Overview of the Projection Procedure... 17
Data Adjustments... 18
Nonlinear Rescaling of the Input Data - The Preprocessor 19
Training the Networks - The Neural Network Step.. 25
Network Pruning with Adaptive Regularization .. 26
More Networks .. 29
The Discrete Approximation... 32

Results ... 33
Discussion.. 37
Conclusion ... 38
References.. 40
Appendix 1 - Grouping the Data Sources .. 41
Appendix 2 - Generalization Error of Neural Networks ... 43

The Network Information Criteria .. 43
Log-Likelihood Cost Functions and the NIC... 43
Approximation of the Hessian for Log-Likelihood Cost Functions 44
Approximation of the Hessian for Mean Square Error Cost Functions 46
The NIC for Mean Square Error Cost Functions.. 47
Inverting the Hessian Matrix .. 48
Changing the regulation parameter ... 48

Appendix 3 - The Weibull Distribution ... 49

January, 2001

John Folkesson8

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 9

Overview

The problem addressed in this work is that of
predicting the outcome of a markov random process.
The application is from the insurance industry. The
problem is to predict the growth in individual
workers' compensation claims over time. We
describe the nature of these claims in the next
section.

We have data on the past outcomes of the process for
many claims over one-year intervals. From that data
one would like to be able to project the process
forwards many years.

Neural networks have been shown to do well at
predicting the outcome of random processes. This
prediction can be formulated as a function
approximation where the process is modeled as a
deterministic function of the input state plus a
random variable having zero mean and a distribution
about the mean that is conditionally dependent on
the input state.

This deterministic function can be estimated with a
neural network. If one has many examples of
input-output state pairs, one can train a neural
network to minimize the square error between the
predicted and the actual output state. Neural
networks are, in fact, able to approximate large
classes of functions being so-called universal
approximators. What this means is that given an
arbitrarily large net one can come arbitrarily close to
any function within certain classes (Scarselli 1998).

If one wants to project the process further out in
time, more than one step that is, then one approach is
to feed the one step projection back into the
network's input to produce a two step projection.
Unfortunately this simple recursive approach may be
too much of an oversimplification of the process. In
particular, if the process variance is large and the
average input-output mapping is non-linear, then the
two step estimate will contain a bias. This bias will
become greater as the three-step estimate is made
and so on. If one needs to go out many steps, a
significant amount of bias could result.

One can not change the input-output mapping to
make it linear but one can reduce the variance in the
output states by breaking the state space up into
regions. The variance in the output given that it is
within one of the regions will be less than the
variance without any restriction. In effect, we
propose to form a discreet approximation to the
continuous space of intermediate states.

Clearly, some estimate of the conditional probability
is required to carry out this reduction in the variance
and thus reduce the bias. Fortunately, neural
networks are also practical tools for estimating
conditional probability distributions (Husmeier
1998). Here the approach normally taken is to use a
network to maximize the likelihood of the training
data. The conditional probability distribution is first
parameterized in some way. Then the parameters
are estimated by a neural network. The network is
then trained to maximize the likelihood of the
training data.

This maximum likelihood approach is elegant and
simple to implement. We have implemented it using
the weibull distribution rather than the more
conventional guassian distribution. This choice was
made with consideration to the data.

Given the conditional probability distribution, we are
able to break the output space up into regions with a
mean and a probability for each. These means are
used as inputs to the next projection step. The
means for each region are feed back into the network
to generate two step distributions. The various
distributions obtained from projecting from each of
the regions' means are combined into one using the
probabilities for each region and then the output state
space is broken up once again into regions for the
next projection step and so on.

Several side issues come up in along the way, some
of which are of interest in their own right. For
instance, networks learn best from decorrelated
inputs. Recently, the input and internal dimensions
of a feedforward net were decorrelated using

January, 2001

John Folkesson10

additional layers of linear neurons trained using
Sanger's learning rule (Schittenkopf 1997). They
were not only able to improve the learning ability of
the net, but were able to control the flow of real
information through the net, thereby improving
generalization.

In our case, we had even more reason to avoid
correlation as we have made an approximation to the
hessian matrix of the network weights that assumes
that the all the nodes are decorrelated. This
approximation was a great time saver when pruning
the various networks.

For these reasons, we have devised a scheme
whereby even non-linearly correlated inputs can be
completely decorrelated, with all mutual information
removed. The scheme involves training a series of
neural networks to learn the conditional probabilities
describing the correlations.

Another issue that often comes up in the context of
neural networks is overfitting the data. One way to
avoid overfitting and maintain good generalization
ability is to keep the number of network parameters
small relative to the amount of training data. In
other cases, one needs a measure of the
generalization error. Usually one simply tests the

network on data that it hasn't been trained with and
takes the test error as the generalization error.

Armed with a measure of the generalization error
one can then decide two important questions. First,
when to stop training a net. (See (Prechelt 1998) for
a discussion of so called early stopping criteria.)
And second, deciding which architecture of
networks is best. In particular, the network with the
smallest training error isn't always the best.

A new and interesting measure, the network
information criterion, has been proposed (Murata
1994) and tested (Hintz-Madsen 1998) based on the
hessian matrix of the regularized cost function of the
network over the training data. This eliminates the
need for validation data and allows more data to be
used for training. We have tested this approach and
found it to be advantageous.

To optimize the networks we have used the optimal
brain surgery method (Hassibi 1993), which seem to
be, out of all the types of pruning criteria, the one
that prunes the right weights the most often. We
have approximated the hessian as the sum of a block
diagonal matrix and an outer product of the average
gradient vector. This was neccasary as the hessian is
very time consuming to calculate exactly.

Background Information

The Application

The data consists of workers' compensation
insurance claims evaluated at 12 month intervals.
These are workers who were injured on the job and
are entitled to legislated benefits from the employer.
A claims examiner estimates the ultimate amount of
the claim based on the details of the injury. These
estimates are included in the data along with other
information. These claims tend to grow over time as
the injured worker fails to return to work, becomes
sicker etc. The task is to estimate this growth.
Normally, on average, the claim examiner's estimate
of the outstanding amount on the claim, (the
reserve), is low by around 50-150% during the time
the claim is open. One can also note that the

distribution of the outstanding amount on a given
claim has a standard deviation that is between 1 and
2 times its mean.

To help with estimating the outstanding losses, there
are many samples of the process over one-year
intervals going back three years. Care must be taken
to not go too far back in time as the process is only
approximately stationary. In other words the
development ten years ago is a poor indication of the
development today. On the other hand one would
like to use as much data as possible.

The present standard approach to this problem only
utilizes some of the available information on the
claims. By using a neural net one should be able to
reduce the uncertainty in the estimate (the process

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 11

variance). This is because much of what is taken
random variation in the standard approach is, in fact,
variation along unused dimensions in the input state
space.

Another related issue is that the data are rather
inhomogeneous, coming from many different
sources. By coding the source of the data
intelligently, one can add dimensions to the state
space for the source. Thus, one can take advantage
of the similarities in the data from the different
sources while still allowing the net to discriminate
between them. This will allow for a disciplined
method of dealing with a mixture of data from
different sources.

Another important problem with the standard
approach is the bias that was mentioned in the
introduction. This is particularly annoying in that a
bias does not go to zero for larger and larger
insurers. The bias is hard to estimate, being positive
for some claims and negative for others. Using an
approach based on neural networks we were able to
estimate this bias and remove it. There is no other
practical method for doing this that we are aware of.

An additional aspect of the problem is that the
variability of the outstanding claims in aggregate can
be calculated if one has an estimate of the
distribution of individual claims about the mean.
Traditional methods consist of making rather
arbitrary guesses at this distribution. The neural
network approach will give additional information
allowing a distribution to be fit for each open claim.
This will allow theoretically justifiable confidence
intervals to be calculated.

The distributions of the state variables one step into
the future are strongly functions of the reserve. The
other state variables have a much smaller influence
on the development of the claim. This observation is
critical in understanding the choices described later
in the methods section.

In summary, the neural network approach has the
potential to eliminate the bias in the mean, reduce
the variance in the estimated mean, incorporate
inhomogeneous data into the estimate and calculate
confidence intervals about the mean. In short, the
risks associated with this type of insurance might be
able to be dramatically reduced.

The Markov Process

In order to solve the problem outlined in the
previous section we need to reformulate it as a
markov process.

 The principle assumption we make is that the future
development of the claim is a random process, which
depends only on the current state vector. This is the
markov assumption.

The state vector consists of the information we have
on the claim as of some date, such as the paid to date
the amount of the reserve, the age of the claim and
so on. We will refer to state transitions as steps of
the process.

As we project the process one step, some of the
variables of the state vector, x, will not change.
Others such as the age will change by a known
amount, one year. Some of the variables will change
by a random amount according to a distribution that
is conditionally dependent on the input vector, x.
Let f(x(out)x(in)) be this conditional probability
distribution.

If we project two steps we find the distribution will
be given by,

f(x(2) x(0)) = ∫ f(x(2) x(1)) f(x(1) x(0))dx(1)

Here the superscripts on x(i) refer to the number of
the step that proceeded state x(i). Now, one would
like to be able to replace the integral over a
continuum intermediate states with a single
projection. If one were to choose the mean, µµµµ(1), of
x(1)

 then at least the first order correction terms will
vanish,

f(x(2) x(0)) ≅ ∫ {f(x(2) µµµµ(1))

+ (x(1)-µµµµ (1))∇µµµµ f(x(2) µµµµ(1))} f(x(1) x(0))dx(1)

= f(x(2) µµµµ(1)) ∫ f(x(1) x(0))dx(1)

= f(x(2) µµµµ(1))

January, 2001

John Folkesson12

The second order terms however will not vanish.
This is what leads to the bias of the recursive
procedure. By the recursive procedure we mean
using the mean from one projection to project the
mean one more step into the future.

As one can show by taking the expansion above out
to the next term, the bias is proportional to the
variance in x(1). By reducing this variance we can
reduce the bias. This is the heart of our approach.

One can also see our approach as the approximation
of the above integral by expanding around several
points each one being the mean within some region
of the x(1)

 space. The difficult part is to generate the
mean values and the probabilities for each region.

If one breaks up the state space into fixed regions,
the same for all input points x(0), then for every x(0)

there will be some output regions with very sparse
training data. This can make the method unstable.
We need to make the regions vary with x(0) in order
to avoid this unstable behavior.

The aim is to make a machine, M(x(k-1)), that is given
a partition, {A(k)

i}, of the state space one step into
the future. The machine can then generate a set of
mean output states, x(k)

i, given that it is within each
region A(k)

i and the probability, p(k)
i, of that region.

{(x(k)
i , p

(k)
i)} = M(x(k-1))

Our machine is composed of various networks which
used together realize the M above. The regions are
just slices of the state space along lines of constant
reserve. As pointed out earlier, for our application
the process is most strongly a function of the reserve
so that it is sufficient to reduce the variance in just
this one dimension.

We are furthermore able to first calculate the
probability density of the output reserve using our
maximum likelihood distributions. Then we can
chose the partition. Then we can calculate the means
within each region for the random dimensions of our
state space.

The number of regions at the current step can be
chosen with regard to the importance of the current
step to the ultimate quantity of interest. That would

be for us the total mean payments of a group of
claims over several years.

Thus, if the mean payment for the step is relatively
small then we need not split the space up into a large
number of regions. Alternatively if the claim is a
very large one we may want to be extra precise with
it and would create many regions. In this way we
can apply our processing power judiciously.

In our case we chose to use the same number of
regions for all the claims and just let the program run
a bit longer.

Training a Multi-layer Perceptron

A very interesting review of learning theory is given
in (Vapnik 1999). The primary principle in all the
learning algorithms is the, so called, 'empirical risk
minimization induction principle.' What it refers to
is the validity of replacing the expected value of the
risk, (also called cost), function with its average over
the training set. After this replacement one can
begin to devise algorithms to minimize the empirical
risk rather than the true expected risk.

Training a multilayer perceptron to minimize this
empirical risk can be done in a number of ways. The
easiest learning algorithm to understand is probably
back propagation in batch mode. In that learning
mode one simply calculates the gradient of the cost
function summed over all the training data points.
Then one moves the weights in the direction of the
steepest decent. The change in weights is given by a
constant times the gradient.

In particular, if we define a cost function that we
want to minimize as:

 D(w) = ΣD(w, j)

Where the sum over j refers to the training data
points and w is the weight vector. Then we update
the weights according to:

δw = -η Σ∇wD(w, j)

Then one recalculates the gradient with the new
weights. Here η is a small parameter that defines the

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 13

step size. The problem with this approach is that it is
quite slow.

A better method is to update the weights after
calculating the contribution of each data point to the
gradient.

δw = -η∇wD(w, j)

Thus one doesn't wait till all the training data has
been presented giving a more continuous
improvement. This learning mode tends to converge
much faster than batch mode.

A third learning algorithm is the quickprop method.
(Fahlman 1992) Here one calculates the gradient as
in batch mode but then compares it to the previous
gradient to obtain some second derivative
information. One then assumes one is moving
towards the bottom of a parabolic bowl. One can
then easily calculate where the bottom of the bowl is
and move the weights there. There are some other
small details to the algorithm for special situations
like avoiding taking too large a step, convex regions
of the weight space and getting started, but the main
idea is to fit to a parabola. The update rule is given
by:

δwn=δwn-1Σ∇wDn(w,j)/(Σ∇wDn-1(w,j)-Σ∇wDn(w, j))

Here δwn is the change in the weight vector and Dn is
the cost function, both at the nth iteration. We have
chosen to use this update rule in this work. It has the
significant advantage of not being very sensitive to
the choice of parameters. There are some
parameters, not shown above, for the special
situations but the learning rate is not so sensitive to
them. This allows us to "set and forget them".

Additional algorithms typically use some type of
mechanism to adaptively adjust the step size and fall
under the name adaptive backpropagation. A good
description is given in (Parlos 1994). Among the
many variations demonstrated there they found that
the adaptive rule:

δwn= -ηΣ∇wDn(w, j) / Σ∇wDn(w, j) 2

often gives faster convergence. This can be
understood by noticing that the relative change in D

is approximately held constant by the clever choice
of the learning rate function.

Finally if one has the time or a small enough
network one can do a full Gauss-Newton method
update. The rule then becomes:

δw = -η (Σ∇w∇wD(w, j))-1 (Σ∇wD(w, j))

Here ∇w∇wD is the hessian matrix of the cost
function. A general trend is that the faster
algorithms tend to be less stable. They can go off in
the wrong direction only to later start making
progress again.

All the methods depend on the calculation of the
gradient of the cost function. This calculation is
preformed by the backprop algorithm, (Haykin
1999), which involves first passing the input data
through the net, the forward pass. Then passing the
error backward through the net to calculate the
partial derivatives with respect to each weight. Each
pass has a complexity of the order of the number of
weights. Passing all the training data points through
the net is referred to as one epoch.

Heuristics for Better Convergence

There are several ways to help the network to learn.
(Haykin 1999, p.178-184) They include the choice
of learning algorithm, activation function, choice of
training samples, having the target values that are
within reach of the network and initializing the
weights with small random values

Those are the good practice and one should be
familiar with them. More complex is the issue of
normalization and decorrelation of the inputs.
Having the initial weights and the various inputs all
with different characteristic scales leads to longer
training times as the network must first learn all the
scaling factors and then the output function. Best is
if all inputs have a variance of order 1 and a mean of
0.

In addition, correlated inputs tend to learn slowly as
the network gets the same information from two
sources. Ideally, each input should contain no
information that is available at another input.

January, 2001

John Folkesson14

(Schittenkopf 1997) has shown that one can
effectively control the flow of information through a
network by inserting extra principle component
analysis (PCA) layers between the normal
perceptron layers.

A PCA layer can separate the linearly independent
components in order of decreasing variance from
each layer's outputs. Thus helping not only with
decorrelating the inputs but also the internal
representations of the inputs. The approach is
however limited to linear correlations.

For our problem, we have made use of an
approximation to the hessian matrix of the neural
weights that relies on the assumption that the
network's nodes are more or less decorrelated. Since
this assumption will certainly fail if the input nodes
are correlated, it was even more important for us to
decorrelate the inputs.

We found that some of the input dimensions were
strongly correlated. What's more, the correlations
were non-linear. To solve this problem we devised a
scheme to decorrelate the inputs completely using a
simple neural network to maximize the conditional
probability of one of the inputs given the values of
the others. We then mapped the input into the value
of its conditional cumulative probability, which
becomes our new input variable having a uniform
distribution from -1 to 1 and independent of the
other variables.

Specifically let zi be the ith transformed input, then:

zi = 2 F (xi z0,…zi-1) - 1

Where F is the conditional cumulative probability
function. We start with one input dimension and
then decorrelating an additional dimension with
regard to the first dimension. Once that is done we
add another, decorrelated it with regard to the first
two and so on.

This approach is quite general and could be useful as
a standard method of data preprocessing.

Generalization

Networks have the important ability to generalize.
That is to say after having been trained on a sample
of input-output pair examples, the network will be
able to interpolate an input-output mapping for
points it has not seen.

The accuracy of the generalization is a function of
the number of training points and the number of
parameters in the model. Not surprisingly the
accuracy improves with more training data. The
optimal number of weights is more difficult to
determine. More weights improve the model's
ability to match a complex input-output relationship.
However increasing the number of weights beyond a
certain point leads to overfitting.

Overfitting occurs when the network begins to
memorize the training samples. The danger is that
the network will adjust the 'extra weights' to bring
down the error for outlying points. This improves
the training error while worsening the generalization
ability.

As it is the generalization ability that one wants to
optimize, one must have some criterion to judge it
by. The error on a validation set is one way to judge
the generalization ability.

The use of a validation set has some problems
however. The most obvious is the loss of potential
training data to the validation set. One in effect
settles for a worse final network in order to be able
to measure the generalization. In cases where the
data is plentiful and noise-free this is not a problem.

The other problem is how large a validation set
should be. Too small a set with very noisy data can
be problematic. A few randomly chosen outlying
points that happen to fall into one set or the other can
throw off the whole procedure. That was our
experience at any rate.

For that reason we finally decided to use another
measure of the generalization ability, the network
information criteria, NIC (Murata 1994).

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 15

The Network Information Criteria

What the NIC does is to estimate the expected value
of the cost function over the unknown distribution
from which the training data was drawn. This is
similar to the familiar division by (N-1) in estimating
of the variance of a set of numbers. The 1 being due
to the one parameter of the model, (i.e. the mean).

The NIC estimate is made by expanding the
expected value of cost function about the optimal
solution, keeping the terms up to 2nd order. Then
some assumptions are made that lead to conclusions
concerning the statistics of the learned weights.
These conclusions can then be used to express the
expanded cost function in terms of the empirical cost
and its derivatives. By the empirical cost we mean
the average of the cost function over the training set.

If the cost function is D(w), the NIC can be written
as:

NIC = 〈D(w)〉 + tr(Var[∇D(w)] 〈∇∇D(w)〉 -1) / N

Where ∇∇D(w) is the hessian matrix and N is the
number of training points. The derivatives are with
respect to the weights and we make the abbreviation

〈…〉 = 〈…〉empirical = (1/N) Σ(…)

for the average over the training set. The variance of
the gradient term is also taken over the training set.
It is this variance that carries the information on the
variance of the underlying distribution.

The most important assumption used in deriving the
NIC is that the network is in the neighborhood of the
optimal network for the underlying distribution. One
can say that the better the model, the better the NIC
approximates the generalization error. So one can
conclude that the NIC will perform badly for
networks that are poorly designed or trained. One
simply can not expect too much from either the NIC
or a neural network.

One other cautionary note in using the NIC is that it
assumes that one is comparing networks from the
same basic model. One can not for instance use the
NIC to compare an example from a multi-layer
perceptron model to an example from a radial base

function model. This is due to a quantity, which was
dropped from the definition of the NIC since it is
approximately constant for a given basic model. The
interested reader is referred to the appendix for more
details.

Coming back to the formula for the NIC, one sees
that the trace becomes a generalization of the
number of parameters, a sort of effective number of
parameters. We will refer to it as the effective
dimension of the network. In one important case it
is exactly the number of weights.

In particular, if the cost function is the log-likelihood
type then we can derive some simple relations.
Setting S(w) be the log-likelihood cost function and
p(y |x, w) be the conditional probability of output y
given input x produced by our model with w being
the parameters of the model.

〈S(w) 〉 = 〈 -ln [p(yx, w)] 〉

In the appendix we show that for a log-likelihood
cost function,

〈∇∇S(w)〉 = 〈∇S(w) ∇S(w)T〉

Also if the network is trained to a local minimum,
the expected value of the gradient vanishes so we
find that the hessian is equal to the variance of the
gradient. Thus for this special case

NIC =〈S(w)〉 + tr(I) /N

= 〈S(w)〉 + (number of weights) / N,

For S(w) trained to its minimum.

If now we introduce a regularization term as in
(Hintz-Madsen 1998),

〈DR(w)〉= 〈S(w)〉 + (wRw)/2

where R is the regularization matrix. The same
reasoning as above leads us to

〈∇∇DR(w)〉 = 〈∇S(w) ∇S(w)T 〉 + R

Var[∇D(w)]= 〈∇S(w) ∇S(w)T〉 + 〈∇S(w)〉 〈∇S(w)T〉

January, 2001

John Folkesson16

Unfortunately the expected gradient no longer
vanishes when the cost function is minimized, being
equal to -Rw.

So we have for the NIC with regularization,

NIC = 〈S(w)〉 + (wRw)/2

 + tr(Var[∇S(w)] [〈∇S(w)∇S(w)T〉+ R]-1) /N

 At the minimum of 〈DR(w)〉.

Thus, the R matrix serves the purpose of reducing
the effective number of dimensions to a number less
than the number of weights.

Now how do we relate the NIC of 〈DR(w)〉 to
compare 〈S(w)〉? This issue seems to be absent from
(Hintz-Madsen 1998) although it is fairly important.
The issue is that we have a criteria that allows us to
estimate which set of w's gives the lowest true, as
opposed to empirical, expected value of D(w, R).
We also know that,

〈S(w)〉 true = 〈DR(w)〉 true - (1/2) wRw.

The NIC differs from 〈DR(w)〉true by a small constant
so that we can use the following measure to compare
two networks where the ultimate goal is to minimize
〈S(w)〉true.

E(R) = NIC - (1/2) wRw

E(R) = 〈S(w)〉

 + tr(Var[∇S(w)] [〈∇S(w)∇S(w)T〉+ R]-1) /N

At the minimum of 〈DR(w)〉.

This is a bit subtle. It would seem that making R
huge and thus the effective number of dimensions 0,
will always minimize E(R) with respect to R, but no.
The NIC must be calculated near the minimum of
〈DR(w)〉 true in order to be valid. Thus one must first
train the network to the minimum of D for a given R.
Then one can calculated E. Changing R will change
the w.

Now one begins to understand the mechanism at
work here. Choosing a large R will force us to

solutions with small weights. That will make the
training error larger than with unconstrained
weights. The benefit will be that the effective
dimension is now less. For small networks the
benefit of a large R will be small but for larger
networks it will be significant.

We now have a way to compare networks with many
small weights to ones with fewer but less constrained
weights.

In (Hintz-Madsen 1998) the above expression for
E(R) was not derived. Instead they compared nets
using the regularized NIC with the added assumption
that 〈∇S(w)〉 = 0. The assumption on the gradient
leads to an error of order R2, but the use of the NIC
leads to and error of order R. They have also kept
some terms of order R, in order not to remove the
effects of regularization altogether. That the results
they obtained were reasonable is due to the fact that
these corrections are small if R is small. On the
other hand, the added terms are not hard to calculate
and are not always small.

The above results will be returned to later in the
methods section when designing the generalization
criteria for our network.

Network Pruning

As mentioned in the previous section having too
many weights leads to worse generalization ability.
It is therefore advantageous to remove weights that
are less important. Exactly how one chooses a
weight to cut is the subject of much effort. A good
review of the existing methods is given in (Reed
1993). The optimal brain surgery method (Hassibi
1993) seems to have the best chance of not making
an error and has the added benefit of adjusting the
remaining weights so as to stay near the minimum of
the cost function. Thus reducing the need for
retraining.

The method makes use once again of the hessian
matrix and the expansion of the cost function about
the minimum. We write H for the hessian of the cost
function in the section. It is straightforward to
derive the following saliency measure, or more

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 17

precisely, the increase in the empirical cost resulting
from cutting the ith weight:

si = (1/2) wi
2 / 〈H〉-1

ii

And the optimal adjustment to the kth weights after
such a cut is given by:

δwk = - 〈H〉-1
ki (2si / wi)

The hessian is a rather difficult quantity to calculate
as it involves updating M2 values at each data point
where M is the number of weights in the network.
The complexity is thus O(N M2). (By the way, this
is normally much harder than inverting the matrix,
i.e. O(M3)). For that reason one often assumes that
the matrix is diagonal.

In the appendix we describe our approximation to
the hessian that allows it to be calculated more
quickly.

Methodology

Overview of the Projection Procedure

Our projection will be done one step at a time as
shown schematically in diagram 1. The state space
is partitioned into regions indexed by j = 0, …, n.
The state vector, x(k)

j, describes the mean within the
jth region after k steps of the process. p(k)

j is the
probability of the jth region. The variable σ(k)

j is
defined as:

σ(k)
j = [<(paid)2> - <paid>2]½.

In the above equation it is understood that the
expectation values are conditional given that the
state is within the jth region after k steps.

By including this estimate of the standard deviation
we can not only model the expected future
payments, but also their uncertainty.

We reserve the index j=0 for the closed claim state.
A claim is classified as closed when it is deemed that
no more payments will be made. We will assume
that closed claims remain closed.

The vector x will be defined as:

x = (age, reserve, paid, medical raito, x4,…, x8)

The medical ratio, and the last five variables will be
explained later.

The single step projection is shown in finer detail in
diagram 2.

Single Step
Projection

{ (p(k-1)
j , x(k-1)

j, σ(k-1)
j) } {(p(k)

j , x(k)
j, σ(k)

j)}
Single Step
Projection

{(p(k+1)
j , x(k+1)

j, σ(k+1)
j)}

The Basic Projection

Diagram 1. The index j indicates the region of the state space for which p(k)
j is the probability and x(k)

j is the mean state vector given that it is
within the jth region after k steps of the processs. This model is gives a discrete approximation to the continous state space, which becomes
better with increasing n, the number of regions.

January, 2001

John Folkesson18

{ (p (k-1)
j , x

(k-1)
j, σ

(k-1)
j) }

{ p (k)
i, x

(k)
i , σ

(k)
i}

The S ing le S tep Pro jec t ion

Pro jec t ion
M a c h i n e

M 1

 x (k-1)
1

p (k-1)
0, x (k-1)

0, σ(k-1)
0

{(p'(k)
i, µµµµ(k)

i, s
(k)

i) 1}

Pro jec t ion
M a c h i n e

M n

 x (k-1)
n { (p'(k)

i, µµµµ(k)
i, s

(k)
i) n}

 (p (k-1)
1, σ(k-1)

1)

C o m b i n e r

T a k e s t h e n 2

vec to r s and
c o m b i n e s t h e m

into n s ta te
vectors .

 p (k-1)
n, σ(k-1)

n)

j=1, .., n

Diagram 2. The single step projection calculates a conditional probability distribution for each input and then partitions the output space. The
individual Mj actually have some indirect communication in order to form a common partition, (indexed by i), that is best for just this set of
input vectors.

The combiner sums up all the contributions from
each of the input vectors:

x(k)
i = Σ p(k-1)

j (p'(k)
i µµµµ(k)

i) j

p(k)
i = Σ p(k-1)

j (p'(k)
i)j.

The summations are over j. We will look at the
projection machine M more closely in the following
sections. For now we simply present, in diagram 3,
the three blocks that make up the machine.

Data Adjustments

The first step of our work was to take a careful look
at the data. The fact that the output state variables
were mostly effected by the case reserve of the input
state became apparent early. To try and find out
which of the other possible input dimensions would
likely help in prediction, we made a series of least
square linear fits between the output reserve and
paid verses the input reserve.

M - T h e P r o j e c t i o n M a c h i n e

S c a l i n g a n d
Offse t

y (k-1)= A *(x (k-1)-b)
(A i s a d iagona l

ma t r ix .)

 x (k-1) y (k-1) { p'(k)
i, µµµµ(k)

i, s
(k)

i}
N e u r a l

N e t
S t e p

Pre -processor

N o r m a l i z e s t h e
inputs .

 z (k-1)

Diagram 3. In the first block the input variables are adjusted to have a variance of about 1. The second block removes most of the correlation
between the input variables. The third block calculates the conditional probability distribution.

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 19

The data was partitioned along the various other
dimensions one at a time and the correlation
coefficients were used to estimate the reduction in
the residual variance about the least square lines
achieved by the partition.

In this way, we were able to narrow the input
dimensions of interest down to four continuous and
two discrete dimensions. The four continuous
dimensions are the age of the claim, the reserve, the
total paid to date, (simply referred to as the paid),
the relative proportion of medical reserves to the
total. The two discrete ones are the department that
the claimant had been working in, (coded as four
classes of departments) and the group code.

The last dimension was important. We had 31
sources of data. When looked at separately we
found that it was possible to group the sources into
six groups based on the similarity of the least square
lines. If one is later presented with data from a new
source and needed to use the neural network trained
with this data to project it, then one could match the
new data to one of the six groups based on its linear
least square fit. This data is shown in appendix 1.

In order to avoid the problem of outlying points
distorting the results we limited the data to ages
from 100 days to 20 years. The very young claims
are far too numerous, small and random to expect the
net to deal with and the older claims were too few
and had a very large variance. We also eliminated
claims with reserves over $200,000, after having
trended them for inflation at 1.5% per year.

The inflation trend was chosen after careful
consideration of the data, which showed very little
inflation over the four evaluations dates we had. We
felt that some inflation must be incorporated into the
model in order for it to be accurate going into the
future. We could have argued for a trend of 0 to 3%
based on the data and went with 1.5%.

The limiting of the data by age and size of claim is
very much a standard practice in making estimates of
claim development. Without doing so finding
patterns becomes too difficult.

We had 14,326 pairs of data points over the three
one-year intervals. We set aside 7,086 of the points
as a test set. This data will be used when testing

how well the net can be used to go out three steps
with. From the claims in this test set, there were a
total of 1,836 pairs of three-year interval test data
points. We also used the one-year interval test data
to confirm that our generalization error estimates
were functioning properly. This left 7,240 pairs as
the training set. Note that the claims used for the
three-year interval test data were not in the one-year
interval training data.

Nonlinear Rescaling of the Input Data - The
Preprocessor

The problem we still faced was that the data was
distributed very non-uniformly over the input space.
There were lots of data for small young claims and
much sparser data for older or larger claims. As we
want the net to be able to generalize well especially
in just those regions were the data was sparsest, we
needed to help the net by making the input space
more uniformly populated.

How we did this is shown schematically in diagram
4. We were, for example, able to remove all the
mutual information between the age and reserve
from z1.

We start by normalizing the age of the claims to
become more or less uniform over the interval -1 to
1. We did this by fitting the age data to a weibull
distribution and then mapping each age into its
cumulative probability. Thus the older aged claims
were brought closer together. This helped the
subsequent networks to learn in these regions.

The paid and reserve inputs were a bit trickier. The
paid was very strongly correlated to the age and
reserves. The correlation was non-linear so a linear
decorrelation method would not help much. What
was needed was a non-linear decorrelation method.

We started with the reserves. First, in the scaling
and offset block, a small amount was added to each
reserve. This was to avoid zero reserve values.
Then the result was divided by the standard
deviation. We then used back propagation to train
N0, a simple net with one hidden node and two
outputs. The normalized age was the sole input. We
maximized the log-likelihood of a weibull
distribution where the net generated the two weibull

January, 2001

John Folkesson20

parameters. The hidden node had a tanh activation
and the 2 output nodes had exponential activations to
avoid negative outputs. The network was
straightforward to train as it always went to the same
minimum point. We used quick-prop here and in all
the training that follows.

The Pre -proces sor

 y 0
(k-1)

N e t w o r k N 0
(Age normalisation)

z 0
(k-1) = 2 * F (y 0

(k-1)) -1
 z 0

(k-1)

N e t w o r k N 1
(Reserve normalisation)

z 1
(k-1) =

2 * F (y 1
(k-1) : y0

(k-1)) -1

 z 1
(k-1) y 1

(k-1)

N e t w o r k N 2
(Paid normalisation)

z 2
(k-1) =

2 * F (y 2
 : y0, y 1) -1

 z 2
(k-1) y 2

(k-1)

 y 3
(k-1)

 y 8
(k-1)

N o t N o r m a l i s e d
(Medical Ratio etc.)

z i
(k-1) = y i

(k-1)

i=3, .. . , 8

 z 3
(k-1)

 z8
(k-1)

Diagram 4. Networks N0 to N2 are trained to maximize the log-
likelihood and are then used to produce the conditional
cumulative probability distributions F(). The result is that z0, z1

and z2 are uniformly distributed and uncorrelated.

This distribution could then be used to map each
reserve to its cumulative conditional probability
given the age of the claim.

Normalized reserve = 2F(reserve age) - 1

Or in terms of the notation of diagram 4:

z1
(k-1) = 2F(y1

(k-1) y0
(k-1)) - 1

We continued in this manner by fitting the paid to a
distribution consisting of a weibull for paids greater
than zero and a single parameter, 'p', as the
probability of paids less than or equal to zero. A
neural network with the normalized reserve and age
as inputs then generated the three parameters. The
paids were scaled by their standard deviation. The
cost function was taken as the log-likelihood:

L=-ln(p); for y ≤ 0

L= -ln(1-p)-βln(λy) -ln(β/y)+ (λy) β; for y > 0

Where y is the paid for the claim, (we shall suppress
the index 2 that identifies the paid variable here).
The network had a single hidden layer with 5 nodes
and sigmoid activation functions. The output node
for p also had a sigmoid activation function, while
the β and λ nodes simply used exponential
activations to assure positive outputs. A lognormal
distribution as well as more and fewer nodes was
also tried but the above combination seemed to work
best.

The paids were then mapped by:

z=2p-1; for y ≤ 0

z =2[p + (1-p)exp(-(λy) β)]-1; for y>0

The decorrelation is seen clearly by looking at the
scatter plots in figures 1-6 or by the correlation
coefficients that went from around 45% to 1%. The
non-linear nature of the correlations is apparent in
the plot of the mean of the distribution as a function
of the two dependent variables, in figure 7.

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 21

Paid to D ate vs. A ge of C laim ,

C or re lat ion = 45.3%

0

2

4

6

8

1 0

1 2

1 4

1 00 1 , 1 00 2, 1 00 3, 1 00 4, 1 00 5, 1 00 6, 1 00 7, 1 00

Age of claim i n days

Paid to date / stan dard

deviatio n

Figure 1. Paid to date is one of the input dimensions that was normalized and decorrelated using a simple network. Here is the raw input data
with a high correlation between the age of the claim and the paid to date.

Paid to Date vs . N ormalize d Age ,

Corre lation = 46.3%

0

2

4

6

8

10

12

14

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Normalized age

Paid to date / its s tandard deviation

Figure 2. Here the age has been normalized to have a uniform distribution from -1 to +1. The correlation between the paid to date and the
normalized age is still high.

January, 2001

John Folkesson22

N ormalize d Paid to D ate vs . Normalize d Age, Corre lation = 1.2%

-1 .0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Normalized age

Normalized paid to date

Figure 3. Here the paid to date has also been normalized to have a uniform distribution from -1 to +1. The correlation between the paid to
date and the normalized age has been removed.

Paid to Date vs . Input Re se rve ,

Corre lation = 47.3%

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10

Input res erve /

s tandard deviation

Paid to date / s tandard deviation

Figure 4. Paid to date is one of the input dimensions that was normalized and decorrelated using a simple network. Here is the raw input data
with a high correlation between the reserve and the paid to date.

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 23

Paid to Date vs . N ormalize d Re se rve ,

Corre lation = 31.8%

0

2

4

6

8

10

12

14

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Normalized input res erve

Paid to date / its s tandard deviation

Figure 5. Here the reserves have been normalized and the correlation between the reserve and the paid is reduced.

N ormalize d Paid to D ate vs . Normalize d R e se rve ,

Corre lation = 1.0%

-1 .0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Normalized input res erve

Normalized paid to date

Figure 6. Here the paid has been normalized and correlation between the reserve and the paid has been eliminated

January, 2001

John Folkesson24

M e an of f(ptd | r e s, ag e) v s R e s erve at Variou s Age s

0

50,000

100,000

150,000

200,000

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000

Reserve in

Mean paid to date

t = -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 7. The mean of the maximum likelihood distribution for the paid to date given the reserve and age. This distribution was used to
normalize the input dimensions. One can see that the correlations were not very linear.

M ean of Input R e se rve D is tribution vs N ormalize d Age

$0

$5,000

$10,000

$15,000

$20,000

$25,000

$30,000

$35,000

$40,000

-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00

Normalized age

M ean input res erve

Figure 8. The mean of the maximum likelihood distribution for the input reserve given the age, which was used to normalize the input
dimensions. One can again see that the correlations were not very linear.

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 25

The discrete inputs were coded as binary numbers.
The six groups were coded into three binary inputs,
x4, x5 and x6 and the 4 classes into 2 binary inputs, x7

and x8. These inputs were either +1/2 or -1/2
depending on whether they represented a binary 1 or
0.

This then gave us our nine inputs to the network:
three normalize/decorrelated inputs, (ie. age, reserve
and paid), the medical ratio, and the five binary
inputs.

Training the Networks - The Neural
Network Step

We start this section by examining the last schematic
diagram, diagram 5. It shows the four multilayer
perceptron networks and how they work together to
produce a complete conditional probability
distribution of the output state.

The first projection network to be trained, N5 was the
most critical. The net had to learn the conditional
distribution of the reserve one step into the future. It
was critical because the future development of the
claim is mostly a function of the reserve.

The approach was very similar to that used for the
decorrelation of the previous section. The network
now had the extra inputs and the output cost function
was based on a bit more general distribution. Also,
the training data was split into two sets, those claims
that remained open at the end of the step and those
that were closed and therefore had no reserve. The
set of open training data had 4,243 pairs while the
test set had 4,121 pairs. The numbers for the closed
claim sets were 2,997 and 2,965. The network was
trained with the first set. We will train another
network to learn the probability of remaining open
later.

The Neura l Ne twork S tep

{ (p' (k)
i, µ1

(k)
i) i= 0,.. . ,n }

N 4
Probabili ty of Closing Net
(Binomial Max-l ikel ihood)

 z (k -1)

 p' (k)
0

N 3
Paid on Closed Net

(Minimum Square Error)
(µ2

(k)
0, s (k)

0)

N 5
Reserve N e t

(Spl i t Weibul l Max-l ikel ihood)
(q, λ1, β1, λ2, β2)

The Spli t ter

Divides the state
space into regions

along lines of
constant reserve.

N 6
Paid and Medical on Open N e t

(Minimum Square Error)

{ F(µ1
(k)

i) }

{ (µ2
(k)

i,µ3
(k)

i,s
(k)

i) i= 1,.. . ,n }

Diagram 5. The age of the claim, x0, increases by 1 year and the static variables, (x4 to x9), do not change and so they need no network to
project them. The Medical on the closed claims, x3

(k)
0, is not needed.

January, 2001

John Folkesson26

 The output reserves were scaled by their standard
deviation after adding a small constant to them to
avoid zero reserves.

The distribution taken was a pair of weibulls each
covering a different range of output reserves. To set
the ranges optimally for each input point we chose to
use the linear least square fit between the input and
output reserve as the dividing value. The first range
was from 0 to the value of the least square fit and the
second range was from the least square fit with no
upper limit

The weibull probability density function is given by,

wb(β, λ, x)= (β /x)(λx)βexp(-(λx)β);

And we took a pair of these to form f(xz),

f(xz)= q wb(β1, λ1, x) /(1 - exp(-(λ1t)
β1); x∈(0, t]

f(xz)= (1-q) wb(β2, λ2, x) exp((λ2t)
β2); x>t.

Here t = least square linear fit between the reserve
out, x, and the reserve in. This linear fit was done
once for all the training data and the slope and
intercept was then used to calculate each t.

The cost function then became

S= -ln(f(xz))

The network was then trained to learn the five
parameters of the model, (q, β1, λ1, β2, λ2). The
output functions were, (1+e-v)-1 for q, and ev for the
other parameters.

It is important to find a network that learns as much
as possible from the training data without overfitting.
Overfitting seems to occur when the training points
per number of parameters in the model is too small.
Now one approach to avoid overfitting would be to
start with an over dimensioned network and then
train it to the minimum training error. Now the
network will presumably be overfitting the training
data. Then one could prune the network until the
overfitting is eliminated.

We have chosen another approach where we tried to
avoid ever training a network to overfitting. This is

reasonable given that our generalization measure is
only accurate near the best generalization solution
for the model.

We avoid overfitting by using regularization, which
reduces the effective dimension to be significantly
less of the amount of training data. The
regularization matrix was chosen as the identity
matrix times a parameter R. Choosing the R that
gives the desired effective dimension is half
guesswork half trial and error.

We first trained 22 networks minimum of the
regularized log-likelihood cost function on the
training set with R set to 0.01. These nets all had
9-12-7-5 architecture with tanh activation functions
on the hidden nodes. The 9 being the number of
input nodes and the 5 being the output. The two
hidden layers were then 12 and 7 nodes each. Thus
the networks had 251 weights. These training runs
were done with the priority of trying as many
networks as possible in a reasonable time. We
therefore chose to stop the training of each network
after 500 epochs even though the minimum hadn't
yet been reached.

We then chose the network with the lowest training
error and trained it further until the training error
didn't improve anymore. This network was then our
starting network for our pruning/regularization
procedure described next.

Network Pruning with Adaptive
Regularization

We had at this point trained a fully connected
network to the minimum of the training error. The
number of weights in the network was large
considering of the amount of training data. We hope
to have no over fitting, however, because the weights
were being held small by the regularization term.

We now wanted to see if a network with larger
weights but fewer of them could give a better
generalization error.

Here we utilize the generalization measure defined
earlier and repeated here,

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 27

E(R) = NIC - (1/2) wTRw

E(R) = 〈S(w)〉

 + tr(Var[∇S(w)] [〈∇S(w)∇S(w)T〉+ R]-1) /N

At the minimum of 〈DR(w)〉.

We needed to minimized E(R) with regard to R and
the number of pruned weights. We did this by
calculating E(R) for two values of R. This involved
training the network weights to a minimum of
〈DR(w)〉. The starting point for this training was the
final network for the previous R, after first making a
course adjustment to the weights for the change in R
as described in the appendix.

We then picked the best E(R) of the two and pruned
some of the weights. After re-training we calculated
a new E(R). Here we chose a new R based on
whether the previous two R values indicated that a
smaller or larger R was best. We retrain again and
chose the best E(R) network for pruning.

Now we just continue calculating two E(R)'s for
each size network. In this way the R-value and the
effective dimensions can change as the net gets
smaller. The step in the R-values was calculated
similarly to quick-prop. The gradient was found
from the difference in the E(R). The previous
gradient came from the previous size network. The

size of the step in the R parameter was limited to
10%.

At first we pruned five weights using optimal brain
surgery. Then we gradually reduced the number
pruned each time so that the % change in the size of
the network remained about constant. Thus at a size
of 200 we pruned only 4, at 100 we pruned 2 and so
on.

We continued this until the network no longer
seemed to be able to model the process sufficiently
well. We then have networks at two values of R for
each size of network, and two sizes for each R.

The results are shown in figure 9. Here we show the
E(R) and the log-likelihood cost of the test set for the
networks with the best E(R) at each number of
weights. The test error was simply calculated
without being used for any training decisions. It
then can be used as a control of the method. As one
can see the test error followed our E(R) measure
very well.

We chose the network with the minimum E(R) that
had a test error just slightly higher than the minimum
test error. If we had used the NIC directly as the
generalization error estimate we would have chosen
a smaller network with a somewhat larger test error.

January, 2001

John Folkesson28

Adaptive R e gularization of th e

Output Re se rve Ne twork - N5

-0 .180

-0.160

-0.140

-0.120

-0.100

-0.080

-0.060

-0.040

-0.020

0.000

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

Network number

NIC

E(R)

Test Error

Figure 9. The result of pruning with adaptive regularization for the output reserve network showing the network information criteria, NIC, the
E(R) generalization measure and the error on the test data as the pruning progressed. The circles show the minimum.

Adaptive R e gularization of th e

Output Re se rve Ne twork

0

50

100

150

200

250

300

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151
Network number

Size

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

R parameter

Number of W eights

Effective Dimemsion

R

Figure 10. The result of the pruning with adaptive regularization for the output reserve network showing the number of weights, the effective
dimension and the R-value as the pruning progressed.

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 29

More Networks

Having learned the distribution of the output
reserves, we were now in a position to learn the
mean payment (ie. change in paid) given the input
state and the output reserve. In effect we treat the
output reserve as just another input, normalized just
the same way as the others using the network we just
described.

Now the cost function for network N6 became a
mean square error function.

〈S(w)〉 = (1/2) 〈Σ (ui(w)-di)
2〉

We have written the outputs of the network as ui (w)
and the targets as di. The subscript i refers to the
payment, (payment)2 and the medical ratio of the
output state. We will need the means for all three of
these when we project process further into the future.
We also add a regularization term as before.

〈D(w)〉 = 〈S(w)〉+ (1/2) wTRw

Unlike the prior networks based on the weibull
distribution, here we can have negative target values
and need to set the mean target to 0 by first
subtracting the mean payment and then dividing by
the standard deviation.

We train the network in exactly the same way as for
the reserve network. We first train a number of
randomly initialized networks for 500 epochs. The
networks all had a 10-10-7-3 architecture and
R=.005. Then we take the best one and apply the
network pruning with adaptive regularization
algorithm to it.

We then select the network with the best E(R) for
our final machine, (see figure 11). In this case the
best E(R) also had the best test error. The best NIC
was for a much smaller network with a much higher
test error.

Adaptive R e gularization of th e

Payme nt on Ope n Ne twork - N 6

0.4200

0.5200

0.6200

0.7200

0.8200

0.9200

1.0200

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

Network number

NIC

E(R)

Test error

Figure 11. The result of pruning with adaptive regularization for the payment on open network showing the network information criteria, NIC,
the E(R) generalization measure and the error on the test data as the pruning progressed. The circles show the minimum.

January, 2001

John Folkesson30

Adaptive R e gularization of th e

Payme nt on Ope n Ne twork - N 6

0

50

100

150

200

250

300

350

400

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 Network Number

Size

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060
R-Value

Number of weights

Effective dimemsion

R

Figure 12. The result of the pruning with adaptive regularization for the payment on open network showing the number of weights, the effective
dimension and the R-value as the pruning progressed

Adaptive R e gularization of th e

Payme nt on Close d N e twork- N 3

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1 11 21 31 41 51 61 71 81 91 101 111 121

Network number

NIC

E(R)

Test error

Figure 13. The result of pruning with adaptive regularization for the payment on closed network showing the network information criteria,
NIC, the E(R) generalization measure and the error on the test data as the pruning progressed. The circles show the minimum.

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 31

Adaptive R e gularization of th e

Payme nt on Close d N e twork - N 3

0

100

200

300

400

500

600

1 11 21 31 41 51 61 71 81 91 101 111 121

Network number

Size

Number of weights

Effective dimemsion

Figure 14. The result of the pruning with adaptive regularization for the payment on closed network showing the number of weights and the
effective dimension as the pruning progressed.

We found that the square error cost function was
much more time consuming to train and to calculate
the hessian for. It would probably have been better
to use a maximum likelihood cost function for the
payments as well.

The payments on the closed claims were then
learned by a similar procedure. Here we started
from a 9-10-4-2 mean square error network with
R=.01. The resulting minimum E(R) network had a
test error somewhat higher than the minimum, figure
13.

To learn the probability of a claim closing we used a
binomial log-likelihood network with the probability
of closing being the sole network output. The
activation function on the output was (1+e-x)-1. The
initial networks were chosen to have a 9-8-3-1
architecture and a R=.01.

The pruning/adaptive regularization procedure was
then applied. Again the best E(R) network also had
the best test error, figure 15.

January, 2001

John Folkesson32

Adaptive R e gularization of th e

Probability of Closing N etwork - N4

0.6

0.605

0.61

0.615

0.62

0.625

0.63

1 11 21 31 41 51 61 71 81 91

Network number

NIC

Test error

E(R)

Figure 15. The result of pruning with adaptive regularization for the probability of closing network showing the network information criteria,
NIC, the E(R) generalization measure and the error on the test data as the pruning progressed.

The Discrete Approximation

We now have trained a total of 7 networks, 3 for
decorrelating and normalizing the inputs and 4 for
projecting the output state distribution. These 7
networks then form the projection machine.

We first take the set of input state vectors, { x(k-1))
j }

and normalize the input dimensions with the three
input networks, N0, N1 and N2. We then calculate the
probability of the claim closing, (p'(k)

0)j, using
network N4. We can then calculate the probability
distribution of the output reserve one year into the
future using the reserve projection network N5.
Then we split the output space up into a number of
regions above and below the mean reserve. For
example, we might split it into four reserve regions:

A(k)
0 = (0, (mean reserve)/2],

A(k)
1=((mean reserve)/2, (mean reserve)],

A(k)
2=((mean reserve), 3(mean reserve)/2] and

A(k)
3=(3(mean reserve)/2, ∞).

In diagram 2 the individual projection machines are
shown as operating independently with no
communication between them. That is not quite
accurate as a higher level controller collects the
information for determining the mean output reserve
and making the partition which it then gives back to
the individual machines..

We use the probability density function to calculate
the mean reserve, µ1

 (k)
i and the probability, p'(k)

i, for
each region.

(p'(k)
i) j = (1- p'(k)

0) j ∫
A(k)

i

 f(u x(k-1))
j)d u

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 33

(µ 1
 (k)

i) j =[(1- p'(k)
0) j /(p'(k)

i) j] ∫
A(k)

i

 u f(u x(k-1))
j)d u

where f(u x(k-1))
j) is the probability density function

generated by N5.

These µ1
(k)

i are then normalized using the probability
density function generated by N5 and then used as
inputs to the payment on open network, N6. We can
thus find the mean payments, (payments)2 and
medical ratio for the four output regions. We then
use N3 to get the mean payment and (payment)2 if it

does close. Thus we have all the components of x(k)
j

for projecting one more step.

It is also of interest to calculate the expected value of
the product of the output reserve and the output paid
to date. This will allow us to estimate the covariance
between the reserve and the payments. We need that
to estimate the variance in the sum of the payments
and reserves. This proved to be no problem to
calculate using our machine.

Results

By applying the described method we projected the
1,836 claims from the test set three years into the
future. We then compared the results with the actual
development over the three years from 6/30/97 to
6/30/00.

We did this for several different numbers of output
regions. We found that when increasing from 16 to
32 regions the estimates changed by about 0.1% so
that further subdividing the output space was
deemed unnecessary. The results are shown in table
1.

If we take the 32-region projection as our best
estimate we find that our predicted payments were
about 1.5 standard deviations higher than the actual
payments, our reserves were about 0.7 standard
deviations above the actual reserves and the sum was
about 1.4 standard deviations above the actual sum.

We predicted that the expected number of closed
claims after three years would be 1,306. The actual
number was 1,310, which was quite close.

It is interesting to also compare our variance derived
from the predicted expected payments and
(payments)2 with the sum of the squared differences
between our prediction and the actual payments,
(shown in the last column of table 1). The square
roots of these two quantities were $1.10 and $1.13
(million) respectively. Doing the same comparison
for the reserves we find 0.74 and 0.84. And finally
for the sum of the reserves and payments we find
1.54 and 1.64.

This seems to indicate that our estimated standard
deviations were reasonably accurate. These standard
deviations could then be used along with the means
to fit the individual claims to a probability
distribution. Those distributions could in turn be
used to calculate the confidence intervals for the
aggregate claim distribution using standard actuarial
techniques. In our case we have so many claims that
a normal distribution is probably fairly correct for
the aggregate.

The bias was easily resolved using our model with
such a large number of test claims. We did this by
using only one output region and comparing to the
32-region estimate. With only one region we are
projecting the second step into the future from the
mean state after the first step. Then we project from
the resulting biased estimated mean intermediate
second state for the third step and so on. This
corresponds to all the standard methods of projecting
claim development. The common premise is that the
2 step projection can use the mean of the one step
projection to project off of. We thus estimated the
bias inherent in the standard approach.

When comparing the one region estimate to the 32
region estimate we see that the bias is about -17%
for the payments over three years, 5% for the
reserves and -11% for the sum of the reserves and
payments.

January, 2001

John Folkesson34

Table 1. The results of projecting the claims three years using our projection machine. The projections were done
for different numbers of output regions. The more regions the closer the results are to the true continuos state
space projection. The estimated standard deviation is based on the projected mean and mean of the square.

Square Root
Estimated Error as % of Square

Projected Actual Standard of Standard Deviation
Total Total Error Deviation Deviation From Projection

32 Regions
Expected (Res. + Pay) 41,389,483 39,233,515 2,155,968 1,546,307 139% 1,644,567

Expected Payments 29,909,720 28,283,578 1,626,142 1,104,650 147% 1,136,350
Expected Reserve 11,479,762 10,949,937 529,825 741,164 71% 846,118

Number Closed 1,306 1,310 (4) 18.3 -22%

16 Regions
Expected (Res. + Pay) 41,438,618 39,233,515 2,205,103 1,538,919 143% 1,644,900

Expected Payments 29,948,056 28,283,578 1,664,478 1,107,280 150% 1,136,614
Expected Reserve 11,490,563 10,949,937 540,626 733,021 74% 846,148

Number Closed 1,305 1,310 (5) 18.3 -25%

8 Regions
Expected (Res. + Pay) 41,298,605 39,233,515 2,065,090 1,524,537 135% 1,644,916

Expected Payments 29,797,989 28,283,578 1,514,411 1,105,435 137% 1,136,625
Expected Reserve 11,500,616 10,949,937 550,679 724,097 76% 846,188

Number Closed 1,305 1,310 (5) 18.3 -28%

4 Regions
Expected (Res. + Pay) 40,785,232 39,233,515 1,551,717 1,494,283 104% 1,645,158

Expected Payments 29,262,291 28,283,578 978,713 1,094,999 89% 1,136,979
Expected Reserve 11,522,940 10,949,937 573,003 711,621 81% 846,255

Number Closed 1,304 1,310 (6) 18.3 -33%

1 Region
Expected (Res. + Pay) 36,915,162 39,233,515 (2,318,353) 1,021,033 -227% 1,649,911

Expected Payments 24,862,019 28,283,578 (3,421,559) 737,257 -464% 1,144,388
Expected Reserve 12,053,143 10,949,937 1,103,206 612,794 180% 848,784

Number Closed 1,278 1,310 (32) 18.6 -170%

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 35

Proje cted D e ve lopme nt of the T est S et

$0

$10,000,000

$20,000,000

$30,000,000

$40,000,000

$50,000,000

$60,000,000

0 2 4 6 8 10 12 14 16

Number of s teps

(years of development)

Dollars of los s es

Expected (res . + pay .)

Expected payments

Expected res erve

Figure 16. The Development of the open claims in the test set over 15 years as projected by our machine.

Bias vs N umbe r of Ste ps

(12,000,000)

(10,000,000)

(8,000,000)

(6,000,000)

(4,000,000)

(2,000,000)

-

2,000,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of s teps

Loss es $

Expected (res . + pay .)

Expected Payments

Expected Res

Figure 17. The bias as measured by our method shown from 1 to 15 steps of the projection.

January, 2001

John Folkesson36

Pe rce ntage Bias vs. N umbe r of Steps

-20.0%

-15.0%

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of s teps

Percentage bais

Expected res erve

Number clos ed

Expected (res . + pay .)

Expected payments

Figure 18. The bias as a percentage of the 32 region estimate.

The bias tends to grow the further out one projects
the claims. We continued projecting the 32 region
and one region estimates out to 15 steps. The results
are shown in figures 16-18. One can see that the
bias in the payments seems to be as high as -19%.
The percentage bias in the reserves seem to grow
considerable as one goes out further but the reserves
themselves become much smaller so that the bias in
dollars as opposed to a percentage, is becoming less.

One can conclude that the outstanding losses
estimated by the standard methods would produce a
19% underestimate for these claims. This is frankly
huge. It seems hard to accept that the bias is in fact
that large but at the same time one can no longer
simple ignore the bias as it clearly is significant.

One might ask how such a large bias could be
ignored for so long. The answer is that the numbers
being estimated are expected to be subject to large
random variations. Also the bias doesn't show up at
once but is very gradual. Each year the estimated

ultimate loss value goes up a little on average. This
increase is easily mistaken for bad luck.

We stated earlier that our method should reduce the
variance in the estimate of the outstanding losses due
to the fact that more information from individual
claims is used in making the prediction. This seems
to be very reasonable but can not be tested
empirically from the results we have. One would
need to set up a different sort of study to see this
effect.

We also stated that inhomogeneous data could be
better accommodated by our method. Again it is
hard to quantify this assertion. In looking over the
weights that the pruning algorithm did not remove
one can say that the dimensions that were designed
to model the inhomogenaity of the data were more or
less ignored by the paid on closed and probability of
closing networks. The paid on open and the reserve
networks however did seem to benefit from the
inclusion of these dimensions.

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 37

Discussion

Our results were very satisfying but there are some
remaining issues and much room for further study.

It would seem that our reserve and closed claim
projections were both accurate to within the
statistical variation in the claims process. We were
not entirely satisfied with the performance of the
payment prediction being 1.5 standard deviations
from the actual payments. That difference is not
large enough to reject the projected expected
payment from the model as the true mean, but it
doesn't lend a lot of support to it either.

One must keep in mind that this data is from the real
world and is subject to many forces that can not be
taken account of by our model. Having followed
these claims for over ten years one realizes that the
assumption that the future development will be as
the past is inaccurate. Political, social and economic
changes have a large effect on the claims and as a
result the nature of the claims changes from year to
year.

Nevertheless we believe that we could do better.
We would try using a log-likelihood network for the
payments similar to what we used for the reserves.
That may very well improve the payment prediction
power and will certainly speed up the training
process.

One important issue is the large losses or the claims
with more than $200,000 in reserves. These claims
were removed from our data as they would have
caused us difficulty. There is nothing fundamentally
different about those claims and it should be possible
to project them as well but the network may need to
be a separate one.

Another important part of the outstanding losses that
was not estimated here is the claims that are not open
at the time of the projection. These include claims
that are closed but may reopen, as well as claims for
injuries that have happened but no claim has been
filed yet. The reopened claims are certainly very
important and they make up a significant part of the
total outstanding. Given data on past reopened

claims one can make an estimate of this amount and
add it in.

One needs to also estimate the claims that are open
now but will close and then reopen. Our machine
assumes that claims stay closed.

We would have liked to also investigate the common
situation where there is much less data available to
train the networks. Unfortunately time did not allow
for this. One would have liked to get a feel for how
the size of the networks should change with less
data.

As we have already stated we would have liked to
try a log-likelihood type network for the payments
and compare to the mean square error estimate. The
mean square error networks proved difficult to train.
The hessian took much longer to calculate and the
results were not as good as the log-likelihood
networks for the reserves and closed claims.

We have successfully demonstrated that the practice
of using the NIC as an estimate of the generalization
error when one has a regulation term in the cost
function leads to non-optimal networks. Instead, the
E-measure that we have introduced seemed to work
better and has a better theoretical support. It is also
no harder to calculate.

The approximation to the hessian that we have also
introduced seems to be of some value for pruning the
networks. It speeds up the adaptive regulation
procedure considerably. The estimate seems to be
sufficiently good when the network has been
optimally pruned. We would however recommend
the full hessian calculation be used together with the
approximation as we have done.

The entire adaptive regulation procedure worked
very well and must be considered a good way to set
the regulation parameter. That is otherwise rather
difficult to do.

We also have used a method of decorrelation for the
inputs that aided our final networks in learning.
Although it may have seemed complicated it in fact

January, 2001

John Folkesson38

was rather easy to implement. The normalization
networks were small enough that the training of
them went quickly.

The most significant result of this work was the
measurement of the bias in the standard methods for
the projection. These methods all project multiple
steps of the process from the mean state after each
step. The bias found (-19%) is very alarming given
the amount of money involved. Even if the bias
were half that it would be a severe blow to the
balance sheets of many businesses and institutions.
Of course, such an accounting change will not
happen overnight and we will have to work hard
now to make these results known and accepted.

We plan to develop the program we have written in
visual basic into an easy to use tool for actuaries and
others that might be interested in making unbiased
estimates of these workers' compensation losses.

The program is form around an object model and can
be easily expanded by defining new objects for other
probability distributions, network architectures,
training algorithms and so on. We would like it to
be able to take a set of raw data and generate a
suggested machine architecture for projecting the

claims. It should do all the boring details such as
rescaling and normalization with little user input.
The training of the machine could then proceed
automatically with the user being able to interrupt
and make changes to the parameters if he or she
wants to. The current program is about 40% of the
way there, needing a bit too much insight to use.

The time to train a machine is quite long, taking days
or even weeks on our three year old PC. But
computers are already much faster and getting faster
all the time. It is important to be ready to use the full
calculational power available as that happens.
Unfortunately much analysis is still being done using
methods that date back to hand calculators or earlier.

The fact that our machine gives an estimate of the
ultimate value of individual claims is something of
an advantage over other methods. One often need to
have that detail of information in setting rates for
different classes of insureds. Normally one is forced
to allocate a large amount of future development on
all the claims to individual claims. That allocation is
done rather crudely in comparison to our method.
We expect therefore that our method will be very
useful in ratemaking.

Conclusion

We have successfully demonstrated a new method of

projecting workers
, compensation claims into the

future. The method is unbiased, which can not be
said of the other standard methods. The amount of
the bias in those methods was measured to be -19%,
which is something of a shock.

The method also was able to produce a variance
about the mean for each claim. That level of detail
should be of great help in setting confidence levels
to estimated outstanding losses.

Several of our results are of general interest to
computer scientist and others working with neural
networks.

First we have devised a decorrelation scheme which
is quite robust and can decorrelate non-linearly
correlated data. This method utilizes a maximum
likelihood estimate of the conditional probability
distribution describing the correlations. This
estimate is easily learned by simple networks.

Second we have introduced a generalization measure
based on the hessian building on the results in
(Murata 1994). This measure does not rely on a test
or validation set. Instead an estimate is made based
on the variability of the training data and the hessian
of the error function. This measure was tested and it
gave good results.

Third we have introduced an approximation to the
hessian that can speed up calculations in some

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 39

situations. This approximation is particularly useful
in network pruning giving a method that is
somewhere between optimal brain damage and
optimal brain surgery.

Forth and last we have used an adaptive regulation
procedure that allows the regulation parameter to be
learned as the network is pruned. This lessens the
difficulty in choosing the regularization parameter.

The above four pieces of our methodology worked
well. These pieces can be used separately or
together in many other neural network applications.

January, 2001

John Folkesson40

References

(Falhman 1992) Scott E. Fahlman and Markus Hoehfeld, “Learning with Limited Numerical Precision
Using Cascade-Correlation Algorithm, ” IEEE Transactions on Neural Networks, Vol 3,
No. 4 July 1992.

(Hassibi 1993) Babak Hassibi, David G. Stork, and Gregory J. Wolff, “Optimal Brain Surgeon and
General Network Pruning, ” IEEE Intnl. Conference on Neural Networks Vol 1, 1993.

(Haykin 1999) Simon Haykin, “Neural Networks a Comprehensive Foundation, ” Prentice-Hall 1999.

(Hintz-Madsen 1998) Mads Hintz-Madsen, Lars Kai Hansen, Jan Larsen, Morten With Pedersen, and Micheal
Larsen, “Neural classifier construction using regularization, pruning and test error
estimation, ” Neural Networks 11, 1998.

(Husmeier 1998) Dirk Husmeier and John G. Taylor, “Neural Networks for Predicting Conditional
Probability Densities: Improved Training Scheme Combining EM and RVFL, ” Neural
Networks, 11, No. 1 1998.

(Murata 1994) Noboro Murata, Shuji Yoshizawa, and Shun-ichi Amari, “Network Information
Criterion - Determining the Number of Hidden Units for an Artificial Neural Network
Model, ” IEEE Transactions on Neural Networks, Vol. 5, No.6, November 1994

(Parlos 1994) Alexander G. Parlos, Benito Fernandez, Amir F. Atiya, Jayakumar Muthusami, and Wei
K. Tsai, “An Accelerated Learning Algorithm for Multilayer Perceptron Networks, ”
IEEE Transactions on Neural Networks, Vol 5, No. 3 May1994 .

(Prechelt 1998) Lutz Preechelt, “Automatic early stopping using cross validation: quantifying the
criteria, ” Neural Networks, 11, 1998.

 (Reed 1993) Russell Reed, “Pruning Algorithms - A Survey, ” IEEE Transactions on Neural
Networks, Vol 4, No. 5 September 1993.

 (Schittenkopf 1997) Christian Schnittenkopf, Gustavo Deco, and Wilfred Brauer, “Two Strategies to Avoid
Overfitting in Feedforward Networks, ” Neural Networks, Vol 10, No. 3, 1997.

(Scarselli 1998) Franco Scarselli and Ah Chung Tsoi, “Universal Approximation Using
Feedforward Neural Networks: A Survey of Some Existing Methods, and Some New
Results, ” Neural Networks, Vol. 11, No. 1, 1998.

(Vapnik 1999) Vladimir N. Vapnik, “An Overview of Statistical Learning Theory, ” IEEE Transactions
on Neural Networks, Vol. 10, No.5 1999.

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 41

Appendix 1 - Grouping the Data Sources

Table 2 - The different programs represent different sources of data. As each source had its own characteristic mix
of claim handling practices, they had different relationships between the input and output. These differences were
examined by comparing the least square linear fit to the data. Thus the sources were grouped.

Least Square Line Least Square Line

Reserve out Vs Reserve In Payments vs. Reserve in

Group Program Slope Intercept Correlation Slope Intercept Correlation Res. In Res. Out Paid

5 2 1.11 1,213 67% 0.35 5,113 51% 14,421 17,196 10,115

5 14 0.91 7,412 43% 0.33 7,056 35% 23,133 28,467 14,762

5 29 0.98 1,341 69% 0.24 3,868 49% 22,406 23,322 9,275

5 3 0.94 855 81% 0.31 164 68% 30,611 29,587 9,645

5 18 0.83 4,012 68% 0.36 1,439 60% 29,367 28,438 11,878

4 6 0.64 12,154 43% 0.26 4,872 39% 24,301 27,588 11,079

4 17 0.73 8,059 60% 0.26 4,073 44% 17,851 21,125 8,763

4 21 0.78 6,715 69% 0.22 5,761 34% 23,219 24,907 10,847

3 9 0.81 5,702 63% 0.28 3,402 47% 19,603 21,588 8,821

3 25 0.79 4,860 72% 0.40 2,754 47% 20,293 20,985 10,861

3 7 0.79 6,084 43% 0.44 6,447 44% 22,627 23,848 16,373

3 23 0.74 5,367 55% 0.35 5,144 42% 22,397 21,918 12,879

2 15 0.69 6,828 56% 0.41 4,337 52% 19,774 20,544 12,474

2 27 0.59 8,759 68% 0.38 5,362 51% 24,050 22,930 14,472

2 28 0.64 5,139 67% 0.47 4,289 58% 16,972 15,961 12,314

2 22 0.54 5,935 61% 0.51 1,587 64% 21,363 17,422 12,531

1 24 0.69 7,221 51% 0.27 3,084 36% 12,833 16,092 6,593

1 16 0.66 3,926 64% 0.37 2,400 45% 13,362 12,783 7,369

1 4 0.70 3,608 60% 0.30 3,417 37% 10,836 11,155 6,697

0 30 1.45 (7,673) 75% 0.06 7,671 15% 22,493 24,908 8,959

0 19 0.81 9,508 59% 0.16 12,225 26% 23,907 28,915 16,070

0 12 0.75 19,243 9% 0.22 5,961 24% 12,860 28,938 8,743

0 11 0.77 2,765 77% 0.15 9,282 27% 24,563 21,585 13,029

0 13 0.72 4,528 75% 0.15 8,601 34% 29,016 25,306 12,920

0 8 0.89 (448) 87% 0.13 4,820 28% 20,972 18,230 7,469

0 5 0.81 3,819 74% 0.12 3,166 26% 14,100 15,178 4,870

0 10 0.44 12,254 28% 0.07 6,141 11% 11,373 17,310 6,930

0 1 0.60 4,338 81% 0.17 7,682 31% 19,765 16,204 11,079

0 26 0.41 8,865 46% 0.33 5,736 54% 21,209 17,614 12,754

January, 2001

John Folkesson42

Table 3 -Here we estimate the improvement to the variance obtained by partitioning the data into these 6 groups.

Least Square Line Residual Least Square Line Residual
Reserve out Vs

Reserve In
Variance Payments vs. Reserve

in
Variance

Group 5 Slope Intercept Correlatio
n

(00,000) Slope Intercept Correlation (00,000) Count Res. In Res. Out Payments

Total 0.93 4,351 59% 13,199 0.26 6,287 43% 2,560 1,347 23,216 25,854 12,439
Interval 1 0.95 883 0.31 4,724 283 27,135 26,686 13,074
Interval 2 0.86 2,893 0.26 5,563 318 22,914 22,654 11,627
Interval 3 0.95 6,196 0.25 7,108 746 21,858 26,902 12,544

Group 4 Slope Intercept Slope Intercept Count Res. In Res. Out Payments
Total 0.81 5,996 66% 5,810 0.25 4,412 42% 1,996 1,312 21,241 23,247 9,620
Interval 1 0.81 3,303 0.21 4,272 263 23,279 22,249 9,260
Interval 2 0.83 5,730 0.26 5,083 271 23,520 25,350 11,265
Interval 3 0.81 6,890 0.25 4,259 778 19,758 22,851 9,169

Group 3 Slope Intercept Slope Intercept Count Res. In Res. Out Payments
Total 0.77 5,126 63% 5,068 0.38 3,775 45% 3,124 1,135 21,155 21,439 11,818
Interval 1 0.77 6,336 0.28 5,252 343 20,038 21,864 10,908
Interval 2 0.77 4,926 0.35 2,818 361 23,142 22,717 10,872
Interval 3 0.77 4,290 0.48 3,591 431 20,380 20,032 13,334

Group 2 Slope Intercept Slope Intercept Count Res. In Res. Out Payments
Total 0.65 6,199 60% 4,282 0.44 4,213 55% 2,471 1,010 19,290 18,822 12,629
Interval 1 0.71 5,260 0.59 452 270 19,577 19,199 12,000
Interval 2 0.71 5,861 0.35 5,565 329 20,340 20,257 12,596
Interval 3 0.55 7,389 0.43 5,150 411 18,262 17,426 13,070

Group 1 Slope Intercept Slope Intercept Count Res. In Res. Out Payments
Total 0.71 4,216 61% 2,618 0.28 3,645 37% 1,545 2,649 12,349 12,943 7,151
Interval 1 0.67 3,059 0.32 2,107 790 11,474 10,783 5,805
Interval 2 0.85 1,855 0.31 2,171 750 11,230 11,432 5,622
Interval 3 0.65 6,634 0.24 5,870 1,109 13,730 15,504 9,143

Group 0 Slope Intercept Slope Intercept Count Res. In Res. Out Payments
Total 0.67 7,764 52% 6,214 0.23 4,709 37% 1,627 867 19,661 20,851 9,187
Interval 1 0.45 13,825 0.13 6,981 215 19,282 22,539 9,395
Interval 2 0.77 5,084 0.39 2,260 223 21,760 21,789 10,672
Interval 3 0.70 6,302 0.19 4,781 429 18,760 19,517 8,311

ALL Slope Intercept Slope Intercept Count Res. In Res. Out Payments
Total 0.79 4,874 61% 5,825 0.30 4,344 44% 2,159 8,320 18,316 19,355 9,910
Interval 1 0.78 4,125 0.32 3,297 2,164 18,101 18,231 9,114
Interval 2 0.81 3,729 0.32 3,462 2,252 18,642 18,815 9,510
Interval 3 0.79 5,940 0.28 5,399 3,904 18,248 20,289 10,583

Improvement in variance by partitioning: 1.4% 2.0%

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 43

Appendix 2 - Generalization Error of Neural Networks

The Network Information Criteria

The network information criteria, NIC, is an approximation to the generalization error. Let the cost function be
given by D(w), then the generalization error is given by 〈D(w)〉 true. Where the expectation value is taken over the
true distribution. We can, of course, only measure an expectation over training set, T, of N points drawn from the
true distribution, which we refer to as the empirical distribution.

The NIC is derived by expanding 〈D (w)〉 true about the true optimal weights w* of the model. The assumption is
then that w - w* is small. One must therefore be careful to train the network to as small a training error as possible
before applying the NIC. This point is vital for good results.

Furthermore, besides the error due to the w - w*, there is an error due to the replacement of the true distribution
with the empirical distribution. This leads to a term in the expansion of 〈D(w)〉 true as shown below:

U(T) = 〈D(w*)〉 true - 〈D(w*)〉

Where 〈D(w*)〉 = (1/N) Σ(D(w*, j) denotes the empirical expectation value and D(w*, j) is the value of the cost
function at the jth point of set T. This U is a random variable, which depends on the model selected. U takes on
different values depending on the particular training set T. The average of U over an ensemble of sets T is 0.
However the ensemble variance of U is of order 1/N.

In this sense, the ensemble average of the NIC is equal to the generalization error, 〈D(w)〉 true. It is off for a single
set T by an amount U(T). This amount is generally larger than the effective dimension term of the NIC. However,
if one is comparing two networks of the same basic type then one can assume that the values of D(w*) for the two
networks are about the same. One can then ignore U when comparing these networks. This argument breaks down
when one of the networks is not able to model the system sufficiently well. In that case the training error will
presumably be high.

An additional factor effecting the appropriateness of using the NIC for comparisons is that the effective number of
dimensions should be much less than N.

Log-Likelihood Cost Functions and the NIC

With the cost function given by D(w), the NIC can be written as:

NIC = 〈D(w)〉 + tr(Var[∇D(w)] 〈∇∇D(w)〉 -1) / N

Where ∇∇D(w) is the hessian matrix, N is the number of training points. The actual risk has, once again, been
replaced with the empirical risk, so that 〈…〉 = (1/N) Σ(…). The variance of the gradient term is also taken over
the training set. For the special case of a log-likelihood cost function, (also called the entropy),

〈S(w)〉 = 〈-ln [p(yx, w)]〉

We can then write,

〈∇S(w)〉 = 〈-∇p(yx, w) / p(yx, w)〉

January, 2001

John Folkesson44

and

〈∇∇S(w) 〉 = 〈-∇∇p(yx, w) / p(yx, w)〉+ 〈∇p(yx, w) / p(yx, w) (∇p(yx, w) / p(yx, w)) T 〉

But taking only the first term on the right hand side for now,

-1st term = 〈∇∇p(yx, w) / p(yx, w)〉

= ∫ p(x, y) ∇∇p(yx, w) / p(yx, w) dxdy

=∫ p(x) [p(y x) / p(y x, w)] ∇∇p(y x, w) dxdy, (but [p(y x) / p(y x, w)] ≅ 1 so)

≅∇∇∫ p(x) p(yx, w) dxdy=∇∇(1)=0

So for log-likelihood we find,

〈∇∇S(w)〉 = 〈∇S(w) ∇S(w)T 〉

Also if the network is trained to a local minimum, the expected value of the gradient vanishes so we find that the
hessian is equal to the variance of the gradient. Thus for this special case

NIC =〈S(w)〉 + tr(I) /N

= 〈S(w)〉 + M / N

Where M = the number of weights.

If now we introduce a regularization term as in (Hintz-Madsen 1998),

〈D(w)〉= 〈S(w)〉 + (1/2)wRw

where R is the regularization matrix. The same reasoning as above leads us to.

〈∇∇D(w)〉 = 〈∇S(w) ∇S(w)T 〉 + R

Var[∇D(w)]= 〈∇S(w) ∇S(w)T 〉 - 〈∇S(w)〉 〈∇S(w)T〉

Unfortunately the expected gradient longer vanishes when the cost function is minimized, being equal to (-Rw).
This fact is not mentioned in (Hintz-Madsen 1998) and may not be significant if R is chosen small enough. In
particular one can say that they have kept the first order terms in R and ignored the rest.

Approximation of the Hessian for Log-Likelihood Cost Functions

We let the cost function S(w) be a log-likelihood as in the previous section. Then we can write,

〈∇∇S(w) 〉 = 〈∇S(w) ∇S(w)T 〉

 = 〈∇S(w)〉 〈∇S(w)T〉 + Var[∇S(w)]

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 45

We note that the first term above is obtained by the back-prop algorithm. It is also equal to 0 if we are at a
minimum of the cost function. With a regulation term added to S it will no longer vanish. As the numbers needed
to calculate the 〈∇S(w)〉 are available anyway, we always include it in our estimates. The second term, however, is
rather difficult to compute as it has in principle M2 terms to be computed at each data point. If we now focus on
just one of those terms we find

Vnn' = 〈a(k)
i a

(k')
i' δ(k+1)

j δ(k'+1)
j'〉 - 〈a(k)

i δ(k+1)
j 〉 〈a(k')

i' δ(k'+1)
j'〉

Where Vnn' is the nn'th element of Var[∇S(w)], a(k)
i is the activation of the ith node of layer k and δ(k+1)

j is the back
propagated error on the jth node of layer k+1. We reserve the index i=0 to refer to the bias for each layer. The
index n corresponds to the w(k)

ij derivative. Now one can approximate V to varying degrees. One could set it to 0,
assume it to be diagonal or assume it to be block diagonal. We have chosen the block diagonal approximation to
V. In particular we assume that,

Vnn' = Covar[a(k)
i δ(k+1)

j , a
(k')

 i' δ(k'+1)
j'] = 0 for i ≠ i', k ≠ k'

That is to say that the output activations of different nodes are 'uncorrelated' in the sense that the above covariance
vanishes. One could easily find other approximations, such as block diagonal by layers, just k ≠ k' above, or
calculating the covariance all for the j=j' terms also.

For our purposes the above approximation is good enough. In particular, a small error in the saliency used for
pruning decisions can be tolerated while still make a sensible pruning decision. We always had the exact hessian
calculated when we start a set of prunings, as we needed to calculate it to get the effective dimension of the
network. Thus we always prune the first weight using no approximation. It is when pruning more than one weight
at a time that we use the approximate hessian for the second and later weights.

In calculating the updated weights after pruning one is more sensitive to errors in the hessian matrix. However we
found that the updated weights using our approximation gave better training errors at the start of the retraining than
not updating at all. It, in fact, made the whole pruning and regulation learning possible in reasonable time.

It is worth noting that we first tried using the approximate hessian to calculate the NIC and effective dimension in
our pruning and adaptive regularization procedure. We found that for large networks with appreciable redundancy
the approximation to the effective dimension was rather poor but as the redundancies were removed through
pruning the approximation became better and better. This can be seen in figure 19 which shows the effective
dimension and the E(R) calculated using the approximate hessian and the exact hessian for a network that was
pruned and regulated using only the approximate hessian. We afterwards decided to redo the pruning procedure
using the exact hessian to calculate the effective dimension. That the approximation becomes better as the
redundancies are removed is easily understood since the redundancy will lead to correlations between the node's
outputs. These correlations then make our approximation invalid.

January, 2001

John Folkesson46

Approximation to the Hess ian

30

80

130

180

230

1 11 21 31 41 51 61 71 81 91 101 111 121 131

Adap tive regularization

network number

Effective dimension

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

Generalization M easure E(R)

Exact effective d imens ion

A pproximate effective dimension

Exact E(R)

A pproximate E(R)

Figure 19. The effect of the approximation to the hessian on the generalization measure.

Approximation of the Hessian for Mean Square Error Cost Functions

We let C(w) be a mean square error cost function with one output variable.

〈C(w)〉 = (1/2) 〈(y(w)-d)2〉

We have written the output of the network as y(w) and the target as d.

〈∇∇C(w)〉 = 〈(y(w)-d) ∇∇y(w)〉 + 〈∇y(w) (∇y(w))T〉

Now if y(w) is a good approximation then the 1st term should be small and we shall neglect it. The second term is
similar to what we had in the previous section.

〈∇∇C(w)〉 ≅ 〈∇y(w) (∇y(w))T〉 = 〈∇y(w)〉 〈∇y(w)T〉 + Var[∇y(w)]

and writing Var[∇y(w)] as simple V,

Vnn' = 〈a(k)
i a

(k')
i' δ(k+1)

j δ(k'+1)
j'〉 - 〈a(k)

i δ(k+1)
j 〉 〈a(k')

i' δ(k'+1)
j'〉

Here the δ are from propagating an error of 1 on the output back through the net. We again assume this to be of the
form

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 47

Vnn' = Covar[a(k)
i δ(k+1)

j , a
(k')

 i' δ(k'+1)
j'] = 0 for i ≠ i', k ≠ k'

〈∇∇C(w)〉nn' ≅ 〈∇y(w)〉 n 〈∇y(w)T〉 n' + Vnn'

If there are several outputs then the hessian will be a sum of terms like the one above, one for each output.
Calculating this would then require propagating an error of one back from each output in turn, one at a time.

〈C(w)〉 = Σ 〈Ct(w)〉

〈∇∇C(w)〉 nn' = Σ 〈∇∇Ct(w)〉 nn'

 ≅ Σ [〈∇yt(w)〉 n 〈∇yt(w)T〉 n' + Vt, nn]

Here the sum is over t the index of the outputs.

The NIC for Mean Square Error Cost Functions

Continuing from the one output cost function of the previous section, for the NIC, in addition to the hessian we
need the Var[∇C(w)].

Var[∇C(w)] = 〈(y(w)-d)2 ∇y(w) (∇y(w))T〉 - 〈(y(w)-d) ∇y(w)〉 〈(y(w)-d) (∇y(w))T〉

 = 〈(y(w)-d)2〉 〈∇y(w)(∇y(w))T〉 + Cov[(y(w)-d)2,∇y(w)(∇y(w))T] - 〈(y(w)-d)∇y(w)〉 〈(y(w)-d)∇y(w)〉T

 = 〈(y(w)-d)2〉 〈∇∇C(w)〉 + Cov[(y(w)-d)2,∇y(w)(∇y(w))T] - 〈∇C(w)〉 〈∇C(w)〉T

We might in certain instances be able to assume that the covariance term above is negligible. We also know that
the errors (y(w)-d) are uncorrelated with the ∇y(w) (that is to say we are at a local minimum of C). So,

Var[∇C(w)] = 〈(y(w)-d)2〉 〈∇∇C(w)〉, provided that 〈∇C(w)〉 =0 and Cov[(y(w)-d)2,∇y(w)(∇y(w))T]=0.

If we plug this then into the formula for the effective dimension it will become the number of weights times the
variance in the errors. We will however have more than one output, add a regulation term to the error function of
the form (1/2)wTRw and not make the above assumptions. This changes things considerably. Specifically,

〈D(w)〉= 〈C(w)〉 + (1/2)wTRw

where C is now the sum of several square errors terms.

NIC = 〈D(w)〉 + tr(var[∇D(w)] 〈∇∇D(w)]〉 -1) / N

NIC = 〈D(w)〉 + tr(var[∇C(w)] 〈∇∇C(w)+R〉 -1) / N

Var[∇C(w)] = Σ [〈∇Ct(w)∇Ct'(w)T〉 - 〈∇Ct(w)〉 〈∇Ct'(w)〉T]

 = Σ [〈(yt(w)-d t)a
 (k)

i δ(t)(k+1)
j (yt'(w)-d t') a

 (k')
i' δ(t') (k'+1)

j'〉

- 〈(y t(w)-d t)a
(k)

i δ(t)(k+1)
j〉 〈(y t'(w)-d t')a

(k')
i' δ(t') (k'+1)

j'〉]

January, 2001

John Folkesson48

The sum is over t and t', the subscripts of the output vectors. Here the δ(t) are gotten by propagating an error of 1
on output t back through the network. Note that the second term vanishes for R=0, but that is a minor
simplification really.

Calculating the NIC for mean square error networks is significantly more time consuming than for log-likelihood
networks. Furthermore, we found that the above approximation did not work well enough for these networks. We
present this it in hopes that it may prove useful in other contexts. The approximate hessian was useful for pruning.

Inverting the Hessian Matrix

In the previous sections we derived approximations to the hessian matrix of the form:

〈∇∇D(w)〉nn' ≅ H nn' ≡ G n Gn' + Vnn'

Where G n is a vector with M elements and Vnn' is a MxM block diagonal matrix. We can then use a matrix
inversion lemma known as Woodbury's equality. This gives us:

H-1
 = V-1

 - (V
-1 GGTV-1) / d

Where d = [1 + GTV-1G] is a scalar.

If V is block diagonal its inversion is much easier than inverting H. The above formula is then a manageable
approach to the inversion of H. We found it to be stable for our applications.

For the case with a multiple output mean square error cost function, we must apply Woodbury's equality
repeatedly, once for each output. The starting V is the sum of the V's for each output. Then the G's for each output
are taken in turn.

Changing the regulation parameter

We have a need to change the regulation parameter and then re-train the network. In order to reduce the re-training
times we have devised an update rule for the new weights after changing the regulation parameter based on the
second order expansion of the training error. Specifically, the training error is,

〈DR(w)〉 = 〈S(w)〉 + (1/2)wTRw

≅≅≅≅ 〈S(w0)〉 + (1/2)w0
TR0w0 + [〈∇S(w0)〉

T + w0
TR0]∆w+ (1/2) ∆wT [〈∇∇S(w0)〉 + R0] ∆w

 + (1/2)w0
T(∆R)w0 + w0

T(∆R)∆w+ (1/2) ∆wT(∆R)∆w

Where we have written R as R0 + ∆R, and w as w0 + ∆w. If w0 is a local minimum for R0 then

 〈∇S(w0)〉
T + w0

TR0= 0.

So,

〈DR(w)〉 ≅≅≅≅ 〈 DR (w0)〉 + (1/2)w0
T(∆R)w0 + ∆w T(∆R) w0 + (1/2) ∆wT [〈∇∇S(w0)〉 + R0 + ∆R)] ∆w

Projection of a Markov Process with Neural Networks

Masters Thesis, Nada, KTH Sweden 49

For a given ∆R, minimizing the above gives us a ∆w of,

∆w = - [〈∇∇S(w0)〉 + R0 + ∆R)]-1 (∆R) w0 = - 〈∇∇DR(w0))〉
-1 (∆R) w0

We use this after every change of regulation parameter.

Appendix 3 - The Weibull Distribution

We have made extensive use of the weibull distribution after finding that it gave a good fit to our data. The weibull
density function looks like,

wb(β, λ, x)= (β /x)(λx) βexp(-(λx) β) x >0;

It has the required property of being one-sided. It also can take on a bell like shape for β > 1. For β= 1 it is the
exponential distribution. And for β < 1 it becomes more and more L shaped, being large near zero and having a
long flat tail. Thus it has the ability to approximate a variety of distributions.

The cumulative probability function F(x) has the simple form,

F(β, λ, x)= 1-exp(-(λx) β) x >0;

The mean and variance are given by,

µ = (1/λ)Γ(1+1/β)

σ2=(1/λ)2 Γ(1+2/β) - µ2

