
1

Simultaneous Localization and Mapping with Robots

JOHN FOLKESSON

Doctoral Thesis
Stockholm, Sweden 2005

TRITA-NA-0528
ISSN 0348-2952
ISRN KTH/NA/R--05/28--SE
ISBN 91-7178-145-5
CVAP-297

KTH
School of Computer Science and Communication

SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till o�entlig granskning för avläggande av teknologie doktorsexamen i datalogi tis-
dag den 4 oktober 2005 klockan 13.00 i sal M3, Kungl Tekniska högskolan, Brinelvä-
gen 64, Stockholm.

© John Folkesson, September 2005

Tryck: Universitetsservice US AB

iii

Abstract

A fundamental competence of any mobile robot system is the ability to
remain localized while operating in an environment. For unknown/partially
known environments there is a need to combine localization with automatic
mapping to facilitate the localization process. The process of Simultaneous
Localization and Mapping (SLAM) is the topic of this thesis.

SLAM is a topic that has been studied for more than 2 decades using
a variety of di�erent methodologies, yet it deployment has been hampered
by problems in terms of computational complexity, consistent integration of
partially observable features, divergence due to linearization of the process,
introduction of topological constraints into the estimation process, and e�-
cient handling of ambiguities in the data-association process. The present
study is an attempt to address and overcome these limitations.

Initially a new model for features, inspired by the SP-map model, is de-
rived for consistent handling of a variety of sensor features such as point, lines
and planes. The new feature model enable incremental initialization of the
estimation process and e�cient integration of sensory data for partially ob-
servable features. The new feature model at the same time allow for consistent
handling of all features within a uni�ed framework.

To address the problems associated with data-association, computational
complexity and topological constraints a graphical estimation method is de-
rived. The estimation of features and pose is based on energy optimization.
Through graph based optimization it is possible to design a feature model
where the key non-linearities are identi�ed and handled in a consistent man-
ner so as to avoid earlier discovered divergence problems. At the same time
any-time data-association can be handled in an e�cient manner. Loop clos-
ing in the new representation is easily facilitated and the resulting maps show
superior consistency even for large scale mapping problems.

The developed methods have been empirically evaluated for SLAM using
laser and video data. Experimental results are provided both for in-door and
out-door environments.

The methods presented in this study provide new solutions to the lin-
earization problem, feature observability, any-time data association, and in-
tegration of topological constraints.

iv

v

Acknowledgment
I would like to thank the people who made this thesis possible. My wife Maggie for
relentless support. My children Nina, Sanya, Jasmin and Maxwell for putting up
with a distracted father. My adviser Henrik for giving me the freedom to work on
my ideas. My friend and co-coder Patric for knowing all the answers. And Anders
for knowing the answers Patric didn't know. Andreas for taking the load o� me.
Without these people I would not have �nished this.

Then there were all the good people in the lab whom it was a pleasure to work
with. A few of these: Dani, Mårten, Jan Olof, Tony, Petter, Guido, Phillip, Carl,
Elin, Ola, Nick, Peter Ville, the other Carl, Kai, Mattias,...

The present work has been performed within the Centre for Autonomous Sys-
tems, KTH with support for the Swedish Foundation for Strategic Research (SSF).
The support is gratefully acknowledged.

vi

Contents

Contents vii
1 Introduction 1

I Preliminaries 3
2 SLAM Background 5

2.1 Problem Statement of SLAM . 5
2.2 The Stochastic Map . 8
2.3 Some of the Di�culties of SLAM . 10
2.4 Prior SLAM Work . 12

3 Robot Motion Model 19
3.1 Dead-reckoning . 19
3.2 The Motion Sensors . 20
3.3 Fusion of Odometry and Gyro . 22
3.4 Summary of the Motion Model . 23

4 Features for Localization 31
4.1 The Feature Sensors . 31
4.2 Feature Representation in the M-Space 37
4.3 Feature Measurements . 39
4.4 Feature Matching . 47
4.5 Feature Initialization . 48
4.6 Summary . 52

II Estimation 53
5 EKF Based Methods for Localization and SLAM 55

5.1 EKF Localization . 55
5.2 EKF SLAM . 57

vii

viii CONTENTS

5.3 CEKF SLAM . 66
6 Graphical SLAM 75

6.1 The SLAM Graph . 76
6.2 Graph Relaxation . 79
6.3 Feature Matching . 81
6.4 Graph Reduction by Star Nodes . 83
6.5 Star Formation . 86
6.6 Solving the Topological Constraints 93
6.7 Finding Loops Automatically . 95

III Insights 115
7 Summary and Discussion 117
8 Ideas for Future Work 121
9 Conclusions 125

IV Appendices 127
A Notation 129
B Robots 133
C Details of Hough Line Extraction 137
D Transformation Rules 139
E Test of Su�ciency 141
F Graph Distances 143
Bibliography 145

Chapter 1

Introduction

A fundamental competence of any mobile robot systems is the ability to remain
localized while performing tasks on behalf of a user. The problem of mobile robot
localization and navigation is a well-known and widely studied problem. Actually
the problem is not unique to robotics, it is a problem that has been studied for
several millenniums, as discovers have traveled the world. Surveyors have generated
map that travelers have used to go from one location to another. In the �eld of
surveying there are well known methods for estimation of the position of a vehicle
and also a wide diversity of methods for mapping of the world.

Despite these diverse e�orts this is not entirely a solved problem. Localization
involves �ve basic components
Sensory data about structures in the environment
A model for the motion of the platform
A model of the environment
A method for matching of sensory data to the model
Estimation of the position of the platform given a correspondence between the

sensory data and the models
The basic mathematical framework for localization of robots is largely consid-

ered a solved problem. A more challenging problem is the ability to concurrently
estimate the position of a vehicle and construct/update the model of the envi-
ronment. This problem is normally referred to as the problem so simultaneous
localization and mapping (SLAM) or concurrent mapping and localization (CML).
The basic mathematics underlying SLAM is also widely considered a solved prob-
lem. Yet there are relatively few practical systems that can perform unconstrained
SLAM in general environments. The problem of SLAM is similar to the localization
problem outlined above, but the �fth component is updated to include estimation

1

2 CHAPTER 1. INTRODUCTION

of ego-position and location of features in the world, and a sixth component for the
updating of the model as new structures are discovered.

Early work on SLAM was based on standard estimation methods such as the
Extended Kalman Filter. That method has quadratic computational complexity,
which poses a challenge to deployment in large scale environments. In addition the
system is in general non-linear which has resulted in use of the Extended Kalman
Filter which adds the linearization of all non-linearities to a standard Kalman Filter.
It has recently been demonstrated that the linearization might result in divergence
in the mapping process. Another complication is also consistent integration of in-
formation from di�erent types of features such as points, lines, planes, etc. Each
of these features o�er varying degrees of information, which preferably should be
handled in a consistent fashion. As a system travels through the environment it
might return to the same location again, which allows one to impose topological
constraints on the overall estimation process. The introduction of such constraints
into the estimation process poses a challenge and the result is often less than opti-
mal. The main challenges in design of SLAM systems are thus:
� Scalable handling of large scale environment
� A methodology that allow mapping without divergence in the presence of
non-linearities

� Consistent integration of di�erent types of sensory information
� E�cient and correct introduction of topological constraints
The objective of the present study is to provide a methodology for SLAM that

addresses each of these challenges. In addition to formulation of a theoretical model
that addresses these problems, it is to be evaluated on a number of real-world
problems.

The thesis is organized in the following fashion. In Chapter 2 the basic SLAM
methodology is introduced in a more formal way, and the literature on SLAM is
brie�y reviewed. Based on this the basic framework addressed in the thesis is de-
tailed. Autonomous motion of the platform implies a change in the robot reference
frame which in�uences the overall estimation process. The kinematic modeling of
the change is discussed in Chapter 4. A model for consistent integration of di�erent
types of features is presented in Chapter 5 and the method is initially integrated
into an Extended Kalman Filter framework. Unfortunately the framework is still
not scalable or necessarily stable in the presence on non-linearities. To accommo-
date this a graphical model for SLAM is formulated in Chapter 6. The method
enable handling of all the challenges outlined above, as demonstrated by a num-
ber of empirical evaluations. Chapter 7 presents a summary of the overall work,
and a number of identi�ed issues for future work are presented in Chapter 8. Fi-
nally an overall conclusion of the study is provided in Chapter 9. Supplementary
information is available in appendices

Part I

Preliminaries

3

Chapter 2

SLAM Background

2.1 Problem Statement of SLAM
The SLAM problem can be stated in a couple of ways.

Have a robot drive around and make a map of the environment.
Or maybe:
Have the robot drive around without getting lost.
It turns out that the second de�nition is more useful. This is because the

interpretation of the environmental sensor data is much easier if the sensor is well
localized. So that even if it is the map we ultimately are interested in, it is necessary
to have the robot stay well localized as it makes the map. Thus the map in this
work is always one designed to keep the robot from getting lost.

Therefore the map is being made for the purpose of localization. Several types
of maps have been used in SLAM. These include occupancy grids [1, 2, 3, 4, 5],
reference sensor data (Scan matching) [6, 7, 8] , topological place maps [9, 10, 11, 12]
and feature maps [13, 14]. In this work we will only consider feature maps. It has
been found that when using a feature map for localization it is su�cient to have a
few good features in view at all times. Having more than a few does not help. The
common consensus is to have a small uniform density of very good features in the
maps.

In SLAM we will deal with two types of measurements1, robot motion measure-
ments and relative measurements between features and the robot, �gure 2.1. It is
the feature measurements that will be used to estimate the map. However since
these are relative to the robot pose the motion measurements also a�ect the map.

Thus a clean separation of the SLAM problem into a feature estimate and a
robot pose estimate is di�cult. There has been some work done using relative fea-
ture measurements [15]. The methods that decouple the mapping and localization
problems rely on only using measurements that relate features to one another. Thus
some of the information is not used.

1One can also use feature to feature measurements but we will not do so in this work

5

6 CHAPTER 2. SLAM BACKGROUND

World
Model

t

MotionMotion

Feature

Measurements

Measurements Model

Feature

Model

Use Motion

Measurements

Add Feature

Measurements

Figure 2.1: The SLAM estimation problem is split between a part that uses the
motion measurements to predict the robot motion up the time of the feature mea-
surements and a part that uses the feature measurements to update the world
model.

If we want to use the measurements of the features relative to the robot directly,
then the robot motion will e�ect the way we use the feature measurements. A more
detailed and speci�c model of SLAM is shown in �gure 2.2. Here we include the
complications that arise from not knowing the size of the world model from the
start. The world model will need to be augmented with new features when the
measurements cannot be explained by the existing features. Figure 2.2 is the basic
model we use in this work. We model an iterative SLAM algorithm as a four phase
process.

The �rst phase, predict, is triggered by a new feature measurement and uses
the proprioceptive measurements of the motion to bring the world model up to the
time of the feature measurement.

The second phase, update, uses the feature measurements to improve the world
model. This is re�ned in �gure 2.3, where we show that the update phase must
�rst try to match the feature measurement to some map feature and then make
some new estimate of the map and pose based on this measurement. If a matching
feature cannot be found then a new feature is created and added to the map. Note
that this feature creation is unconditional. We can do this since we will not use
the feature for SLAM estimation until it has accumulated enough information as
described below. Thus if the measurement is spurious the feature will never be
initialized and will have no e�ect on the rest of the world model.

The data association cannot in general be separated from the map update as
the SLAM algorithm used will dictate the matching criteria. In the particular
algorithm, it may be necessary to incorporate the new measurement into the world
model in order to tests its �t before we can make a judgment of the data association.

The third phase is add information. Here the information in the measurement
is added to the feature. This is used to estimate the parameters of the feature that
have not been initialized yet. That is the information not used in the estimate of the
world model in the update step. This might be all the information. Alternatively

2.1. PROBLEM STATEMENT OF SLAM 7

Pose

t

Model Map
Information

Add

SLAM

Feature

Update

Motion

Model

Feature

Predict

Measurements
Motion

Feature

Measurements

Robot/Sensor

World Model

Extend

Figure 2.2: Here we show the structure of our incremental SLAM model in more
detail. The dash arrows show the execution �ow. New feature measurements cause
a predict to bring the robot state up to the time of the feature measurements. Then
the update, add information and extend can be done. The solid arrows indicate
information �ow. For example, the update phase must pass the match between
measurements and features to the add information and extend phases. The part
above the dashed line is the motion estimation part. This will e�ect the pose
estimate and its correlations to the map. The part below the dashed line uses the
feature measurements. It has three phases; In the update phase, the measurements
are matched to the map features and then used to improve the world model. Then
in the add information phase, information contained in the measurement but not
used for the update is accumulated on the features. Then the extend phase tries to
extend the map by using the information accumulated up to that time to initialize
more parts of each feature on the map.

8 CHAPTER 2. SLAM BACKGROUND

Match

Update

No Match OK

Feature
Create New Estimate

Figure 2.3: Here we show that the update phase integrates data association, map
estimation and feature creation into one concept.

it might be only part of the information if the feature is partially initialized.
The forth and last phase is extend. Here the feature is initialized into the SLAM

map if enough information has be accumulated on the feature. This can be done
partially in cases where the features are only partially observable.

These four phases will be explained in more detail later.

2.2 The Stochastic Map
The idea of the stochastic map is that the solution to the SLAM problem is the
one that best explains all the measurements v, both feature measurements and
dead-reckoning motion measurements. Typically 'best' is taken as the maximum a
posteriori (MAP) hypothesis, confusingly the MAP map. Here we de�ne a hypoth-
esis h as the feature states (xf), robot path (xr) and data association ha.

h = ({xf}, {xr}, ha) (2.1)
The MAP hypothesis is then:

hMAP = argmaxhP (h|v) = argmaxh
P (v|h)P (h)

P (v)
(2.2)

Now we assume that the a priori probability of all feature states and robot
paths are equally probable. Furthermore we assume that they are independent of
the data association ha. Then we can simplify to,

2.2. THE STOCHASTIC MAP 9

hMAP = argmaxhP (v|h)P (ha) (2.3)
The P (ha) term is the a priori likelihood of a given data association. If not for

this term the MAP hypothesis would equal the Maximum Likelihood hypothesis
which is given by maximizing only the �rst term above. Finally, we note that since
the log is a monotonic function we can take the log without changing the argument
of the maximization:

hMAP = argmaxh[lnP (v|h) + lnP (ha)] (2.4)
A little later we discuss P (v|h), the probability of the measurements given the

data association and state. What about the P (ha)? This is rather hard to say much
about. It is safe to assume that data associations that lead to simpler maps, (fewer
features) are more likely than those that lead to complex maps. We assume an
exponential dependence of P (ha) on Nf , the number of separate features matched
to.

lnP (ha) = −ΛNf + c1 =
Nf∑
j=1

Λ(nj(h)− 1) + c2 (2.5)

where nj(h) are the number of measurements associated with feature j, (c1 and c2
are constants that have no e�ect on the argument of the maximization).

Pulling this all together we have that the MAP hypothesis is:

hMAP = argmaxh{lnP (v|h) +
Nf∑
j=1

Λ(nj(h)− 1)} (2.6)

The �rst term gives weight to well explained measurements. The second term gives
a penalty for introducing new features to explain a measurement. Notice that if
there is only one measurement associated with a feature we can make both terms
equal to zero for that feature and measurement. If the measurement was instead
associated with an existing feature the �rst term would be negative but the second
would be positive leading to a trade o� that might be better than 0.

Equation (2.6) will be the basis for estimating the map for most of this thesis.
We will show how Λ is equivalent to the mahanolobis distance criteria typically
used for matching with an extended Kalman �lter.

We recall that v includes both the dead-reckoning and the feature measure-
ments. The h includes both the data association hypothesis and the state. The nj
were the number of matched measurements to feature j and Nf was the number
of features in the map. In the estimation methods we will describe here the mea-
surements are assumed to be statistically independent over time. That is to say,
the measurements at time t are independent of the measurements at other times.
Also, all the dead reckoning estimates are assumed to be independent of the feature
measurements.

10 CHAPTER 2. SLAM BACKGROUND

With these assumptions (2.6) becomes,

hMAP = argmaxh{
∑
i

lnP (vdi|h) +
∑
i

lnP (vfi|h) +
Nf∑
j=1

Λ(nj(h)− 1)} (2.7)

Where i is the index over the measurements. The vfi and vdi are the feature and
dead-reckoning measurements respectively.

2.3 Some of the Di�culties of SLAM
SLAM has evolved into a mature discipline and a number of successful systems have
been reported. It is now possible to have a robot explore an area autonomously
and return with an accurate map [16, 17, 18]. The basic estimation problem is
well understood. However, there are still a number of open problems to be ad-
dressed. These include computational complexity, linearization e�ects, association
of measurements to features, detection of loops in the robot path and maintaining
topological consistency as the maps get very large. We will now discuss each of
these in turn.

Scalability and Computational Complexity
Computational complexity is a problem for real-time SLAM implementations. In
particular some iterative SLAM algorithms have computation time increasing with
the size, N of the map. For example the extended Kalman �lter, EKF, has a
complexity that grows like N2. This limits the size of the map that can be made in
real-time. Several methods have been proposed that give faster calculation time.

Constant time algorithms take advantage of the fact that the e�ect of the current
measurements falls o� rapidly as one moves further away from the robots current
position. This can be seen by examining the inverse of the covariance matrix, the
information matrix. It is well known that the information matrix tends to be nearly
sparse with only very small elements connecting distant features. Thus the changes
can be well approximated by local updates which take constant time. In fact, the
long range correlations are often not accurately modeled anyway making the global
calculations unjusti�ed. This is due to several factors, the inexact sensor models
used, the cumulative e�ect of linearization errors, the spurious measurements and
the disturbances that the robot encounters.

The problem with the local update, constant time approach is that eventually
one would like a globally consistent map. In particular on return to a previously
visited region. This global map can take a long time to compute as with the CEKF
[19],[18]. One way out is to only calculate the links between local maps [20]. By
leaving the individual maps unchanged the update time becomes dependent on the
number of maps. This is of course also a measure of the size of the global map,

2.3. SOME OF THE DIFFICULTIES OF SLAM 11

but it is a much smaller number than all the features. Trying to get the individual
features that two local maps have in common to agree is much harder.

Linearization and Consistency
The e�ects of linearization in EKF SLAM can be quite serious [21, 22]. It seems that
the e�ects of linearization become worse as the map grows. Eventually the map
becomes inconsistent. The covariance matrix tends to become overly optimistic.
The solutions include particle �lter approaches and local map approaches.

The particle �lter can eliminate some of the linearization approximations en-
tirely. Using samples of the non-linear distribution to accurately model the prob-
abilities. Practical considerations limit how much of the true distribution can be
sampled and some linear modeling may still be done.

Local map methods exploit the fact that the linearization e�ects become impor-
tant as the map grows. For small maps consistency is not usually a serious problem.
The problem of consistency over large distances can then be looked at separately
from the consistency of the �ner details.

Another consistency problem arises when the robot discovers a closed loop in
its path. Having detected a closed loop one must adjust the map to re�ect this new
constraint. If the linearizations were done in a global frame this cannot be done
consistently. The successful methods for closing loops in the map all use a local
frame for doing the linearization [20, 23, 24].

Data Association
Data association is critical in SLAM. The incorrect association of measurements to
features can produce very large errors to the map. In most recursive methods data
association is immediate and irreversible, which can lead to catastrophic failure
in noisy environments. As it is important to not throw away information the
need to decide at once can lead to bad, rushed decisions. Methods that allow
reconsideration of the associations can wait until it is clear that the measurements
are from good features before using them. This is closely related to the problem of
when to introduce new features into the map. If we wait too long we will not get
to use important information from the �rst few measurements of the feature. If we
add the feature too soon we may be using measurements that do not come from
the high quality static features we want to use.

One method that allows for �exible reconsideration of data associations is the
expectation maximization method, EM [25, 5, 26]. One can also modify a Kalman
Filter to become a Kalman smoother [27] which allows one to wait longer before
committing to measurements.

The hardest data association is when closing a loop. This is when the robot
returns to a previously mapped area. If the loop is large the robot pose cannot
be relied upon for data association. Thus the closest feature may be not be the
correct match. In this situation it is best to consider many features at the same

12 CHAPTER 2. SLAM BACKGROUND

time. One must try to map a patch of the area and then match the features in the
patch to the older map of the area [28, 29, 30]. The Joint Compatibility Test is a
good criteria for matching multiple features. This test sets a threshold on the joint
likelihood of all the feature matches of a hypothesis. Another approach is to form a
unique signature for each map patch and then try to match the signatures [20, 31].

Our method has similarities to [32] in that we consider the likelihood of not
seeing previously seen features when returning to a region. So a hypothesis consists
of the matches and the lack of observation of some features in one or the other map
patch. By considering the likelihood of not having seen a feature one can avoid the
mistake of not matching important features in the chosen hypothesis.

2.4 Prior SLAM Work

The SLAM problem has several dimensions. One is the basic model for the map,
topological vs. metric. A topological map consists of places and a graph of connec-
tions between the places. It can be used to plan paths from one place to another but
does not give the geometric relations such as distances and angles. A metric map
is a geometrically accurate model of the environment. Hybrids between topological
and metric maps are common [33],.

Another dimension is the representation of the map knowledge itself. This can
be as raw sensor data, as a discretized grid over the unstructured space of the
environment or as the locations of certain abstract features in the environment.

A third dimension is the representation of uncertainty in the map. One choice
is to represent the map uncertainty by a unimodal distribution such as a Gaussian.
The alternative is to represent multi-modal distributions of maps in some way. In
table (2.1) we show how one could separate some of the existing SLAM methods
along this dimension.

Unimodal Multi-modal
EKF EM
SEIF FastSLAM

Occupancy Grid Rao-Blackwellized Particle Filters
Thin Junction Tree Filters Graphical SLAM

Table 2.1: The separation of some SLAM algorithms by their ability to represent
uncertainty

2.4. PRIOR SLAM WORK 13

Map Models and the Representation of Uncertainty
There has been a lot of work done on SLAM. Early on a topological maps were
prevalent. In [34, 9] a cognitive map of the environment was built. This model
allowed one to reason about paths between locations on the map. Uncertainty was
not explicitly dealt with but rather relationships on the map were either known or
not known.

In [10] the map was a graph where nodes represent places. Uncertainty estimates
were done rather crudely as worst case errors. This limited the robots ability to
make consistent global maps but the robot was able to navigate using the map
locally.

In [11] a geometric model of the world was a complement to the topological one.
There sensor uncertainties and the distinction between absolute and relative frames
of reference were also considered in estimating the map.

The occupancy grid [1] is a way to both deal with geometric information and
uncertain measurements. The occupancy grid models the world as a grid of cells
where each cell has a probability of being occupied. An occupied cell cannot be
navigated through by the robot. These probabilities can be updated using the
sensor measurement models and, for example, Bayesian reasoning. Getting good
results depends on maintaining a good robot localization within the grid. This in
turn depends on a �ne grid which can lead to high computational and memory
costs.

In [2] scan matching is used to reduce the robot localization errors and thus
produce good occupancy grid maps. In [3] a more realistic sensor model gave im-
proved occupancy grid maps. Later works using occupancy grids [4, 5], included
using forward models to overcome some of the simplifying assumptions about in-
dependence of sensor reading for a cell from the information in neighboring cells.
Using a more correct model helps resolve some situations that the prior work could
not map properly.

In [35] the basic stochastic map framework was introduced and the uncertainty
estimate became much tighter than the earlier estimates. This work introduced the
Extended Kalman Filter, (EKF), to the SLAM problem.

In [36, 37] the EKF was re�ned by introducing the SP-model (symmetry and
perturbation) for feature representation. This attached a reference frame to each
feature and the linearization of the measurements occurred in this feature frame.
That greatly reduced the e�ects of linearization on the solution. In [38, 16] the
EKF was more or less con�rmed as a successful solution to the SLAM problem for
smaller static environments with good feature sensing.

Scalability and Complexity
The EKF has a problem with scaling quadratically with the size of the map. In
CEKF 2 [19, 39, 40] the individual Kalman updates are accumulated in matrices

2Compressed Extended Kalman Filter

14 CHAPTER 2. SLAM BACKGROUND

the size of the local map being currently observed. Periodically these matrices can
be used to update the global map. The result can be shown to be equivalent to a
standard EKF. The global updates still take order N2 time but they are done at a
much lower frequency.

An Information Matrix

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

Figure 2.4: The information matrix is the inverse of the covariance matrix for the
map features. It can be seen here that the matrix is approximately sparse. This is a
result of the measurement process that is used to estimate the map. Measurements
are made locally so the mutual information is also local.

An EKF is equivalent to the Extended Information �lter, (EIF)[41]. The EIF
uses the inverse of the covariance matrix, the information matrix (see �gure 2.4),
and a linear combination of the measurements to do constant time updates. The
problem is that �nding the mean of the distribution takes cubic time in the size of
the map3. This mean state is needed to match the measurements to the state or
to use the pose estimate of the robot for any task.

An observation that the information matrix is approximately sparse, (see �g-
ure 2.4), has lead to the Sparse Extended Information Filter (SEIF) [42, 43]. In
order to achieve constant time updates exact sparseness is imposed on the informa-
tion �lter. This is done through a procedure which imposes independence between
the current pose and more distant features. After doing so the results are no longer
equivalent to the EKF. For the exactly sparse system the mean can be solved for
in constant time by a method of relaxation. The system can be represented by a
Gaussian graphical model where the edges are then sparse.

3A linear equation with the information matrix must be solved.

2.4. PRIOR SLAM WORK 15

A method very similar to SEIF uses a thin junction tree �lter, [44]. This starts
with the Gaussian graphical model of the EIF and builds up a mechanism of message
passing for the purpose of making inferences about the map. The model has only
been tested in simple simulations and not on real data.

Linearization and Consistency
The more serious problem of the EKF is linearization [21, 22].. One way to address
this is by Rao-Blackwellized particle �lter techniques such as FastSLAM [45, 46,
43, 47, 48, 49]. The idea is to decouple the problem of �nding the robot path
from the map estimation problem. By introducing particles for a sample of the
possible paths and then �nding the best map for each of these paths one can
avoid the linearization problem completely. Solving for the map given the path
is rather easy. One can then calculate the likelihood of the measurements given
the solution generated by the particle. If this is too low one can safely discard the
particle reducing the computational burden. The main problem is that one must
have relatively tight constraints on the path from the measurements in order to
hold the number of particles to something manageable. For weaker measurements
constraining the robot motion the number of particles needed can be very large.
There is also no good way of determining beforehand how many particles are enough
for good estimates.

A variation on these is DP-SLAM [50]. This uses a clever representation of the
map as an occupancy grid and a tree on each particle. Each particle is a leaf in a
ancestry tree rooted at the initial particle. The particle keeps a record of just what
changes it made to the occupancy grid. Its ancestors can then provide the other
information needed to complete the grid. With this representation a larger number
of particles can be handled.

For SEIF the linearization leads to inconsistency as in the EKF but here the loss
of information during the sparsi�cation step worsens the inconsistency as shown in
[51]. There they present a sparsi�cation method that does not su�er this inconsis-
tency but requires cubic time to calculate.

Data Association
A major problem in SLAM is the data association. How to connect the measure-
ments with the map element that caused it. This is a problem for each iteration
matching to the recently observed features and for closing large loops where there
can be very large errors in the features relative to the robot. One solution proposed
is expectation maximization, EM, [25, 5, 26]. This method repeats two phases of
computation. First in the E step, it calculates an estimated probability density over
robot paths given the current map. Then in the M step, it calculates the maximum
likely map using this probability density. Since it explicitly considers all possible
data associations when doing the E step, it has a better chance to �nd the correct
one. The main problem is the large search space that results.

16 CHAPTER 2. SLAM BACKGROUND

The Kalman smoother [27] tries to address the problem of rushed data associ-
ation decisions in the EKF by maintaining a chain of the most recent robot poses
in the Kalman state vector. By having the older poses explicit in the state one can
add measurements relative to these poses after having seen the later measurements.

The laser range scanner has lead to a very successful method of pose estimation
based on scan matching [6, 23, 2, 7]. In the IDC method individual scan points are
matched to a reference scan by alternating between estimating the transformation
between scans and the match between individual points. The covariance of the
resulting pose estimate is estimated in [8]. This method can be used to close very
large loops by imposing the topological constraints on a graph formed by the scan
matches.

For detecting closed loops the joint compatibility test of [28, 29] is one excellent
solution when the state covariance matrix is available. The covariance matrix needs
to be consistent for this to be a correct test. Such consistency is not achievable
with the EKF and many other methods do not explicitly calculate the covariance
matrix.

Sub-map Methods
The problem of building very large yet consistent maps has lead to many sub-map
approaches to SLAM. In [52] groups of features form a landmark with its own local
frame of reference. These landmarks can then be included in a global map. In
[53] local maps are similarly assigned a root based on some landmark. This root
can then be shifted to another landmark that is better known globally, leading
to a convergent global map estimate. Similar sub-map approaches are shown in
[29, 54, 55] as in the ATLAS framework [20] which was a more general way to join
arbitrarily built sub-maps into a global map.

These sub-map methods can close loops in the global map by imposing con-
straints on the transformations between the local frames of reference [23, 20]. The
global map typically becomes a graph with local maps as the nodes. These are
linked by some type of springs and the constraints can be imposed on the system
by �nding the equilibrium position of the poses under the action of these links and
the constraints.

The idea of using a graph model to do SLAM estimation has been gaining pop-
ularity [56, 44, 57, 58, 59, 60]. There have also been a number of hybrid approaches
to SLAM [61, 62, 63].

Vision SLAM
Most of the works cited above use a SICK laser scanner or sonar to build the map.
There has also been much work done using vision. In [64] maps are made using
both a laser and a camera. In [65] a method similar to scan matching is developed
for camera image data. They used an omni directional camera and a Kanade-
Lucas-Tomasi tracker to detect features. In [66] tracking three features from frame

2.4. PRIOR SLAM WORK 17

to frame is su�cient to obtain a good pose correction for the robot. They solve
the constraint equations directly to get the transformation between consecutive
frames. They depend on tracking the landmarks from frame to frame in order to
make correct data associations.

In [67] a stereo camera system provides 3D clouds of points which are �t into
an octree map structure. The robot motion is again solved by using the constraints
form the camera images. No other sensors are used. They solve �rst for the motion
and then update the octree from the calculated camera pose. This is similar to
using laser scan matching to correct odometry and then �lling in an occupancy
grid. It does not explicitly deal with the coupling between robot pose and map
uncertainty. The distances covered are therefore limited to just a few meters.

In [68] SIFT features and a three-camera system are combined with an EKF to
make maps. In [69] an EKF is used with a chi-square data association test to do
bearing only SLAM. In [70] a combination of sonar and vision on an underwater
robot is also used as input to a EKF. They use a Lucas and Kanade feature tracker
and do not try to close loops when the features return to the �eld of view. In
[71, 72] a single camera is also used with an EKF to do SLAM. There no other
sensor is used and the system can close small loops with di�culty. A particle �lter
is used to solve the di�cult feature initialization problem of bearing only SLAM.

In [73, 74] SIFT features are used to do so called vSLAM. The problem of
learning good features from image data was addressed in [75] using a feed-forward
back-propagation neural network.

Our work vs. Prior Work
Our method tries to combine the best parts of all these methods in one approach.
We have independence between the size of the map and the calculation time for each
iteration. Very similar to SEIF without the loss of any information. We linearize in
a special way so that the non-linearities can never be large and all symmetries are
preserved. Global constraints are imposed in a way very reminiscent of the method
of Lu and Milos. We have a mechanism that can be used similarly to EM for data
association. The �nal result is much like a network of local maps.

Chapter 3

Robot Motion Model

The SLAM prediction process starts with the raw measurements. These are the
output of some sensor. These all have some errors that we will need to estimate in
order to correctly evaluate equation (2.6).

3.1 Dead-reckoning

Dead-reckoning is an estimate of the robot pose from adding up the small changes
from the incremental estimates of the motion. This is contrasted with absolute
estimates of pose which are relative to some landmark such as GPS satellites or
some external force such as gravity or the magnetic �eld of the earth. Dead-
reckoning estimates have the property of ever increasing errors. This can be seen
by examining the error propagation in the simple illustrative case of no angular
errors. If the position of the robot at time i + 1 is predicted from the position of
the robot at time i,

xi+1 = xi +R−1
i (∆xi+1,i). (3.1)

Where Ri is the rotation matrix for the robot pose and xi is the position vector
of the robot at time i. The ∆xi+1,i is the incremental motion in the robot frame at
time i. Then if the incremental noise is Gaussian with covariance only in position,
(ie orientation errors are 0), Ci,i−1 then,

Ci+1 = Ci +R−1
i Ci,i−1R

−1
i . (3.2)

We see that the estimated covariance in position, Ci, is growing each itera-
tion. Similar results hold if the covariance of the angles of the rotation matrix are
included.

19

20 CHAPTER 3. ROBOT MOTION MODEL

3.2 The Motion Sensors
In order to estimate the errors in our motion prediction we �rst need to model the
sensors.

Odometry
Raw odometry data consists of the counting of the rotation of the robots wheels.
This rotation is typically measured quite accurately. The errors occur due to the
inexact relationship between wheel rotation and the movement of the robot. This
is inexact due to wheel slippage, variations in wheel diameter/tire in�ation and any
incline in the ground surface. These errors typically mask the quantization error of
the counters measuring the rotations.

The raw odometry is integrated at a relatively high frequency producing an
estimate of (x, y, θ), the change in position and orientation, pose, since the robot
was turned on. This pose is not accurate enough to use over longer distances but
the incremental changes to it are reasonably accurate over short distances. Over
the distance the robot travels between frames of the camera or scans of the SICK
laser scanner the errors are small enough to be modeled as Gaussian noise around
the incremental odometry value.

The model of this noise can be derived from studying the processes that give
rise to it. Such studies [76] conclude that the covariance of the error should increase
proportional to the distance traveled ∆s and the angle turned ∆θ. Based on that we
form a simple model and �t the parameters to it. The model is found by considering
the motion during the increment as movement on a circle of radius r, �gure 3.1,

r =
∆s
∆θ

(3.3)
If we then look at the change ∆x, ∆y in the robot frame at the start of the

interval, (the robot pointing in the x direction), then we �nd:

∆x = r sin∆θ (3.4)

∆y = r(1− cos ∆θ) (3.5)
These give rise to the following Jacobian of (∆x,∆y,∆θ) with respect to (∆s,∆θ)

J =

 sin ∆θ
∆θ ∆x∆θ−sin ∆θ

∆θ sin ∆θ −∆y
1−cos ∆θ

∆θ ∆x− ∆y
∆θ

0 1

 (3.6)

with the appropriate limit taken if ∆θ becomes small.

Codometry = JCrawJ
T (3.7)

3.2. THE MOTION SENSORS 21

Y

X

x∆

∆

r

∆ s y

∆θ

Figure 3.1: The motion of the robot over short time intervals can be approximated
by motion along a circular arc.

Craw =
(
a1|∆s| 0

0 a2|∆θ|+ a3|∆s|

)
(3.8)

Here the ai, are the free parameters of the model. One can of course use a more
complicated model than this but this simple model works well with one adjustment.
The covariance Codometry of (∆x,∆y,∆θ) above has rank two. This will lead to a
very high correlation between the y error and the θ error over longer distances. The
correlation will be approximately correct but not desirable due to the linearization
e�ects. The non-linear system is not as strongly correlated. For this reason it is
often desirable to add a small variance (about 10−6 m2per m) in the y direction.
This prevents a fully correlated covariance.

Inertial Sensor
The ATRV outdoor robot we use for some experiments was equipped with a Cross-
bow DMU-FOG 6-axis inertial sensor [77]. This device contains 3 accelerometers

22 CHAPTER 3. ROBOT MOTION MODEL

and 3 �ber-optic gyros. The accelerometers were �ltered internally and fused with
the readings from the gyros to give an estimate of the vertical direction. The pitch
and roll angles output from the device were adjusted to be correct over longer time
periods by agreeing with gravity and over shorted time periods by integration of
the gyro's angular velocity.

Thus the errors in pitch and roll were small and proportional to the angular
velocity in those directions. For our experiments we took these errors to be 0. We
thus use the full 6 dimensional robot pose but only consider errors in (x, y, θ).

The gyros also provide an integrated angle, θ, around the vertical z-axis. This
angle estimate will be fused with the odometry angle estimate to obtain an better
orientation dead-reckoning estimate. The covariance in this angle is proportional
to the time interval.

The inertial sensor will have signi�cant bias which must be corrected for. There
is an internal heater to maintain a constant temperature in the sensor as the bias
is temperature dependent. It is important to not begin using the sensor until it
warms up. At that time an internal bias adjustment routine should be run with
the robot at rest. Even after this we found some measurable bias in this sensor.

3.3 Fusion of Odometry and Gyro
The ATRV robot has a skid steering system with four large wheels that all point
in the forward direction. In order to turn, the wheels on each side are driven at
di�erent rates which produce a large amount of wheel slippage. As a result the
orientation angle from odometry while good when driving straight ahead is very
poor when turning. We therefore fused the inertial yaw angle with the θ estimate
from the odometry. This was done in such a way that the odometry angle was
given a high weight while driving straight. When turning the inertial angle was
given a high weight. This inertial angle is very accurate over short time intervals.
The resulting dead-reckoning estimate was much better than either odometry or
inertial estimates alone.

∆θfused = w∆θodometer + (1− w)∆θinertial. (3.9)

Cfused = WCodometer ∗W + (1−W)Cinertial(1−W). (3.10)
Where if θ is the third row of C then

W =

 1 0 0
0 1 0
0 0 w

 . (3.11)

The two angle estimates were weighted by minimizing the covariance of the
result.

3.4. SUMMARY OF THE MOTION MODEL 23

w =
Cinertial∆θ,∆θ

Codometer∆θ,∆θ + Cinertial∆θ,∆θ
(3.12)

One complication was that the inertial yaw angle was in the earth frame while
the odometry angle was in the frame of the robot at the beginning of the interval.
As we have the pitch and roll angles we can rotate the inertial estimate and its error
into the frame of the robot and then combine the odometry and inertial estimates
of ∆θ.

Test of the Dead-reckoning Models
To evaluate our models we can compare the incremental change in the orientation,
∆θ, for the path obtained using a hand made map and an extended Kalman �lter
localization. The θ changes from odometry are subtracted from the localizer values
and the result divided by the square root of the sum of the covariance estimate
from the odometry model and from the localizer.

This comparison is not entirely correct as the path from the localization program
is not perfect and is correlated to the odometry, inertial and fused estimates that
contributed to the input of the EKF. If we could assume that the EKF estimate
only depended on continuously observing walls from a known correct map using
the SICK laser then the path would be both essentially correct and uncorrelated to
the other measurements. The actual results are distorted to the extent that this is
not the case.

When there are no walls in front of the robot the EKF is simply using the fused
dead-reckoning and the correlation is 1. In this case the error is underestimated,
(ie. it is nearly zero). Then when a wall comes into view the estimate can get
a large correction which produces a large error estimate when the true error was
in fact no larger than average. Thus one expects the estimated distribution to be
more peaked near zero and to have more outliers than the true error distribution.

This is the qualitative appearance of the three histograms as compared to the
assumed Gaussian distribution shown in �gures 3.2, 3.3 and 3.4. We see that the
correlation e�ects are most signi�cant for the fused data that was the direct input
to the EKF Localization.

Aside from these considerations the histograms do indicate that the covariance
estimates are not terribly optimistic or pessimistic. We can also see that the fused
estimate is substantially better than the odometry or inertial estimates alone. This
is evident as well when we look at the path obtained from the fused estimate as
compared to raw odometry �gure 3.5 verses �gure 3.6.

3.4 Summary of the Motion Model
We start with the raw error in the incremental odometry angle and distance:

24 CHAPTER 3. ROBOT MOTION MODEL

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
Odometry Theta Error Histogram vs Normal − Using the Error Model

Raw errors in theta

bias = −3.1E−4 rads
MSE = 1.7E−5 rads2

Normaized Error
Histogram

Figure 3.2: This shows an estimate of the odometry angle error over each of the
8,742, 200 ms intervals. The error has been normalized by dividing by the standard
deviation as given by the models. There are some distortions due to the lack of a
true ground truth path as discussed in the text.

Craw =
(
a1|∆s| 0

0 a2|∆θ|+ a3|∆s|

)
(3.13)

We then project that into errors in (x, y, θ) in the robot frame at the start of
the interval with the Jacobian:

J =

 sin ∆θ
∆θ ∆x∆θ−sin ∆θ

∆θ sin ∆θ −∆y
1−cos ∆θ

∆θ ∆x− ∆y
∆θ

0 1

 . (3.14)

The odometry covariance estimate becomes:

3.4. SUMMARY OF THE MOTION MODEL 25

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3
Inertial Theta Error Histogram vs Normal − Using the Error Model

Raw errors in theta

bias = 5.2E−5 rads
MSE = 1.4E−6 rads2

Normaized Error
Histogram

Figure 3.3: This shows an estimate of the inertial angle error over each 200 ms
interval. The error has been normalized by dividing by the standard deviation as
given by the models. Notice that this sensor has a bias of 2.5E − 4 rad per sec.,
(The value shown 5.2E − 5rads/.2sec= 2.5E − 4 rad/1 sec.)
.

26 CHAPTER 3. ROBOT MOTION MODEL

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

8
Fused Theta Error Histogram vs Normal − Using the Error Model

Raw errors in theta

bias = 4.6E−6 rads
MSE = 5.4E−7 rads2

Normaized Error
Histogram

Figure 3.4: This shows and estimate of the fused odometry and inertial errors. A
substantial improvement can be seen as compared to both odometry and inertial.
The shape of the histogram is steeper near zero and the tail is longer due to the
relatively strong correlation between the 'true path' and the fused estimate. Con-
sequently, this histogram tells us less than the histograms comparing the odometry
and inertial estimates to the 'true path'.

3.4. SUMMARY OF THE MOTION MODEL 27

−80 −60 −40 −20 0 20 40 60 80 100 120
−100

−80

−60

−40

−20

0

20

40

60
Odometry vs. True Path

Figure 3.5: This is a typical comparison between raw odometry data (dashed) and
the true path of the robot (solid). The pose error is growing without bound. The
distances shown are in meters.

Codometry = JCrawJ
T . (3.15)

Weight the θ estimate with that obtained from the inertial sensor using the
weight w:

w =
Cinertial∆θ,∆θ

Codometer∆θ,∆θ + Cinertial∆θ,∆θ
(3.16)

∆θfused = w∆θodometer + (1− w)∆θinertial. (3.17)

Cfused = WCodometer ∗W + (1−W)Cinertial(1−W). (3.18)

28 CHAPTER 3. ROBOT MOTION MODEL

−80 −60 −40 −20 0 20 40
−40

−20

0

20

40

60

80
Fused Dead−reckoning vs. Localized Path

Figure 3.6: This shows how by fusing the odometry and inertial estimates (dashed
line) we can get a dead-reckoning estimate far better than odometry alone. The
pose error is still growing without bound. The true path is shown as the solid line.
The distances are in meters.

robot a1 (m2/m) a2 (rad2/rad) a3 (rad2/m)
ATRV 0.0005 0.0025 0.000001

PeopleBot 0.001 0.002 0.00004
Pioneer 0.001 0.002 0.00004
PowerBot 0.001 0.002 0.0000004

Custom Built 0.001 0.0005 0.0000004

Table 3.1: This lists the typical odometry model parameters used for the experi-
ments in this work.

3.4. SUMMARY OF THE MOTION MODEL 29

Where
W =

 1 0 0
0 1 0
0 0 w

 . (3.19)

and Cinertial = 1E − 6 (rads2/sec) ×∆t(sec).

Chapter 4

Features for Localization

The features are geometric landmarks designed to provide localization information
for the robot pose [78, 79, 80]. In this chapter we start with a discussion of the
sensors, SICK laser and camera, used to detect the features and then discuss the
representation of the features.

4.1 The Feature Sensors
We cannot begin to discuss the problem of feature representation without �rst
considering how the features are measured. Particularly since our representation is
designed around these measurements.

SICK Laser Scanner
The SICK laser scanner is a sensor that can measure the distance to objects over a
180 degree arc, �gure 4.1. This is done by shining an IR laser on a rotating mirror.
The mirror de�ects the light out from the device. The light then strikes an object
in the environment and is re�ected back to the mirror and into the sensor where
it is detected. The time delay between the emitted and re�ected light is measured
to high precision [81, 82, 83]. The resulting scan lies in a plane and, in this work1,
consists of either 181 or 361 range values depending on whether the full or half
degree scan spacing is selected. The maximum distance is either 8 or 32 meters for
mm mode or 82 meters for cm mode. Outdoors2 the cm mode is preferred as the
distance to objects can be quite large. Indoors3 the better resolution of mm mode
is the sensible choice. Note that in cm mode the range values are in whole cm and
have therefore 5 mm quantization errors. The �nite beam width of the laser is also

1The SICK scanner has more possible modes than those used in this work
2LMS291 SICK Laser is used outdoors as it has greater power and thus longer range.
3the LMS200 is used on all our indoor robots

31

32 CHAPTER 4. FEATURES FOR LOCALIZATION

Figure 4.1: An illustration of the SICK laser scanner showing half of a complete
scan, one quadrant. The beam width has been exaggerated for illustration and the
number of range measurements per scan reduced.

more pronounced on the higher power laser used on the outdoor platform. Left
uncorrected this beam width can lead to signi�cant bias in the measurements.

When the scanner is being moved rapidly during the scan, 181 whole degree scan
mode is to be preferred as the 361 half degree scan mode is done in two revolutions
which then are stretched over twice the time interval. Thus the adjacent range
readings have a signi�cant timing di�erence. This e�ect is not a problem at the
speeds in this work and we use both settings. Using whole degree mode results in
twice as many scans and thus more computations. Alternatively, one could correct
the scan points �tted to the line for the the time di�erences between them using
odometry.

The angles of the scan can jitter around the nominal position a bit as the
rotating mirror drifts in and out of sync. This e�ect is much smaller than the beam
width e�ects which can be as wide as 1 degree in some situations see �gure (4.1).

There are a few problems with the SICK sensor. One is that it is not unusual for
bright sunlight to blind the sensitive photo detection circuit of the device. When
this happens there is no alternative but to reboot the sensor by sending a reset
command. This takes some seconds during which the scanner should be repositioned
away from the sun.

In addition, dark and/or shiny cars can be totally invisible to the laser. Not
enough light is re�ected back into the device for a measurement. Glass and mirrors
are obviously also a problem. This should be understood by anyone relying on a
SICK for obstacle avoidance. Some second sensor is needed such as sonar or camera.

As indicated the �nite beam width of the laser can produce a bias. The problem
is that it depends on the angle of re�ection, the re�ectivity, the range and the power
of the laser. The e�ect is not large enough to warrant an attempt at modeling all

4.1. THE FEATURE SENSORS 33

of these e�ects and we found that assuming a constant beam width for each type
of SICK scanner worked adequately well.

We extract lines from the scan [84] using a range weighted hough transform, see
Appendix (C) for the details of the extraction algorithm. We optimized this algo-
rithm for the characteristics of the SICK scanner. Thus the accumulator cells are
sized for maximum e�ciency without losing any lines. The hough transform works
on the principle of voting. The line hypotheses are parameterized by perpendicular
distance from the origin (the scanner's mirror), and the angle between the line nor-
mal and the x-axis. Each scan point is consistent with many such hypotheses and
votes for each one with a voting strength equal to its range value. The reason for
weighting the votes is that further range values correspond to longer length sections
of the line.

We do the hough transform in two stages. First a very coarse one that has
large cells. This gives us an idea of where to look harder. The cell with the most
votes is subdivided into �ner cells and those are then �lled by the scan points from
the original large cell. The maximum �ne cell is then tested by forming a least
square �t line of its scan points. After throwing away any outliers and applying
continuity, length and number of points thresholds, we remove the resulting scan
points associated with the found line from the other accumulator cells. We can
then repeat the procedure until we have found all the signi�cantly long lines. The
result is a repeatable line extraction that is as fast as schemes that rely on random
sampling to speed them up.

We adjust each point to the line based on its angle of incidence and the beam
width, see �gure (4.2). This is to remove any bias from the angle estimate. Thus
a constant (.02 rad for the LMS291 and .01 rad for the LMS200) beam width is
assumed and the wall is assumed to be smooth with the parameters found. It is
then trivial to determine whether the upper, lower or middle of the beam wedge
hits the wall �rst. The angle of the range reading is then adjusted accordingly. We
then re-�t the line parameters to a least squares from the new points.

After �nding a set of points that form a line we need to estimate the uncertainty
in the line endpoints. This starts by calculating the statistics of the point set. The
sum of square distances of the points from the line plus some small sensor variance 4,
σ2
sensor,i, for each point is divided by the number of points less 2 (2 parameters are

estimated from the point cloud, the angle and distance of the line). This is then
the covariance of the endpoints in the normal direction. In the direction tangent
to the line we use the bigger of two error sources, the beam width of the laser and
the separation between the points at the end of the line.

4The sensor variance is taken as 1mm2 in the range and 1mm2 per m2 of range in the
direction perpendicular to the scan. This is smaller than the actual sensor errors but is not meant
to model the errors. Instead these are used to in�ate the statistically measured variance of the
actual point cloud in situations where there are not enough scan points to give reliable variance
estimates. Thus they make the line covariance estimate slightly conservative on average but avoid
the random seriously underestimated variance.

34 CHAPTER 4. FEATURES FOR LOCALIZATION

���
�

���
�

Estimated Line

SICK Laser

Adjusted Scanpoint

Scanpoint

Figure 4.2: The SICK laser range point angle is adjusted to agree with the assump-
tions of a smooth line and a �nite constant beam width. In the situation illustrated
the right side of the beam will be the �rst to be re�ected back to the scanner.

σ2
ρ =

∑N
i=1[σ

2
sensor,i + (∆ρi)2]
N − 2

. (4.1)
Here N is the number of scan points and (∆ρi) is the perpendicular distance of

the scan point to the line.
Additionally, we check if the end was unambiguously detected. By that we mean

that we could see that the line did not extend any further than the endpoint,see
�gure (4.3). In practice this is a requirement on having seen points behind the line
beyond the endpoint. Such detections help to better characterize the wall.

Cameras
Image data from a camera are also used for feature extraction. The well known
pin-hole camera model is used. For recovery of metric data there is a need to

4.1. THE FEATURE SENSORS 35

���
�
���
�

���
�

���
�

��	
	

�
�

��

���
�
���
�
���
�

���
�
���
�

���
�

���
� ���

�

���
�

 ! ! ! ! ! ! ! ! ! ! ! ! ! !

"!"!""!"!""!"!""!"!""!"!""!"!""!"!"
SICK

Line start detected

Line end occulded

Scanpoints

Figure 4.3: The endpoint of a line can be detected if the SICK scanner can see
behind the line beyond the endpoint. Here the start of the line can be detected but
not the end.

y

f

z

−x

z−axis

x−axis

y−axis

image−z

x image

image
plane

Figure 4.4: The camera is pointing in the y direction and the center point of the
image plane is at the origin.

36 CHAPTER 4. FEATURES FOR LOCALIZATION

calibrate the camera. The Camera Calibration Toolbox for Matlab package 5 is
used to estimate the focal length and image center pixel of our camera. We found
that the skew for the camera used was not signi�cant and the pixels were square.
The coordinate system is shown in �gure 4.4. As shown the y-axis is equal to the
camera optical axis and the 'pinhole' at a point (0,f,0) where f is the focal length.
The image center is subtracted from the pixel values to obtain the x and z values
in the �gure. The choice of the y-axis along the optical axis will assure us that
the Jacobians of the transformations from the robot to the sensor frame will not
become singular. The singularity now corresponds to a rotation in the robot frame
of 90 degrees about the optical axis. That is something we can more easily avoid
doing.

The image coordinates of a point at (x,y,z) in the camera frame will be:

ximage = − xf

y − f
(4.2)

yimage = 0 (4.3)

zimage = − zf

y − f
(4.4)

Where we have converted all pixels to meters in a right handed coordinate
system with the image plane lying in the x-z plane. The error sources are then the
quantization error of the pixels and the error in our estimates of the focal length and
image center pixel. The estimate of the image center is particularly important as
any error in it will produce a bias in all our measurements. This error is essentially
indistinguishable from an error in the camera orientation.

As a camera only gives us relatively accurate bearing information to the features
it is more sensitive to orientation errors than the laser scanner. This orientation is
rather hard to estimate accurately. We tried two approaches, one was to drive the
robot using the SICK laser to localize and manually entering in matching pixels in
images taken from di�erent locations. These then gave an overdetermined set of
constraints on the camera orientation. We could solve this by taking the pseudo
inverse.

As an alternative method to measure the camera orientation we include the
orientation parameters in an EKF SLAM �lter and then drive the robot around
using vision features. The �lter then converges to the orientation parameters of the
camera.

Both methods gave satisfactory results in the end but the estimation problem
of these parameters can be ill posed depending on the movement of the camera
between observation of the vision features.

The camera is also much harder to use for doing SLAM than the laser scanner
because one is faced with the problem of not being able to initialize a feature until
the movement of the camera allows triangulation of the feature to approximate its

5available at http : //www.vision.caltech.edu/�bouguetj/calib_doc/

4.2. FEATURE REPRESENTATION IN THE M-SPACE 37

distance from the camera with a Gaussian distribution [71]. In order to allow fast
initialization one needs the camera to be pointed perpendicular to the direction
of motion. This then introduces a problem related to the narrow �eld of view of
the camera. With the camera pointed perpendicular to the direction of travel, the
features will disappear from view quite quickly.

For these reasons it is generally better to have several cameras or an omni-
directional mirror system to give long tracking times for features and quick initial-
ization. In our work we have opted for quick initialization of high quality features
which do disappear from view quickly. We can make the observation that this is
not ideal.

4.2 Feature Representation in the M-Space
The �rst step of automatic map making is representing the features in a way that
a computer can work with. The features have a variety of characteristics some of
which determine its size, position and orientation in the environment. Others give
more qualitative information about the feature such as texture or color. It is the
geometric information about the feature that we need to represent in the map. It is
this information that will assist in localization of the robot. The other information
can be helpful for uniquely identifying the feature. There are a number of ways of
representing the geometric information of the features. A central issue is the way
that the feature will be measured. If the measurements are orthogonal to some
changes in the parameters of the feature then this invariance should be explicit in
the representation. Otherwise we may move the feature in these directions without
any support from the measurements but rather due to some of the approximations
made by the SLAM algorithm

To enable use of a generic estimation framework it is necessary be able to treat
the features in a uniform way. By this we mean that the code that does the
estimation of the pose and map should not need be modi�ed for each new feature.
All features should be treated the same.

We also need to consider the process of initialization of the features in the map.
This is rather tricky as the geometric information on the feature will typically not
be collected at the same rate for all directions[85]. For example we might learn the
angle and perpendicular distance to a wall long before we can be sure of where the
ends of the wall are.

Therefore, we need a way to deal with partial initialization of the feature. By
this we mean that some directions can begin to be used while we wait to collect
information to initialize the other directions. This collecting and testing the infor-
mation is speci�c for each feature and needs to be part of the feature speci�cation.
We call this information that is used by the feature prior to initialization dense
information. It is used to estimate the parts of the feature not yet initialized in
the SLAM algorithm. It is also tested to see if the feature can be extended in the
SLAM algorithm to include these other directions. We refer to this as the fea-

38 CHAPTER 4. FEATURES FOR LOCALIZATION

ture growing dimensions or being extended. We will call the number of initialized
dimensions as the P -dimension, (p-dim), of the feature.

The dense information can be clouds of scan points, sets of bearing vectors,
occupancy grids, sums of Gaussians or some other type of 'raw' measurement data.
For the example of walls and the laser scanner this cloud of points is �rst tested to
see if it has a well de�ned direction with a small enough variance normal to the line,
a su�cient density of points and that it is long enough. If it passes these criteria it
can be extended from p-dim 0 to 2. These two dimensions correspond to the angle
and perpendicular distance to the wall. The endpoints are set by the extent of the
cloud, but not initialized. Each new iteration will add new dense information
which will be used to adjust the ends along the line. When one endpoint is clearly
seen in the raw scan the endpoint can be initialized and the p-dim increased to 3.

Another property of features that we need to have in our representation is the
sharing of some dimensions with other features. So to take the example of walls
again, two walls can share the same endpoint, a corner. If this relationship is
explicit in our representation we will not have to enforce it separately.

Finally the transformation rules of the features under coordinate transforma-
tions must be well de�ned. This is because the observations of these features are to
be made from a moving robot. The transformation of the features to this moving
frame will be of central importance in SLAM.

We have developed a feature representation the �measurement subspace� or
simply the M-Space [86, 87]. There are 3 types of coordinates and a feature may
contain several of each type. There can be 3D points, 2D points and scalars. These
have well de�ned transformation rules under coordinate transformations.

We de�ne xf to be this set of feature parameters. and xr as some 'robot frame',
a translation and rotation. Then

xo = T (xf |xr) (4.5)
are the feature parameters in a new reference frame and the changes to these coor-
dinates satisfy:

δxo = Jorδxr + Jofδxf . (4.6)

The point here is that the Jacobians above depend on the type of coordinate
only. So that the calculation of these is the same for any feature.

Now we need to address the issue of symmetries. The invariances in the mea-
surements need some explicit treatment that is in some way generic for all features.
The measurements give us some information on some direction in the features
parameters space. Small changes to the feature parameters will cause some per-
turbation in these directions. The perturbations δxp are projected from changes in
the parameter space δxf by the B matrices.

4.3. FEATURE MEASUREMENTS 39

δxp = B(xf)δxf , (4.7)
δxf = B̃(xf)δxp, (4.8)
Ipp = B(xf)B̃(xf). (4.9)

The B matrices are non-linear functions that de�ne the projection at some point
in the state space. These matrices then de�ne the symmetries and constraints of
our features. We will show several examples of B matrices later. We see that these
matrices will allow us to restrict the SLAM estimation to the subspace that was
actually measured.

Our feature representation is inspired by the SP-model [37, 88]. There the
representation is the coordinates of transformations projected to a smaller subspace
with the B matrices. Our method also has a frame attached to the orientable
features. This avoids the problem shown in �gure 4.5.

4.3 Feature Measurements
The features are measured by some sensor such as a camera or a laser scanner.
These measurements v then can be combined with the state to form an innovation
η(v,xf ,xr) We can require that the expectation value of η = 0. Furthermore, we
know that the sensor is making relative measurements of the feature so that,

η(v,xf ,xr) = η(v,xo). (4.10)
Here xo is the feature coordinates in the frame of the robot sensor. These innovation
are ideally measurements of the noise in our sensor readings,v, plus the error in
our state. They obey some probability distribution P (η|xo). We will assume this
distribution to be Gaussian.

We can then relate the uncertainty in the measurements v to an uncertainty in
the measured innovation η:

Cηη = JηvCvvJ
T
ηv. (4.11)

Where Cηη is the covariance matrix of the innovations. Furthermore, we can cal-
culate the linear change in the innovation due to changes to the relative feature
positions as:

δη = Jηoδxo. (4.12)
The advantage of the M-Space representation is that now we can calculate the

δxo using (4.6).

δη = Jηo{Jorδxr + Jofδxf}. (4.13)

40 CHAPTER 4. FEATURES FOR LOCALIZATION

���
�

���
�

���
�

���
�

�	��	�
�	��	�
�	��	�
�	��	�
�	��	�
�	�

	

	

	

	

	

	

	

	

	

	

	

�	��	�
�	��	�
�	��	�
�	��	�
�	��	�
�	�

�	��	�
�	��	�
�	��	�
�	��	�
�	��	�
�	�

Information
Update

Without M−Space Projection

Information
Update

With M−Space Projection

Figure 4.5: Here we see how a line feature parameterization without projecting out
the M-Space dimensions can lead to information after the SLAM update that is
not consistent with actual measurements. The information before the update was
normal to the line but afterwards has some component tangent to the line. Using
the M-Space representation the information essentially rotates with the line in this
case. This greatly reduces the e�ect of linearizations on consistency.

Finally the symmetries can also be accounted for with a generic formula by
using (4.8).

δη = Jηo{Jorδxr + Jof B̃(xf)δxp}. (4.14)
Equation (4.17) is rather fundamental as it gives the factorization of the mea-

surements into a part that depends only on the invariances and symmetries and a
part that is speci�c to the measurement. We will try to match this factorization
later when we �nd a form for the invariant linearized sums of measurements.

We can even formulate this as a relative derivative of the innovation,

Doη = Jηo =
dη

dxo
(4.15)

4.3. FEATURE MEASUREMENTS 41

times a relative incremental change in the state vector xs,

Doδxs = (Jor, Jof B̃(xf))
(
δxr
δxp

)
. (4.16)

δη = DoηD
oδxs (4.17)

If one formulates a SLAM algorithm in terms of products like this then one is
sure to not violate the invariance of the measurements. The Do matrix projects
arbitrary perturbations of the state to the space of perturbations of the parameters
relative to some base frame here taken as the sensor frame of the robot, xr. Here,
the parameters are coordinates of the points in the feature representation xf , but
they could, in general, also include other pose coordinates than the base frame. For
the pose coordinates the B matrix is the identity matrix.

Walls
Walls are parameterized by two 2D points, the start and end points. The start
point is to the right when facing the wall.

xf =

xstart
ystart
xend
yend

 , (4.18)

For the case of two M-Space dimensions, (p-dim = 2), the B matrix looks like:

Bwall =
(

cos γ
L

sin γ
L

− cos γ
L

− sin γ
L

cos γ sin γ cos γ sin γ

)
/
√

2, (4.19)

Here γ is the angle between the normal of the line and the x-axis.

tan γ =
xstart − xend
yend − ystart

(4.20)
L is the length of the wall.

L =
√

(xend − xstart)2 + (yend − ystart)2 (4.21)
This B matrix, and thus the M-Space, corresponds to a rotation of the line in the

horizontal plane around its center and a parallel motion of the wall perpendicular
to the wall. We also have

B̃wall =

L cos γ cos γ
L sin γ sin γ
−L cos γ cos γ
−L sin γ sin γ

 /
√

2, (4.22)

42 CHAPTER 4. FEATURES FOR LOCALIZATION

γ

ρ

x

p2

p1

xδ

L

xstart

xend

δ

Figure 4.6: Illustration of the M-Space directions for the wall representation. The
shorter arrows are the �rst M-Space direction, rotations. The longer arrows show
the position M-Space direction. Typically wall measurements only provide these
two directions.

4.3. FEATURE MEASUREMENTS 43

x

p2

p1

xδ

xstart

xend

δ

s

e e
s

x
robot

r

t

t

Figure 4.7: Illustration of the vectors involved in de�ning the innovation for wall
measurements. The vectors with 'hats' are the 'predicted' values while the plain
letters are the measured vectors.

44 CHAPTER 4. FEATURES FOR LOCALIZATION

The wall measurements are 4 dimensional, the two 2-D endpoints. These mea-
surements give two vectors in the laser frame which point to the start and end
points of the detected wall. Call these vectors s and e.

s = (v0, v1), and e = (v2, v3). (4.23)
Where (v0, v1) and (v2, v3) are the start and end points in the laser frame. We

form two more vectors out of these,

t =
e− s
|e− s|

, r = e + s, (4.24)
The innovation function is two dimensional,

η =
(

t× t̂
(r̂− r)× t̂

)
. (4.25)

Here t̂ denotes the prediction of t calculated using predictions ŝ of s and ê of e.

ŝ =
(

1 0 0 0
0 1 0 0

)
(xo), (4.26)

ê =
(

0 0 1 0
0 0 0 1

)
(xo). (4.27)

We can then calculate Jηo(x̂o,v) and Jηv(x̂o,v) by di�erentiating this innova-
tion.

Jηo(x̂o,v) =
∂η

∂x̂o
(4.28)

Jηv(x̂o,v) =
∂η

∂v
(4.29)

If the p-dim has grown to 4 after observation of both endpoints the B matrix
is,

Bwall =

cos γ√

2L

sin γ√
2L

− cos γ√
2L

− sin γ√
2L

cos γ√
2

sin γ√
2

cos γ√
2

sin γ√
2

− sin γ cos γ 0 0
0 0 − sin γ cos γ

 (4.30)

Here the endpoints motion tangent to the line has been added. Now measure-
ments can be as long as 4 dimensional:

η =

t× t̂

(r̂− r)× t̂
(ŝ− s) · t̂
(ê− e) · t̂

 . (4.31)

4.3. FEATURE MEASUREMENTS 45

Point Features
Point features are parameterized by one 3-D point,

xf =

 x
y
z

 , (4.32)

These features have a B Matrix that is simply the identity matrix.

B =

 1 0 0
0 1 0
0 0 1

 . (4.33)

The measurement vector is the point in the image plane and the focal length of
the camera. (Our image plane has the y axis coming out the center of the image).

v =

 ximage
zimage
focal

 . (4.34)

The innovation function for these is simply the vector in the image plane from
the predicted image point to the measured image point.

η =
(−v2xo

yo−v2 − v0
−v2zo

yo−v2 − v1

)
. (4.35)

Horizontal Line Features
The horizontal line features are parameterized by two 3-D points.

xf =

xstart
ystart
zstart
xend
yend
zend

 , (4.36)

For the case of p-dim = 1, B matrix looks like:

B =

(
cos γ sin γ 0 − cos γ − sin γ 0

)
L
√

2
. (4.37)

Here γ is the angle between the projection of the normal to line into the horizontal
plane and the x-axis.

tan γ =
xstart − xend
yend − ystart

(4.38)

46 CHAPTER 4. FEATURES FOR LOCALIZATION

This B matrix corresponds to a rotation of the line in the horizontal plane
around its center.

The horizontal line measurements are 5 dimensional, two pixels in the image
corresponding to the line end points and the focal length of the camera.

v =

ximage−start
zimage−start
ximage−end
zimage−end
focal

 . (4.39)

These measurements give two vectors in the camera frame which point to the
end points of the detected line segments. Call these vectors s and e (see �gure 4.8).

s = (−v0, v4,−v1), and e = (−v2, v4,−v3). (4.40)

c

sre

t

Figure 4.8: A horizontal line feature showing the 1 dimensional M-Space.

As we have said the camera axis is along the y direction and (v0, v1) and (v2, v3)
are the start and end points in image plane and v4 is the focal length. We form
some unit vectors out of these, (see �gure 4.8),

c =
s× e
|s× e|

, r =
e + s
|e + s|

, and t =
e− s
|e− s|

, (4.41)

4.4. FEATURE MATCHING 47

Now we can de�ne an innovation as,
η = c · t̂. (4.42)

Here t̂ denotes the prediction of t calculated using predictions ŝ and ê of s and e.
We can then calculate Jηo(x̂o,v) and Jηv(x̂o,v) by di�erentiating this innova-

tion.
For the three dimensional M-Space the B matrix looks like,

B =

 cos γ
L

sin γ
L 0 − cos γ

L
− sin γ
L 0

cos γ sin γ 0 cos γ sin γ 0
0 0 1 0 0 1

 /
√

2. (4.43)

where the second row corresponds to motion in the horizontal plane orthogonal to
the line and the third row corresponds to changing the height of the line. Now the
innovation becomes two dimensional and for the second component we take:

η2 = c · r̂, (4.44)

4.4 Feature Matching
The matching of a feature measurement with the map feature that gave rise to
it is a critical part of doing SLAM. The matching is done in two phases �rst we
form a list of candidate matches in a generic way. Then we test the list using some
speci�c test for the SLAM algorithm being used. The list is meant to be rather
loosely matched. Its purpose is to reduce the number of checks needed by the more
intensive test. To form the list we use a series of lists where each list is used as an
input to some test that then reduces the length of the list.

1. Form near list
2. Transform all near list features to Sensor-Frame
3. Form visible list
4. For each feature measurement

4.1 Form list of rough matches
4.2 For each rough match

4.2.1 Calculate the �ne match
4.2.2 Order the list by �ne match

4.3 If the best �ne match is within a threshold
accept the preliminary match list.
Else create a new feature for the measurement.

48 CHAPTER 4. FEATURES FOR LOCALIZATION

The �rst list is the 'near list'. Each feature has a method that will return
true if the feature is inside some rectangle. For line features or other extended
features inside means if any part of the feature is inside the rectangle. This list can
be generated every few iteration with a rectangle centered on the robot and large
enough to ensure any feature within range of the sensor is included.

The near features are all transformed to the sensor frame for further testing.
For vision features that have not been fully initialized we now check if the bearing
to the feature is very di�erent than it was the last time we saw it. If so we cannot
reliably match to it using geometric information alone so we remove this feature
from the list.

The features on the near list are then tested with the current sensor pose to
see if they are visible. Visible features are ones in front of the sensor and facing
the sensor, (walls are considered invisible when viewed from behind). The possible
occlusions are also taken into account when forming the 'visible list'.

It is then the visible list that is matched against the measurements. A rough
match test is done for each measurement to the visible features. This consists of
�rst putting a smaller rectangle around each measurement and then testing if the
feature is in this rectangle.

Then a �ne test is applied. This �ne test is a threshold applied to the metric
distance between the measurement and the feature. For the example of walls, we use
a threshold on the di�erence in angles squared plus the di�erence in perpendicular
distance squared, with an appropriate scaling of each term.

finetest = (z− ẑ)TM(z− ẑ), (4.45)
Where z is a column vector such as for example, the angle and perpendicular

distance to the measured line in the sensor frame. ẑ is the prediction of these quan-
tities given the feature match. M is a metric chosen for this type of measurement.

After passing all these 'generic tests' the SLAM algorithm will generally apply
its own �nal test to the match such as mahanolobis distance or the energy criteria
to be introduce later.

4.5 Feature Initialization
Feature initialization can be somewhat tricky. For EKF SLAM one would like to
initialize the features quickly so that they can be used by the SLAM algorithm
before they disappear from view. This rush to initialize must be balanced against
the need to be sure that the feature is a real and static feature and that the m-space
direction is known well enough to ensure valid linearization.

The feature M-Space dimensions are initialized and the soft dimensions 6 esti-
mated by using dense information. This information is accumulated on the feature
and evaluated to set the soft dimensions and eventually extend the P-dimensions.

6The soft dimensions are the complement of the M-Space.

4.5. FEATURE INITIALIZATION 49

The accumulated information is tagged with an age. The age grows as the distance
traveled by the robot between calls to add information. This distance includes ro-
tations with rotation by 1 radian weighted to equal travel by 5 meters. When the
dense information gets too old it is discarded and will not be used for initialization.

The dense information is collected in the dead-reckoning frame which is contin-
uous. This allows us to avoid the problem of sudden adjustments of the pose by
the SLAM algorithm causing the new dense information to be not comparable to
the old. Over time the accumulated errors in the dead reckoning are what motivate
the throwing away of too old dense information. The transformation from the dead
reckoning to the map frame is used to adjust the results.

We will see that when using the graphical method we can repeatedly add the
dense information and thus use the map frame instead of the dead reckoning. This
is because in the graphical method the recent robot path is updated each iteration
and thus a continuous path is available for the dense information. Each time we
check to see if we can extend the p-dim of the feature we must add the information
from all the measurements using the corrected poses along the path.

Walls
For walls the dense information added to the feature consists of clouds of points
from a laser scan. This cloud is added to the accumulated cloud and tested. First
the list of points is ordered by the distance along the line. Then sections of the cloud
that have distances between adjacent points less than some 'tightness' threshold are
formed. The the section must have enough points, enough length and small enough
variance o� the line. After passing all these tests the wall is initialize to p-dim = 2.

After this the endpoints will be extended along the wall as more scan points are
added to the cloud within the tightness threshold distance from the current end.

When the measurements include the detection of the endpoint of the wall, the
feature will initialize the corresponding M-Space dimension as long as the measured
endpoint is in good agreement with the current best guess of the endpoint.

Point Features
For point features measured with a camera the dense information consists of the
bearing vector to the feature and the location of the camera. For initialization,
these bearing vectors are examined pairwise. If the distance traveled between the
two bearings was su�cient for meaningful triangulation the pair will contribute a
weighted estimate to the older bearing's estimate of the range to the point. The
weight is sin2(θij), where θij is the angle between the two bearing vectors �gure 4.9.

rij =
sinφijdij

sin θij
(4.46)

wj =
∑
i>j

sin2 θij (4.47)

50 CHAPTER 4. FEATURES FOR LOCALIZATION

s
s i

j

φ ij

θ
ij

d ij

Figure 4.9: A point feature showing the triangulation between two observations.

rj =

∑
i>j rij sin2 θij

wj
(4.48)

If the total weight of all the vectors is larger than a threshold the point is
initialized.

wtotal =
∑
i

wj (4.49)

A cloud of points is formed from all the individual bearing vectors and their
weighted average range values. The weighted center of this cloud is the estimate
of the point feature location and the weighted variance of the cloud becomes an
estimate of the initial uncertainty relative to the current pose.

xj = rj
sj
|sj |

(4.50)

x =
1

wtotal

∑
i

wjxj (4.51)

Horizontal Line Features
For lines measured by the camera and known to be horizontal we can initialize the
tangent vector direction of the line before we can initialize the position of the line.
The dense information here is the bearings of the start and end points and the
position of the camera. These give an estimate of the tangent direction which we
weight and add to the accumulated weighted tangents.

4.5. FEATURE INITIALIZATION 51

We take the weight of each measurement as sin(θse), where θse is the angle
between the two bearing vectors of the start and end points of the line as measured
at the camera �gure 4.10.

t

θse

h

z

x

y

s i

e i
i

h

Figure 4.10: A horizontal line feature showing the calculation of the tangent from
one measurement. |ti| = 1 and the height of the tangent vector, h, is the same at
both ends.

wi = sin θse (4.52)

wtotal =
∑
i

wi (4.53)

t =
∑
i witi
wtotal

(4.54)

When the total of the weights, wtotal, exceeds a threshold the tangent direction
is initialized.

For the position information we use a weight for each pair of measurements
equal to sin2(θij), where θij is the angle between the two planes de�ned by the line
measurements. Each such pair of measurements de�ne the distance of the line from
the origin. When the total weight is above a threshold we initialize the position with
the weighted average of the positions de�ned by each measurement. This is totally
analogous to the point feature triangulation except that everything is projected to
the plane perpendicular to the line tangent vector.

These vision initialization schemes while crude were su�cient for the ceiling
features as we had a variation in height above the camera of between 1.5 and 2.5
meters. This relatively small variation in depth made initialization much easier.
For a more general case more sophisticated methods might be needed.

52 CHAPTER 4. FEATURES FOR LOCALIZATION

4.6 Summary
The Features to be used in the following are wall observed with a SICK laser, ceiling
lines and lamps observed with a camera. The walls are extracted from the laser
scans by means of a Range Weighted Hough Transform. This algorithm has been
optimized by using a two stage accumulator.

The camera images are processed using standard software to extract lines and
lamps on the ceiling.

The features are represented in a general framework called the M-Space fea-
ture representation. The M-Space allows one to generically transform the features.
It also describes the constraints and symmetries of the features by means of the
b matrices. These then help to formulate SLAM algorithms that respect these
symmetries and constraints.

Part II

Estimation

53

Chapter 5

Extended Kalman Filter Based Methods

for Localization and SLAM

Localization and mapping can be phrased as a standard least square estimator.
When applied recursively the typical formulation, for feature systems, is the Kalman
�lter. As the system is non-linear the linearized version, Extended Kalman �lter,
is used.

The Extended Kalman Filter, EKF, is a very good method for both localization
and full SLAM. The idea is to linearize the current measurements around the current
best state estimate and then feed the measurements into a standard linear Kalman
�lter. For this to work the the linearized measurements must be Gaussian.

For a linear Gaussian system, the Kalman Filter will solve (2.7) exactly using
an iterative formula in i. For the SLAM problem the EKF is only an approximation
to the solution [36, 37, 38, 16].

5.1 EKF Localization

When one has an a priori map of the environment one can use it to localize the
robot. One way to achieve this is with an EKF. The main requirement is that the
robot must remain localized in the map at all times. If the robot loses track of its
pose it will be impossible to regain it using the EKF alone. By lose track we mean
that the error in the robot pose is so large that it can no longer distinguish between
map features based on the location alone.

The idea of the EKF is to represent the state as the pose of the robot at time
t, xr(t), and the estimated covariance of that pose, Cr(t). The time variable here
is discrete. As the robot moves the dead reckoning will allow us to predict the new
state by.

xr(t) = f(xr(t− 1),xd(t, t− 1)) (5.1)

55

56 CHAPTER 5. EKF BASED METHODS FOR LOCALIZATION AND SLAM

where xd(t, t−1)) is the dead reckoning incremental coordinates and f is a non-linear
vector valued function describing the motion. The covariance will also change,

Cr(t) = JrrCr(t− 1)JTrr + JrdCd(t, t− 1)JTrd (5.2)
Here we assume the dead-reckoning estimate is statistically independent of the state
at t-1. The J 's here are the Jacobians of the function f .

When features on the map are observed the update step can be invoked using
the matrix K,

K = Cr(t)JTηrS
−1 (5.3)

where S is,

S = (JηrCrJTηr) + Cη(t) (5.4)
The updated robot pose state is then xr(t) + δxr(t),

δxr(t) = −Kη(xr(t)). (5.5)
The updated covariance of the robot Cr(t) + δCr(t)

δCr(t)′ = −KJηrCr(t) (5.6)

UpdatePredict

Figure 5.1: This shows the e�ect of dead-reckoning prediction step followed by a
feature measurement update step on the covariance of the robot position estimate.
The error grows during dead-reckoning but shrinks after using the wall measure-
ment. The error along the wall does not decrease.

We notice that the predict step always increases the covariance and the update
step always decreases it, as illustrated in �gure 5.1. The �nal matching test is
usually taken as test of the mahanolobis distance,

δM = η(xr(t))TS−1η(xr(t)). (5.7)
If this δM is below some threshold the match is considered su�ciently likely to be
used. If several features match the same measurement the lowest δM is used but
this is a sign that the robot is not su�ciently well localized to resolve these features

5.2. EKF SLAM 57

unambiguously. Problems might then occur. Figure 3.6 shows an example of EKF
localization for a data set that we will use in later experiments. Localization given
a map is a solved problem using the EKF as long as the robot is localized from the
start and does not lose sight of the map landmarks.

5.2 EKF SLAM
The SLAM solution works like the localization EKF except that now the state
perturbations include the feature M-Space perturbations,

δxs =
(
δxr
δxp

)
. (5.8)

and the Jηr from the localization case (5.4) gets replaced by Jηs,

Jηs = Jηo

(
Jor Jof B̃

)
. (5.9)

Here B̃(xf) is calculated every time that xf changes. The variation direction in the
global frame that the covariance matrix describes is changing after each update.
We can project the change in the M-Space to changes to the feature parameters by

δxf = B̃δxp. (5.10)
We notice that the �lter must keep track of the current robot poses xr and the

uncertainty in that pose. It also tracks the covariance estimate of the errors in the
pose and the M-Space perturbations. The state of the features is not part of the
�lter. 1 The features separately track the xf and the Kalman �lter will provide
adjustments to those coordinates as shown above.

We can also include any parameters or the robot to sensor pose in xr. We just
need to calculate their Jacobians each time.

Correspondingly the update step using our relative form is:

KT = S−1DoηD
oCs(t) (5.11)

where S is,

S = (DoηD
oCs(DoηD

o)T + Cη(t) (5.12)
The updated state is then xs(t) + δxs(t),

δxs(t) = −Kη(xs(t)). (5.13)
The updated covariance of the state,

Cs(t)′ = Cs(t) + δCs(t) = (I −K(DoηD
o))Cs(t) (5.14)

1xp is not a meaningful expression in our theory.

58 CHAPTER 5. EKF BASED METHODS FOR LOCALIZATION AND SLAM

Experiments

Figure 5.2: Four EKF maps made by from left to right a PeopleBot, Pioneer,
PowerBot and a custom built robot. The number of walls in the maps were 120,
232, 218 and 86 respectively. The lighter (green) lines represent the hand made
map while the darker (black) lines are the SLAM map. The size of this building is
13 by 39 meters.

The EKF SLAM implementation shown here uses the M-Space feature repre-
sentation. Here we show some of the extensive test results for this SLAM imple-
mentation which can handle vision and laser data, separately or in combination.

We tested our EKF SLAM on four di�erent indoor robots in the lab. Each of
these robots was equipped with a SICK laser scanner LMS-200. The results are
shown in �gure 5.2. The four robots used the same con�guration parameters for the
EKF SLAM program. Three robots were from ActivMedia, a Peoplebot, a Pioneer
and a PowerBot. The fourth was a custom made robot.

In �gure 5.3 we show a comparison between the maps made with the di�erent
robots. We matched the maps pairwise by matching walls that were within 50 cm
and 6 degrees of each other. The best match was taken if more than one was found.
As the experiments were performed on di�erent days and the paths only partially

5.2. EKF SLAM 59

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

30

35

(meters) Perpendicular Error in Wall Centers

N
um

be
r o

f M
at

ch
es

EKF Map Match Error Histogram

556 Walls Matched
of 769: 72%
10 cm RMS error

Figure 5.3: Here we see the distribution of the di�erences between the location of
the wall centers after matching the maps pairwise. The walls were matched using
a simple matching of all walls within 50 cm and 6 degrees. We matched all 6 pairs
of maps and cumulated the results in this histogram. 72% of the walls matched.
The RMS Error in the perpendicular distance of the wall centers was 10 cm.

overlapped there were some non-matched walls. Figure 5.4 show the extent of the
matching for the two largest maps, made by the Pioneer and the PowerBot robots.
Overall we found 556 matches out of a total of 769 walls. We tried to match each
wall from the smaller map to the walls of the larger. The RMS di�erence in the
center locations was 10.1 cm, measured normal to the wall.

One can see that the EKF can make accurate maps consistently if enough good
features are always in view. And the data association is unambiguous. For these
maps the calculation time was not an issue. Notice that some walls shared endpoints
with adjacent walls forming a corner. These corners had one 2D point that, when
updated, changed both walls. In other word the corner constraints were explicit in
the representation.

We also mounted a web camera pointing straight up at the ceiling. We then

60 CHAPTER 5. EKF BASED METHODS FOR LOCALIZATION AND SLAM

0 2 4 6 8 10 12 14 16

0

5

10

15

20

25

30

35

40

Figure 5.4: This illustrates the extent of the matched sections between the two
largest maps. The walls of the original two maps are shown dotted while the
matched walls are in solid black. Distances are shown in meters.

5.2. EKF SLAM 61

Figure 5.5: Example image with two line features and a lamp feature detected.

Figure 5.6: Snapshots of the ceiling along the path showing the line detection
output.

62 CHAPTER 5. EKF BASED METHODS FOR LOCALIZATION AND SLAM

Figure 5.7: The map obtained using only the camera images consists of lines and
lamps on the ceiling. The true map of the walls in the lab is also shown for reference.
One can see that the robot passes through the center of the doorways and that the
rectangular nature of the ceiling lines is maintained indicating good accuracy. The
lighter lines have M-Space dimension of 1 (direction only) while the darker lines
have 3. The squares are the ceiling lamps which were also used for doing SLAM.
The size of the mapped area is 13 by 15 meters

5.2. EKF SLAM 63

Figure 5.8: The same map from another viewing angle. One can see that the
features are indeed 3D. The ceiling height is higher in the rooms than in the hallway.

Figure 5.9: This shows a larger, (13 m x 39 m), EKF map made using vision features
on the ceiling with the pioneer robot. The building walls are shown for reference
only and were not part of the SLAM estimate. The darker lines are the full 3D
horizontal ceiling lines while the lighter (blue) ceiling lines are one dimensional
(orientation only). The squares show the locations of ceiling lamps.

64 CHAPTER 5. EKF BASED METHODS FOR LOCALIZATION AND SLAM

Figure 5.10: Here we show the EKF solution to a data set made with the ATRV
robot exploring autonomous. The EKF algorithm cannot consistently be updated
with the large error on closing the loop here. The size of this area is about 100 x
100 m.

5.2. EKF SLAM 65

Figure 5.11: Here we show the EKF solution to a data set with 3 closed loops. The
algorithm again has no way to deal with the large errors that have accumulated
around the loops. The size of this area is about 100 x 100 m.

used the camera and odometry for doing SLAM while using the SICK to check our
accuracy.

The images were 320x240 acquired at 10Hz. The features were found by using
the OpenCV 2 library. Lines and points were extracted. Lines were extracted using
the Hough Transform. For point features we used the center of lamps of circular
shape that were detected based on their intensity. Figure 5.5 shows an example
image. The height of the linear structures above the camera varied between 1.5
and 2.5 meters. Figure 5.6 shows image snapshots from the environment.

The ability to use the lines for orientation almost immediately was of signi�cant
bene�t in the corridor where the robot moved parallel to the line for a long distance

2OpenCV means Intel: Open Source Computer Vision Library

66 CHAPTER 5. EKF BASED METHODS FOR LOCALIZATION AND SLAM

before turning into a room and �nally being able to triangulate the line's position.
This helped the robot to stay localized.

Figures 5.7 and 5.8 show the results. Here the walls of a hand made map, (not
used by the SLAM program), are shown to help in understanding the path the
robot followed. The robot starts and ends the experiment in the room to the lower
left in the �gure. the dashed curve is the estimated path calculated by the EKF
program. The dark lines represent the ceiling lines put into the map. These are the
lines that were fully initialized. That is to say 3 M-Space dimensions. The lighter
lines are the partially initialized lines. These have 1 M-Space dimension orientation
only. The square are the locations of ceiling lamps put into the map. One can see
that the return path passes over nearly the same points as the outward path and
that it passes through the centers of the doorways. Also the lines are oriented to
the building walls parallel. All this indicates good accuracy. The �nal position was
correct to a less than few 5 cm.

We also tried the variation of a Quick Cam camera with wide-angle lens and
the pioneer robot. This camera had a focal length of 283 pixels as compared to 503
for the Phillips camera used on the �rst data set. The wider �eld of view helped by
maintaining the features in view for a longer period of time. Figure 5.9 shows the
results for a larger map. For this map we allowed the �xed rotation of the camera
relative to the robot to be a variable parameter estimated by the EKF. This helped
to model the vibrations of the camera in the robot frame. Without these additional
parameters in the EKF we found it impossible to get good results for the camera
with this robot. By comparing the laser scan data, (taken at the same time but
not used by SLAM here), to the walls of the hand made map we can assert that
the robot remained well localized throughout this experiment.

Figure 5.10 shows a EKF SICK laser map made on a large data set outside a
building using the ATRV robot equipped with the Crossbow inertial sensor. This
data set cannot be solved using the EKF as we cannot impose the loop closing
constraint consistently. To do so would violate the linearizations. A solution to
this problem will be presented later.

Finally, �gure 5.11 shows another EKF SICK laser map made on a very large
data set outside the same building using the ATRV robot. The EKF algorithm is
unable to impose the global constraint.

5.3 CEKF SLAM

The main idea of the compressed EKF, CEKF, is that the map can be separated
into two parts, the part being observed and the unobserved part. We will refer to
the part being observed as the visible map rather than local map to emphasis that
it only contains recently seen features. The key insight is that while one makes
updates to the visible map using the observations, one can accumulate the e�ect
of these updates on the rest of the map in a set of matrices of order the size of the

5.3. CEKF SLAM 67

visible map. Thus, the calculation burden of each iteration become nearly constant,
until one needs to update the whole map.

The equations needed to do this were �rst presented in [19]. We let a signify
the visible map and b the rest of the state vector. We can use matrices ψ and φ to
do a global update of the covariance,

Cab(t3) = φ(t3 − 1)Cab(t2) (5.15)
Cbb(t3) = Cbb(t2)− Cba(t2)ψ(t3)Cab(t2). (5.16)

Then use θ to update the state.
xb(t3) = xb − Cba(t2)θ(t3). (5.17)

These are the global updates done at a low frequency. The matrices ψ and φ
are calculated iteratively. For the predict step we have,

φ(t) = Jaa(t, t− 1)φ(t− 1) (5.18)
ψ(t) = ψ(t− 1) (5.19)
θ(t) = θ(t− 1) (5.20)

The update step is,

φ(t) = (I − Caa(t)β(t)φ(t− 1) (5.21)
ψ(t) = ψ(t− 1) + φT (t− 1)β(t)φ(t− 1) (5.22)

θ(t) = θ(t− 1)− φT (t− 2)JTηa(t− 1)S−1(t− 1)η(t− 1) (5.23)
β(t) = JTηa(t)S

−1(t)Jηa (5.24)
In [18] it is pointed out that as one observes a feature from the part of the map

not being updated one can selectively update only that feature. In other words one
can move a single feature up to the visible map without the need for a full global
update. This is important since a full update has a much higher complexity, which
in many cases challenges real-time operation. This would force the robot to stop
and compute often. By only updating the features as needed the robot can operate
non-stop.

The update matrices can be extended by adding row i=a+1 thus:

φa+1,a+1(t) =
{

φaa(t) 0
−Cia(t2) · ψaa(t) 1

}
. (5.25)

.

ψa+1,a+1(t) =
{
ψaa(t) 0

0 0

}
. (5.26)

.

68 CHAPTER 5. EKF BASED METHODS FOR LOCALIZATION AND SLAM

LM2

VM

LM1

wall A

Ψ2, Φ2, θ2

Ψ1, Φ1, θ1

Figure 5.12: Here we illustrate the operation of the compressed �lter. The dotted
lines enclose each of three maps, LM1, LM2 and VM. VM is the visible map at the
current time. LM1 ans LM2 are local maps at earlier times. The robot moves in
the direction shown and wall A is observed. Since it is on LM1 it will need to be
�rst added to LM2 and then to VM before it can be updated with the observation.

θa+1(t) =
{
θa(t)

0

}
. (5.27)

.
Here by Ci,a(t2) we mean the ith row of the covariance matrix at iteration t2,

assuming the visible map was formed at iteration t2. The subscript a indicates
the subspace of the state space corresponding to the visible map. The covariance
and the position of the added point will be calculated in the normal way for the
compressed �lter only we just calculate the ith row. A careful examination of the
update equations will show that equations (5.25) to (5.27) are what one would get
if one had included the extra row from the formation of the visible map.

In our implementation a visible map begins with just the three pose coordinates
as the state vector, xr(t). As features are actually observed, they are put on the
visible map. Once the visible map becomes larger than a speci�ed size a new visible
map is initialized with only the pose on it. The old visible map becomes a local
map from which the current visible map can draw features. One can think of the
visible map as being at the current time while the local map is at an earlier time.
From that point on, as features from the older map are observed again they will
have to be brought up to the current time using the update matrices for the current
visible map.

Then as this new visible map becomes too large the process is repeated. There
is now a chain of three maps, two local maps at earlier times and the current visible

5.3. CEKF SLAM 69

map. Now observed features not on the visible map can be one of three types:
1. A new feature not on any local map will be simply added to the current visible

map.
2. A feature from the previous, (second), local map will need to be brought up

to date using the current update matrices.
3. A feature from the �rst local map will need to �rst be brought up to the time

of the second local map and then up to the current time.
This process continues opening new visible maps and chaining them together,

so that each map in this chain has a father and a son. When a feature is observed
the visible map is asked for the feature. If the feature is not on the visible map,
and thus not up to date, the visible map asks his father for the feature. This call
then will travel down the chain until it gets to the map that has the feature. Then
the updates are done for that feature back up the chain, with each map updating
the feature and then turning it over to its son, who does the same and so on.

In �gure 5.12 we have illustrated the idea. There we show three maps chained
together by the update matrices ψi, φi and θi. The �rst map, LM1 , is at a time
t1 the second LM2 at t2, while the visible map, VM , is at the current time, t3. As
the robot continues down the street, wall A will come into view. At that point the
feature matcher will ask VM for wall A. As VM does not have such a wall it will
ask its father, LM2 for the wall. LM2 will similarly ask LM1. LM1 will update
the wall with ψ1, φ1 and θ1 before giving the wall to LM2, and so on.

It is this feature update that limits the size of the map or rather the chain. The
size of the global map does not actually ever a�ect the complexity of the calculation
unless a global update is required for some reason. Global updates are not required
for pose estimation or local navigation. However if this chain of maps gets to be
too long, the observation of features from a map far down or at the bottom of the
chain could lead to signi�cantly longer update times. Thus it may be necessary to
stop the robot and do a global update from time to time to collapse the chain.

Experiments
We were fortunate to have access to a military urban warfare training facility outside
of Stockholm. There we have a mock town with 18 mock buildings arranged along
several streets. There are various vehicles and debris lying in the streets as well.
The road surfaces are unpaved complete with large ruts, holes and rocks. The
road is nowhere level and the slopes can be steep enough for the robot to start
to slide sideways. The robot used was the ATRV robot equipped with a SICK
LMS291 Laser scanner and a crossbow DMU-FOG inertial sensor. We used the
fused inertial and odometry dead reckoning as described earlier.

To tune and test our SLAM program we used a few large data sets taken by
driving the robot by hand. We drove the robot through a large nearly closed loop

70 CHAPTER 5. EKF BASED METHODS FOR LOCALIZATION AND SLAM

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Figure 5.13: This is an example of a typical SLAM test at the mock town. The
terrain behind the buildings where we start is very rough with the pitch and roll
angles reaching maximums of 30, respective 10 degrees. The results show that we
can build maps over the di�cult terrain. The scales are in meters. The ground
truth is shown as faint dotted lines for the survey map of the buildings.

5.3. CEKF SLAM 71

in the area and the results are shown in Figure 5.13. This is a typical result from
our SLAM tests in the area. The dotted lines show the survey maps of the area
and the solid lines are the result of the SLAM.

−40 −20 0 20 40 60 80 100
−20

0

20

40

60

80

100

start

Figure 5.14: This is an example of autonomous exploration and map making. The
dotted lines represent the actual building. The solid lines are the walls, fences and
cars that the robot built into a map. The robot path is shown as the continuous
curve encircling the building. This is also the real-time data saved at the time of
the explore. Despite the errors the robot maintained a good enough pose estimate
to carry out a complete exploration. Distances are in meters.

Up to this point the reader might be thinking that the SLAM problem is solved.
It is true that on this data set the CEKF works very well. The reason is that this
data sets had relatively easy data association and nice uniform dense features. It is
particularly important that the robot has information su�cient to localize itself on
the visible map. That means there needs to be walls in two linearly independent
directions. In the next data set we have di�cult data associations and long stretches
with walls only in one direction. We also have a large loop in the map. This proved

72 CHAPTER 5. EKF BASED METHODS FOR LOCALIZATION AND SLAM

to be beyond the limit of what a EKF/CEKF can handle.
We drove the robot outside, Figure 5.14. This building is about 70 m square

with fences around most of it. The robot was taken out to a spot in the parking
lot between the fence and the building. The robot was then told to explore a large
rectangular region chosen to enclose the entire building. The robot then drove the
path shown while simultaneously calculating its path and the map as shown. At
two points human intervention was required. Once the robot was heading for a
patch of grass that would be torn up by its wheels. A human stood in its way to
prevent that. At another point the robot did not see a low bench with its sonar
and drove too close to get away. It was driven by hand a few feet and commanded
to resume exploring.

This is the same data as we showed earlier in the EKF SLAM section (see
�gure 5.10). That map was made using our current EKF program as opposed to
this older implementation. We have gotten a bit better at �ltering out some of
the bad decisions made here. Figure 5.14 was made in real time at the time of
the explore using the older implementation. That is why the program makes more
erroneous decisions but these are very good illustrations of the real ambiguities in
data �ltering.

As one can see, the map has two points where errors occurred. These are shown
by the arrows starting from the robot and pointing to the feature that caused the
trouble. The �rst point was just before turning the �rst corner. There its position
estimate acquired an error of by about 2 m. This turned out to be due to a fence
that the robot could see through and was partially hidden by vegetation. This was
sometimes seen as being closer and sometimes further away. We could eliminate
the poor observations by making the feature threshold a bit tighter but this caused
some good measurements to be lost resulting in a worse map.

The second place is similar and occurred before the last turn. There the robot
was traveling down a slope and the laser scanner was seeing the ground. The ground
looked much like a wall. Once the ground was put on the map as a wall the robot
tried to localize with it. As the robot moved down the slope the wall seemed to
move as well which was interpreted as pose errors. Making matters worse was the
fact that the robot also slide sideways quite signi�cantly while turning on this slope.

As can be seen the map in this example failed to close on return to the starting
location. This was due to the problems we described. We then began working on
the problem of being able to reconsider bad or rushed data associations like those
that caused the �rst large error. We also realized that errors such as sliding sideways
may still occur. Therefore, we would like to be able to somehow correct this map
with the loop closing information. This was the motivation behind graphical SLAM.

This test clearly illustrates some of the challenges with EKF based systems:
� Too early commitment to data associations.
� Unmodeled drift and biases lead to serious inconsistency.
� Unimodal uncertainty model cannot capture the true stochastic map.

5.3. CEKF SLAM 73

� Loop closing cannot be done consistently when large errors are present.
These issues form the basis for the work presented in the following chapter.

Chapter 6

Graphical SLAM

The graphical SLAM method is based on the same sort of graph that represents
the Extended Information Filter, EIF [41], with some changes. The EIF graph
represents the non-zero information matrix elements by edges in the graph between
nodes that represent the state.

F

F

P

F

F

F

F

F

P

F

P

F

F

P

F

F

F

F

F

F

Figure 6.1: Here we illustrate the Extended Information Filter as a graph. The non-
zero elements of the information matrix can be represented as edges in a graph.
The nodes then correspond to the state components, pose and feature. The prior
robot pose is marginalized out of the linear system producing a simpler graph. As
new poses are added the older ones are eliminated which creates edges between
previously unconnected feature nodes. As this proceeds the features all become
connected to one another. However the links between distant features are weak.

In EIF SLAM the predict step will marginalize out the robot pose at the previous
iteration and only keep the current pose in the graph see �gure 6.1. When doing that
the graph will gain edges between all nodes attached to the eliminated pose node.
This includes the current pose node. This then leads to a dense graph/information
matrix. The dense matrix makes solving for the expected state di�cult.

Our method di�ers in two main areas. First we do not linearize the system to
give a constant information matrix. Instead we recalculate the information matrix,
(or Hessian of our graph energy), at each estimated state. So when the state changes
so does this matrix.

The second main di�erence is that we do not marginalize out all the previous
pose nodes which then gives us a sparse graph for which it is easier to calculate the
expected state. This sparseness is not the result of any explicit sparsi�cation step

75

76 CHAPTER 6. GRAPHICAL SLAM

but rather is a result of not doing the marginalization of pose nodes. Thus, we do
not need to consider the consistency issues of SEIF.

We eventually do linearize and marginalize out poses from the state but we
leave some poses in to maintain this sparseness. This also helps in other ways like
giving each mapped area its own frame of reference. Such a frame is useful if other
information is being collected along with the map an needs to move with it [62].

6.1 The SLAM Graph
The starting point for building our graph is equation (2.7) which we repeat here:

hMAP = argmaxh{
∑
i

lnP (vdi|h) +
∑
i

lnP (vfi|h) +
Nf∑
j=1

Λ(nj(h)− 1)} (6.1)

The SLAM problem is the problem of �nding the maximum of the sum of three
separate types of terms. Let us examine the �rst type of term. De�ne Edi, the
dead-reckoning energy:

Edi = − lnP (vdi|h) = − lnP (vdi|xr,i−1,xr,i) =
ξikiξi

2
(6.2)

Here we assume an independent Gaussian model and drop an additive constant.
The ki are the inverse covariance matrices of the dead reckoning estimates and

ξi = T (xr,i|xr,i−1)− δi. (6.3)
Here T denotes the non-linear transformation to the robot frame at xr,i−1. The

term δi is the estimated motion in the robot frame. We note that the EIF, (and
EKF), approach would be to now linearize ξi and absorb all the Jacobian terms
into the constant ki. We will take a di�erent approach, keeping this non-linear
expression and introducing a new type of node to store this function, an energy
node. The energy node will calculate this nonlinear Edi based on the current value
of the pose states xr,i and xr,i−1. These pose states will be stored in state nodes
as before in the EIF graph. So instead of constant matrix elements represented by
edges between two state nodes we have edges from state nodes to energy nodes.
The energy nodes then can represent any general function of the attached states.

We can now look at the last two terms in equation (6.1). They give the energy
of the feature measurements,

Efi = − lnP (vfi|h)− κΛ = − lnP (vfi|xr,xf)− κΛ (6.4)
where κ is 0 for a new feature or the dimension of the measurement if the mea-
surement is matched to an existing feature. The Λ term gives some preference for
using existing features to explain new measurements. Thus if the energy, Efi < 0,
the match can be considered to be correct.

6.1. THE SLAM GRAPH 77

We can now represent equation (6.1) by a graph where the state nodes represent
the states, xr and xf . Each term of the sum over measurement likelihoods corre-
sponds to an energy node. The data association hypothesis is represented by edges
connecting the state nodes to energy nodes. One can test various combinations of
data associations by attaching edges between nodes in the graph.

F

F

P

P

F

P

P

P

Figure 6.2: This shows how a graph is built up. The lighter (blue) pose nodes are
labeled P, the feature nodes (yellow) F. These are the two types of state nodes. The
darker (red) smaller circles are the energy nodes representing measurements. We
sometimes focus attention to the subgraph of just pose nodes and the energy nodes
connecting them. This subgraph is shown with heavier edges here. Th energy nodes
between the pose nodes are from dead-reckoning and the ones between feature and
pose nodes are from feature measurements.

The total energy is composed of two terms, one is related to the uncertainty
in dead-reckoning and another from feature measurements, as in equations 6.4 and
6.2.

E =
∑
i

Edi +
∑
i

Efi. (6.5)

We now want to �nd the data association ha and values for the state nodes,
{xr} and {xf}, that minimizes the total energy.

Nodes and edges can be added immediately when observing a new feature. In
the M-Space model, new features will not have an e�ect on the map, (Efi = 0),
until they collect enough information to initialize some of the M-Space dimensions.
At such a time all the edges of the feature can be tested again to determine if they
lower the energy, (Efi < 0). Thus the measurements are not added in any �nal way

78 CHAPTER 6. GRAPHICAL SLAM

but can be removed later. The advantage is here that association can be added or
removed at any time, by inserting or deleting arcs from the graph.

We evaluate the feature energies by �rst de�ning the innovation function, η(v,xo),
as in equation (4.10). If the η are Gaussian with variance Cηη and mean 0, then
the energy is given by:

Ef =
1
2
η(xo)TC−1

ηη · η(xo)− Λκ, (6.6)

This is similar to the dead-reckoning energy except for the κ term. Putting this
together, we can write the gradient Gs for the energy with respect to the state s
as.

Gs = ηTC−1
ηη

(
JηoJor JηoJof B̃f

)
= ηTC−1

ηη (DoηD
o) (6.7)

For the dead reckoning we get a very similar result with the B matrix equal to
the identity and with the robot pose coordinates replacing the feature coordinates.
We note that the s subscript will refer to the state coordinates, which are speci�cally
δxr and δxp. We can also calculate the Hessian of the energy.

Hss =
(

JTorJ
T
ηo

B̃Tf J
T
ofJ

T
ηo

)
C−1
ηη

(
JηoJor JηoJof B̃f

)
= (DoηD

o)TC−1
ηη (DoηD

o)

(6.8)
These quantities, E, Hss and Gs, are calculated by the energy nodes based

on the state nodes. They are the fundamental quantities of the graphical SLAM
method. The Hessian is essentially the information matrix while the gradient sets
the expectation value of the state given this data association. That is for the lin-
earized system around the current state. The nonlinear system has many local
minima. This is related to the multi-modal probability distribution that underlies
the model. One �nds that for instance two separate robot paths can be reasonable
given the measurements. From then on the distribution will have a mode asso-
ciated with each of these choices for the path. Later as more measurements are
added to the system modes will become more isolated from one another as the later
hypothesizes will not be compatible between modes.

We evaluate these terms each time we try to estimate the MAP state. Thus we
make no approximations. Unfortunately, we also cannot �nd a closed form solution.
That is why we must relax the graph to approach the minimum energy solution.
Fortunately, in many cases, this can be done more quickly than �nding the exact
solution to the linearized system. For instance for very large systems where we are
exploring new areas we can relax the graph locally and our complexity will not
depend on the size of the system.

6.2. GRAPH RELAXATION 79

6.2 Graph Relaxation
For the purpose of our explanation we consider a single state node and its attached
energy nodes. These energy nodes calculate the non-linear energy function and
its derivatives at the current state. We sum the contributions to the gradient and
Hessian from each attached energy node and use them to relax the state node:

Hss∆xs = −Gs (6.9)
We repeat this for all the nodes in some section of the graph starting with the

set of state nodes attached to added energy nodes. If we had a quadratic energy
this would amount to a Gauss-Seidel iteration for this subset of the full system.

Update Set

Sub−System

F

F

P

P

F

P

P

P

P

F

F

P

P

F

P

P

P

P

F

F

P

P

F

P

P

P

P

F

F

P

P

F

P

P

P

P

F

F

P

P

F

P

P

P

P

F

F

P

P

F

P

P

P

P

Figure 6.3: This �gure illustrates 6 iterations of the relaxation algorithm. The
update set starts containing the newly added energy node shown enclosed in the
shaded region. The sub-system is shown by ringing in each of its state nodes. On
the next iteration the update set has grown to include those energy nodes with
signi�cant change after relaxing the sub-system in the �rst iteration.

To clarify, the basic graph relaxation, (see �gure 6.3), after adding a new con-
nection to an energy node is:

1. Set an update set of energy nodes = the newly added energy node.
2. Form a set of state nodes, sub-system, out of all state nodes attached to an

energy node of the update set
3. Relax the state nodes of the sub-system one at a time, Eq. 6.9.
4. Clear the update set
5. For all energy nodes attached to the sub-system; If the energy change was

signi�cant add to the update set.

80 CHAPTER 6. GRAPHICAL SLAM

6. If the update set is not empty goto 2.
Else done.

For a signi�cant change to an energy node we �rst require that the magnitude
of the energy change be greater than an nominal small amount, 0.01. Most energy
nodes will be eliminated by that test. Next we test the ratio of the magnitude of
the change in energy to the energy after relaxation. If this relative change is larger
than a threshold, (we used 5 percent), we consider the change signi�cant.

This way of organizing the updates requires no extra work in testing for signi�-
cant change as the quantities tested have already been calculated. The update will
terminate quickly if little tension is added to the graph but can also spread quickly
though the graph to where relaxation is needed.

In practice one needs to limit the number of times we run through the graph
relaxation steps. It is better to relax a little each iteration than to spend too much
time relaxing on any single iteration. In this way the cumulative e�ect will be to
drive the system toward the minimum while assuring real-time constraints are met.
Also this tend to low pass �lter some of the noise from individual measurements.
We also check that equation (6.9) actually reduces the energy. If not we reduce the
step size until it does.

We have one other method to do relaxation on the graph which takes advantage
of the special structure of the graph. The graph is a chain of pose nodes linked
together with each pose node attached to some feature nodes. If a stress is added
to the graph at one end of this chain, it can be di�cult to propagate the stress
along the chain. The stress tends to be absorbed mostly at the end of the chain
and then become so small that it never distributes itself optimally along the chain.

To solve this we form a sub-system out of just a number of pose nodes going back
from the current pose node. This number will vary between 20 to 300 depending
on the current feature measurements. This subsystem includes no features. The
Hessian, H, of the subsystem is block tri-diagonal with 3 x 3 blocks. This system
can be solved easily with care given to the numerical stability. We don't solve
the block tridiagonal system Hx = −G directly but rather H ′x′ = −G′. Where
H ′ = PTHP , x = Px′ and G′ = PTG. P is given by,

P =

I 0 0 ...
I I 0 ...
I I I ...
...

 (6.10)

and I is the block identity matrix. This can be thought of as changing from the
global pose variable to incremental ones. We actually are using the di�erence in the
coordinates of the poses which are not the same as the coordinates of the relative
poses. For small movements between nodes this is approximately the same. By
doing this we make H ′ strongly block diagonally dominant. This is so because of
the form of the dead-reckoning energy term which is always present and is the only
contributor to the o�-diagonal blocks in the original sub-system. There is 100% �ll

6.3. FEATURE MATCHING 81

produced by P but by being careful to exploit the special structure of the original
tridiagonal system the complexity remains linear in the number of nodes in the
subsystem. Periodically, say every 25 iterations, we relax the graph in this way.
We then relax the features attached to the subsystem. The subsystem used is the
tail of the graph to be de�ned later.

The graph relaxation takes a time that depends on the amount of stress added
to the graph. It does not depend on the size of the graph as the calculation remains
local. While the robot is exploring new areas the amount of stress added is very
small and updates are fast. If the robot turns around and backtracks there can be
some stresses that will cause a longer update time. Closing loops can create even
more stress and can cause the updates to take more time than one sensing cycle to
complete. We therefore maintain a bu�er for the input and allow the program to
run asynchronously with the data coming in.

6.3 Feature Matching
The basic criteria for feature matching is that the energy should be minimized. The
advantage with the graphical method is that the match can be reconsidered at any
time. As each new measurement node is added to the graph and after we update
the path of the robot, we can remove and then add all the dense information for a
feature. This is done so as to have the information added along a continuous and
correct robot path. We then try to extend the feature's p-dim. If this succeeds,
(ie. we can initialize some part of the feature), we will automatically start to use
all the measurements that we attached to the feature node. That is to say the
measurement nodes will begin to calculate energies using the newly initialized p-
dim. At this time we check each measurement node attached to the feature node
to determine if the energy is greater that Λ times the p-dim. If so we remove the
measurement node and its edges from the graph.

For initialized features we check the energy change when adding a new measure-
ment node to the feature. If this change after relaxing the graph is greater that Λ
times the p-dim we remove the node and its edges and restore the state.

Notice that we can add the features to the graph after the �rst observation.
While the p-dim is 0 the energy returned by these measurement nodes will be
identically 0. As soon as the p-dim grows the information stored in these nodes
will be used to calculate the energy.

If the feature is never initialized it will eventually be removed from the graph.
Periodically the features are checked to see if they can be deleted. A feature can
be deleted if it has 0 M-Space dimension and was last observed at at a point that
is considered too far from the current robot position, a few meters.1

1The features are maintained by a manager object, the feature bank, and no other object stores
pointers to features, including the feature nodes. They instead store the key associated with the
feature and ask the bank for a pointer to the feature as needed. When the feature is deleted it
noti�es the bank. If any object then asks for the deleted feature it receives a null pointer. The

82 CHAPTER 6. GRAPHICAL SLAM

Experiments

−10 0 10 20 30 40 50 60 70 80 90
−10

0

10

20

30

40

50

60

70

80

90
Full Non−Linear Graphical Slam

Figure 6.4: Here is a map made using the exact nonlinear energy for the system.
The robot slid sideways at one point which caused the error in closing the loop. We
see that the data association problems are now not present.

In �gure 6.4 we show a map made using the ideas described so far. We can now
see how the data set that the CEKF could not solve is handled by the graphical
method. The robot drove autonomously around a building in a counter clockwise
sense. There are 7,500 pose nodes along the path and 11,975 feature measurements.
The graph updates took 225 seconds total or 30 ms on average. This is not counting
features may be deleted for any number of reasons and the other objects may not be informed.
So if a feature node is found to point to a deleted feature it too will be removed from the graph
and deleted as will any edges and energy nodes associated with the feature node. The entire list
of feature nodes is periodically checked for this situation. Also, if one tries to calculate an energy
using a deleted feature the feature node will ask for the feature to calculate its current state. At
that point the calculation will fail and the node will be removed.

6.4. GRAPH REDUCTION BY STAR NODES 83

the feature extraction which is done by a separate module. The time between scans
was 200 ms so the average utilization was 15%. This was on a 550 MHz Pentium
III processor.

We see that the data association problems that caused problems for the CEKF
implementation are no longer a problem. This was true without any special tuning
or �ltering. The false matches were simply removed as a natural consequence of
the energy increase they eventually caused. This eliminated most of the problems
that the CEKF implementation had with this data. The map appears to have fewer
and smaller errors than the EKF and CEKF maps made with this data shown in
�gures 5.10 and 5.14.

The robot slid sideways while turning near the middle of the forth side of the
rectangular path. This caused a large error and the robot failed to close the loop.
If we now simply match the correct features from the end and beginning of the
loop and relax the graph as described, we will �nd that only the ends of the path
change. The stress is very quickly absorbed and will not propagate around the
graph. We found that there are simple too many dimensions in this system to solve
it e�ciently so in the next section we will simplify the graph to solve the constraints
more easily.

6.4 Graph Reduction by Star Nodes
In this section we will show how we can reduce the number of pose nodes while
maintaining the local invariances and symmetries. The extent of the approximations
will be to assume that the local map's relative geometry can be approximated
linearly.

Refer to �gure 6.5. We have selected a set of energy nodes to be combined
into a new kind of energy node, a star node. The energy of the star node will be
an approximation of the sum of the energies of all the energy nodes in the set.
Therefore the energy of the star depends on the states of all the attached state
nodes.

If some state node only has edges to one star node, it can be marginalized out
of the energy formula for the star node. This is then a simpli�cation of the graph.
This step will create a direct coupling between all the remaining state nodes of the
star, so that the star Hessian will be totally �lled. The stars are sparsely connected
to the rest of the graph so that the global Hessian remains sparse.

The energy for the star node is initially the Taylor expansion around x̄s:

E = E(x̄s) +Gs(x̄s) ·
(
δxb
δxq

)
+
(
δxTb δxTq

)
Hss(x̄s) ·

(
δxb
δxq

)
(6.11)

Here we have split the state perturbation vector δxs into δxb and δxq. The xb is a
pose node coordinate which is to become the 'base' pose of the star and δxq are the
other pose and feature coordinates. We now transform all coordinates to the base
frame so that they become δxo = T (δxq|xb). We can write the following identities:

84 CHAPTER 6. GRAPHICAL SLAM

P

P

P
P

F

F

P

F

P

P

F

F

P

F F F

P

F

P

F

F

P

P

F

P

P

P

Figure 6.5: This shows how a graph is reduced. Starting from the basic graph we
linearize all the energy nodes (enclosed by the dotted curves) attached to every
other pose node into a star. We then eliminate the pose nodes which have only one
edge. We then repeat with the pose node between two stars to merge them.

I =
(

I 0
−BJ−1

of Job BJ−1
of

)(
I 0
Job Jof B̃

)
(6.12)

(
δxb
δxo

)
=
(

I 0
Job Jof B̃

)
·
(
δxb
δxq

)
(6.13)

Gs

(
δxb
δxq

)
= Gs

(
I 0

−BJ−1
of Job BJ−1

of

)(
δxb
δxo

)
. (6.14)

The B2 and Jof matrices in equation (6.14) are block diagonal matrices with
blocks for each state node that is connected to the set of energy nodes. The Job is
a column of blocks. As a result of the invariance of the original energy nodes under
transformations of all the state nodes to a new frame, the matrix multiplying δxb
above must vanish identically. Thus we can always �nd the full Gs from the Gq
and the symmetry matrices:

Gs =
(
Gb Gq

)
= Gq

(
BJ−1

of

) (
Job Jof B̃

)
(6.15)

We de�ne Q = BJ−1
of and Q̃ = (Job, Jof B̃). The invariance relation is then

written more compactly as:
2For the pose nodes we can set B = I, the identity matrix, and xf = xr

6.4. GRAPH REDUCTION BY STAR NODES 85

Gs(x̄s) = {Gq(x̄s)Q(x̄s)}Q̃(x̄s). (6.16)
We see that the Q̃ = (Job, Jof B̃) = Do where the base frame now acts as a

robot or sensor frame for all the measurements. Even those taken from other robot
poses. The {Gq(x̄s)Q(x̄s)} = DoE in the same way. So q derivatives times Q are
relative derivatives.

Gs(x̄s) = DoE(x̄s)Do. (6.17)
We can now do the same for the Hessian,

Hss(x̄s) = Q̃(x̄s)T {Q(x̄s)THqq(x̄s)Q(x̄s)}Q̃(x̄s). (6.18)
We now take advantage of our freedom to chose the linearization point. We

chose this so that the gradient vanishes. This means that the star node is linearized
around the state that gives it the lowest energy.

The Hqq matrix is the Hessian at the linearization point without the rows and
columns of the base node. The Hessian might not have full rank as it includes only
part of the measurements for those feature nodes attached to it. We want to have
an explicitly stable representation so we do a singular value decomposition of Hqq.

Hqq =
m∑
k=1

UkλkUT
k (6.19)

Here k runs over the m positive eigenvalues λ and Uk are the eigenvectors. De�ne
the projection into the eigenspace:

ūk = UT
kQx̄o, uk = UT

kQxo, ∆uk = uk − ūk (6.20)
We can now write the energy for the star node in a compact invariant and stable

form,

E = E(u) +
m∑
k=1

λk
2

(∆uk)2 (6.21)

We can also calculate the derivatives of the energy around any new state. So
for example the gradient at xs becomes

Gs(xs) =
m∑
k=1

∆uk(xs))λk
2

UTk Q(x̄s)Q̃(xs). (6.22)

The Hessian is

Hss(xs) =
m∑
k=1

Q̃T (xs)QT (x̄s)Uk
λk
2
UTk Q(x̄s)Q̃(xs) (6.23)

86 CHAPTER 6. GRAPHICAL SLAM

We have not included any term for the derivatives of Q̃(xs). There are two
motivations for this. First such a term will be a product with ∆uk(xs) and thus
be relatively small and zero at the star equilibrium point. Second including such
a term will allow the possibility that the Hessian could have negative eigenvalues,
something that complicates our graph relaxation. Without it the Hessian is positive
semi-de�nite. Computations with and without including these derivatives have been
performed for the empirical evaluation. The di�erences are too small to warrant
the extra work.

The eigenvalues and eigenvectors are saved along with Q(x̄s) and ūk. These can
then be used to �nd the energy for any new state.

6.5 Star Formation
We now address the problem of how to collect the information into star nodes in a
structured way. We will de�ne four sections of the graph in terms of sets of nodes.
We want to reduce the number of nodes in the graph by forming stars. At the same
time we need to limit the dimensionality of the stars or the calculations needed to
form them will be too complex. The di�cult step is solving for the eigenvectors.

As we have said we will not form stars until the state nodes are su�ciently
mature. In practice this means we maintain a sliding window including the last
Ntail pose nodes and try to form stars only beyond this window. The number of
nodes we go back, Ntail, will vary depending on the context as discussed later. We
select a mature pose node and all its attached energy nodes are collected into a star
as shown in �gure 6.5. We continue selecting pose nodes and combining the energy
nodes into stars but we always leave one pose node between each of the stars as
in �gure 6.5. The stars formed by combining the ordinary energy nodes is refereed
to as a level 0 star. Two level zero stars can be combined into a level 1 star by
eliminating the pose node between them.

We continue in this way combining stars at the same level to form stars of one
higher level. We stop when some criteria on the size is reached. That might be the
distance between the two poses attached to the star, the dimension of the star or
the level of the star.

We now de�ne the four sections of the graph, �gure 6.6. One section is the
tail, the current robot pose node and all the pose nodes before it back to until we
come to a star node. While making the graph the robot appears to be dragging a
tail of pose nodes behind it back to this star node. In reality the pose nodes are
being created at one end and eliminated by forming stars at the other and are not
moving.

Another section is the formation set. It is here that stars are still being built
up level by level. The formation set is a simple chain of alternating pose and star
nodes.

As stars in the formation set get to large to grow anymore they are moved out
into the loop set. It is the loop set that is compared to older sections of the graph

6.5. STAR FORMATION 87

Mature Nodes

Loop Set

Formation Set

Tail

Figure 6.6: This �gure illustrates the four sections of the graph. No feature nodes
are shown for clarity. The tail is the newest section of the graph where no star
nodes have yet been formed. The formation set is where the stars are being built
up until they become too large to grow any more. They are then moved to the loop
set which is matched to the mature nodes to �nd possible loops in the graph. After
searching for loops the stars from the loop set are moved to the mature nodes.

to �nd potential loops in the robot path. These loops then represent constraints
on the graph. Stars are removed from the loop set and put into the forth set, the
mature nodes as described later.

As we have said the length of the tail, Ntail, will vary. It depends on the current
features being observed. While we are still collecting information for initializing the
features attached to a pose node we will not move it from the tail to the formation
set. That is so that we can adjust the dense information

Stars in the loop set and from the mature nodes that share feature nodes can
be combined in order to build in the topological constraint in the graph. This
should only be done if the features they have in common are su�cient to de�ne the
transformation between the base frames.

88 CHAPTER 6. GRAPHICAL SLAM

Figure 6.7: Here is the map made using the star nodes and vision features indoors.
The size of the mapped area is about 13 by 15 meters. The robot path stars and
ends in the room at the lower left. The raw laser scan data is displayed as a check
on the �nal localization accuracy. By comparing it to the hand made map shown
by the lighter (green) lines, one can assert that the �nal location was accurate to a
less than 5 cm.

6.5. STAR FORMATION 89

Figure 6.8: Here we show the map at two di�erent stages of being made. On the
left we see that the tail has been allowed to grow to the entire length of the ceiling
line that the robot is about to pass under. At this time that line is still 1D (light
blue), orientation only. It has been used to keep the robot oriented in the corridor.
When the robot passes under the line it can be fully initialized to 3D (dark blue).
As the tail extends to the �rst observation of this line all of the observations can
now be used. To the right we show the situation on a return to the corridor. As
the line is now fully initialized there is no need to have the tail long.

Experiments
Figure 6.7 show a map made using only vision features and the star nodes. Here
we see how at some places the stars were formed at points where the robot crossed
its previous path. Some of these stars connect the two section of the path so that
they attach more than two pose nodes. In particular we see one star node that has
consolidated all the measurements form the paths in the corridor leading from the
larger room on the left to the smaller room on the top right corner and back. This
lead to the long edge connecting a pose node in the doorway of the smaller room
to the star node just outside the larger room between its two doors.

Figure 6.8 illustrates the advantage of varying the length of the tail. Here a line
on the ceiling was observed for a rather long distance before the robot was able
to triangulate the height of the line. By keeping all the pose nodes from the �rst
observation up to the current time no information was lost. When the line is �nally
initialized all the energy nodes along the tail can use the full 3D M-Space feature.
At that time the tail can be made much shorter as shown on the right.

90 CHAPTER 6. GRAPHICAL SLAM

Figure 6.9: Four Graphical SLAM maps made by from left to right a PeopleBot,
Pioneer, PowerBot and a custom built robot. The number of walls in the maps were
155, 219, 192 and 78 respectively. The lighter (green) lines represent the hand made
map while the darker (black) lines are the SLAM map. The size of this building is
13 by 39 meters.

We also evaluated the Graphical SLAM implementation on the four data sets
taken in our lab with the four di�erent robots. For this test we made no changes
to any of the parameters for odometry model or feature initialization and matching
from the ones used in the earlier EKF tests (see �gure 5.2). The only parameters we
picked were the ones particular to the Graphical SLAM algorithm. The resulting
maps are shown in �gure 6.9.

These data sets were rather well suited to the EKF algorithm as the robot is able
to stay well localized the entire time and there are no large loops in the paths. This
resulted in no large corrections to the robot pose and thus the linearizations were
done reasonably consistently. The graphical SLAM algorithm made good maps as
well but had more trouble. The backtracking of these paths caused the tension in
the graph to increase. This made relaxation harder. The EKF with its closed form
global solution did not su�er from this problem.

In addition the data association here was relatively easy. This meant that the
graphical method's more �exible data association and feature initialization was not
a signi�cant advantage here.

A �nal point was the order of the experiments. We have tuned all the M-Space
feature parameters for matching, tracking and initialization of features as well as

6.5. STAR FORMATION 91

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12

14

(meters) Perpendicular Error in Wall Centers

N
um

be
r o

f M
at

ch
es

Graphical SLAM Map Match Error Histogram

435 Matches
out of 736 Walls: 59%
11 cm RMS Error

Figure 6.10: Here we see the distribution of the di�erences between the location of
the wall centers after matching the maps pairwise. The walls were matched using
a simple matching of all walls within 50 cm and 6 degrees. We matched all 6 pairs
of maps and cumulated the results in this histogram. 59% of the walls matched.
The RMS Error in the perpendicular distance of the wall centers was 11 cm.

the parameters of the odometry models using the EKF program. These then were
naturally well tuned to give good results for that implementation. We did not
re-tune these parameters for the Graphical SLAM evaluations. We feel that this
make the comparison more meaningful than having it depend on a large amount of
tuning of parameters. It does favor the EKF implementation somewhat.

The result was that the 4 graphical SLAM maps compared almost as well with
one another as the EKF ones did, (compare �gures 6.10 and 5.3). The RMS error
when matching these 6 pairs of maps was 11.1 cm. This was about 10% worse
then the EKF maps. Additionally fewer walls could be matched between these
maps(compare �gures 6.11 and 5.4). We were able to match only 59% of the walls
here while 72% of the EKF walls could be matched between maps.

This was a good illustration of when the EKF algorithm works very well. It also

92 CHAPTER 6. GRAPHICAL SLAM

0 5 10 15

0

5

10

15

20

25

30

35

40

Figure 6.11: This illustrates the extent of the matched sections between the two
largest maps. The walls of the original two maps are shown dotted while the
matched walls are in solid black. Distances are shown in meters.

6.6. SOLVING THE TOPOLOGICAL CONSTRAINTS 93

is a good illustration of how the M-Space representation allows us to keep most of
the implementation and its parameters the same in order to better compare two
SLAM algorithms. Later we will look at some more challenging situations in which
the Graphical method outperforms the EKF solution.

6.6 Solving the Topological Constraints
Now we return to the problem of closing the loop. We assume here that we have
found a set of features attached to the loop set stars that match other features from
an older section of the graph. This set must be su�cient to de�ne the transforma-
tion between the two sections.

We combine star nodes from the loop set until we have a single star with enough
features matched to the older section to de�ne the transformation. We do the same
for the star nodes in the older section. The result is a pair of star nodes that can
be combined to build the constrain into the graph. However, we do not combine
them yet. We must �rst adjust them to agree.

X0
X1

Z1

Z0

X2 X0
X1

Z1

X2

Z0

X0
X1 X2

Figure 6.12: This shows how a graph is simpli�ed temporarily in order to more
easily calculate a solution to the loop constraint.

The tail is cut o� from the rest of the graph. Then we solve the constraint for
an approximate system. Figure 6.12 illustrates the approximate system that we
use. We want to eliminate the o� diagonal terms of the Hessian matrix for the
total energy of the graph. We notice that if the feature nodes that two stars have
in common are instead considered to be di�erent features then the features can all
be marginalized away and the graph simpli�ed to only pose and star nodes. The
Hessian will then be block diagonal with mostly 3 x 3 blocks. This is the system
we solve the constraint equation for.

94 CHAPTER 6. GRAPHICAL SLAM

Having done that we restore the graph to its original feature match hypothesis
and �ne tune the solution by relaxation. We do that by reattaching the edges one
at a time starting with the strongest edges, the ones with the most measurements.
The tail is added as a last step, also one node and edge at at time.

It is only now that the pair of star nodes that de�ne the loop can be merged
into a single star node. After doing this there will be a cycle in the graph that
identi�es the loop constraint.

Let us look more closely at the solution of the approximate system. We need
to marginalize out the feature nodes from the star node energy. We will show that
this amounts to taking H−1 for the star and ignoring the feature part. We have
the eigenvector decomposition of each star node's energy so that it is then simply
to write down the matrix in question.

The xo variables of star j were the xf , (and xr), relative to the base pose node
of the star, (see equation 6.13). The perturbation in these, δxo, was de�ned relative
to the star equilibrium point. Thus δxo = 0 implies that Gj = 0. We need to de�ne
some notation, the Hessian with respect the xo variables of the jth star and the
innovation of the relative coordinates of star j:

Hj ≡ QTHqqQ, qj ≡ δxo (6.24)
The constraint for all closed loops in the graph can be written as:∑

j∈stars
Ajqj = c. (6.25)

The Aj matrices and the c vector are found by linearizing the relative transforma-
tions around the loops. The Aj have only 0's in the columns for the feature states
in qi. The sum over j includes all the star nodes. We now consider a cost function
with this constraint built in by using a Lagrange multiplier, γ.∑

j∈stars
qTj Hjqj + γ(

∑
j∈stars

Ajqj − c). (6.26)

This then gives us these equations that are easily solved:
∑

j∈stars

(
Hj ATj
Aj 0

)(
qj
γ

)
=
(

0
c

)
. (6.27)

qj = −(H−1
j ATj)γ. (6.28)

γ = −

 ∑
j∈stars

AjH
−1
j ATj

−1

c. (6.29)

The feature parts of qj are not needed as the features will be set during the �ne
tuning step. We notice that H−1

j is multiplied by Aj and so the feature parts of

6.7. FINDING LOOPS AUTOMATICALLY 95

H−1
j are not needed. This coarse calculation is very fast. The �ne tuning can take

a signi�cantly long time, (10's of seconds on a 550 MHz Pentium III). How much
time depends on the details of the map and the path the robot took.

The qj variables are the perturbation of the the relative pose across a star node.
The state that this perturbation is relative to is the star equilibrium position. We
could alternatively use the relative pose before imposing the new constraint instead
of the star equilibrum position. These poses have been relaxed with the full system
before our approximation and therefore may give a better starting point for the �ne
tuning step. We found the best result when we took a weighted average between
these two choices. The weight depends on how much of an adjustment is needed to
close the loop. If the graph needs only a small adjustment from the current state
to close then we give the current state a high weight.

Experiments
In �gure 6.13 we show the same map as shown in �gure 6.4 now made using the the
graph reduction by star nodes [24, 89]. We formed stars up to level 7, (127 pose
node reductions per star). The calculation time on average was comparable to an
EKF on the same data set. The same loop closing problem as on the other maps
of this data appears but now we can close the loop by the method described. The
result is shown in the lower half of �gure 6.13. We see that the map is substantially
improved in the areas that had the most errors and became slightly worse in the
upper two corners which were nearly perfect in the upper map.

At this point we have succeeded in solving this di�cult data set. The combi-
nation of �exible data association, local linearizations and being able to use the
topological constraints consistently were the key elements that allowed this.

This was a successful test of our loop closing ideas but here we entered the
loop matching constraint in by hand. In the next section we show how this can be
detected automatically. There we will look at an even harder data set.

6.7 Finding Loops Automatically
The data association problem when the robot pose error is too large to disambiguate
single matches can be solved by considering multiple matches simultaneously [20,
28]. We also will require multiple matches before accepting a loop closing.

The criteria we will use is based on the energy increase from making the match
being balanced against a threshold that is based on the same matching term Λ as
we had in equation (2.5) plus a new term based on considering the likelihood of
seeing the features matched to and not seeing the features that we fail to match to.

We prevent the normal data association from trying to match features that are
close in metric distance but far in graph distance. The graph distance is here the
distance between two features measured along the edges of the graph. This distance
is taken along a path that does not pass through any feature nodes. The edges have

96 CHAPTER 6. GRAPHICAL SLAM

−10 0 10 20 30 40 50 60 70 80 90
−10

0

10

20

30

40

50

60

70

80

90
Before Imposing Constraint

−10 0 10 20 30 40 50 60 70 80 90
−10

0

10

20

30

40

50

60

70

80

90
After Imposing Constraint

Figure 6.13: Here is the map made using the star nodes. After completing the loop
we imposed the constraint and �ne tuned the graph resulting in the �gure on the
bottom. The size of this area is about 100 by 100 meters.

6.7. FINDING LOOPS AUTOMATICALLY 97

a distance that approximates the strength of the edge. It is only the features close
to the current pose node in graph distance that are matched to each iteration.

This then prevents the program from closing loops incorrectly by matching to
features that are only weakly coupled to the current pose. In order to close these
loops we look at all the features with edges to the stars of the loop set and try to
�nd multiple matches. We call this set of features the loop features. If we cannot
�nd any loop matches we move the oldest stars from the loop set to the mature
nodes. We leave some small number of star nodes in the loop set to be tested again
with newer stars the next time the loop closing test is done.

Before we can apply the test we need to eliminate the impossible matches from
consideration. The metric information on the features is used for this with a toler-
ance that grows with graph distance from the loop features.

We form a list of match features for the ith loop feature that are not attached
to the tail or loop set. We then remove features from this list by applying a series
of tests. The �rst3 test for the jth match feature is

(ixf − jxf)TBTi WijBi(ixf − jxf) < 1 (6.30)
Where ixf are the coordinates of the ith loop feature, jxf are the coordinates of
the corresponding jth match feature and the Bi matrix is evaluated at the current
estimate of ixf and Wij is a weight matrix that depends on the graph distance
between the two features4. This graph distance is approximated by the di�erence
in the distance from the current pose node for the two features. The weight W
grows as the graph distance between the features becomes smaller. We used a W
that was proportional to the reciprocal of the graph distance. After this step every
loop features i has a list of match features j that could be matched to it.

We now form pairs of features from those loop features that have at least one
match feature. These pairs are tested to see if they de�ne a transformation, (ie.
for walls: is the angle between the pair of walls large enough). If it is this pair will
be the base pair of a set of hypotheses. We have one hypothesis for each distinct
match between the pair and the match features. Each of these hypotheses then
de�nes a transformation based on the pair. All the features matched to the loop
features are transformed with this transformation. Then each match between loop
feature and match feature is tested by applying a threshold to rijdij :

dij = (ixf − jxo)TBTi HiBi(ixf − jxo). (6.31)

rij =
m

trHi
+

Maij
M + aijtrHi

(6.32)

3Before testing with equation (6.30) we apply a few very broad tests that limit us to features
in the general area of the loop set.

4We leave out some smaller modi�cation to Bi that are needed to account for di�erent M-
Spaces of the two features. These are projection and scaling matrices to the common M-Space of
the i and j features.

98 CHAPTER 6. GRAPHICAL SLAM

aij =
trHj

trHj + trHi
(6.33)

Here Hi, Hj are the Hessians of the energy with respect to feature i, j respectively
and jxo = T (jxf) is the transformed matched feature coordinate vector. We also
have two constants, M is a large constant and m a small one. This is an estimate
of the increase in energy caused by matching the two features. The aij account
for the reduction in energy from the relative movement of features i and j after
relaxation, while M accounts for the e�ect of the changes to the rest of the the
graph state nodes. The M estimates the coupling of the two features to their local
maps. We set M to 106 which corresponds to mm accuracy. We see that M limits
the size of H preventing an unreasonably tight test. To avoid a too loose test m is
set to 100 (10cm).

The increase in energy from making the match, that the products rijdij esti-
mate, is balanced against the gain from matching the features from the Λ term of
equation (6.6). Considering only these two terms we found that obvious mistaken
matches were made as in �gure 6.14

Figure 6.14: This illustrates how an obvious mistake can be made by considering
the change in energy alone. The solid and dashed lines represent loop features and
match features, respectively. We see that the match in the middle has a higher
energy than the one on the right. But the middle match is more likely when we
consider the unlikeliness of not having seen the long solid line on the return to the
area.

Therefore we need to consider the likelihood of not having seen the same feature
when the robot was in this area previously. We de�ne Lh, a part of the energy of
this hypothesis.

Lh = −
∑

i∈matched

log(1− (1− pi)ni)−
∑

i∈unmatched

log(1− pi)ni (6.34)

where pi is the probability of observing a feature i if we try to and ni is the number
of times we try. Thus (1−pi)ni is the probability of not observing it and 1−(1−pi)ni
of observing it at least once.

6.7. FINDING LOOPS AUTOMATICALLY 99

The ni is the number of times we tried to 'see' the looped feature from the
match features part of the graph. The ni and pi are estimated by maintaining 2
counters for every feature. The �rst counter is incremented each time the feature
should be seen from the current robot pose. The other counter is incremented when
the feature is matched to a measurement. pi is then the ratio of these and ni is the
maximum of the �rst counter over all potential matches j.

Equation (6.34) makes it harder to not match important very visible features
compared with not matching hard to see features. Furthermore, it tends to match
important features to important features. There are no parameters to set in deciding
our thresholds. We simply count. We can now form our cost function by combining
all these terms, equation (6.34) and equation (6.31) with equation (6.6)

Cost = Lh +
∑

i∈matched

(rijdij − Λ(dim)i) (6.35)

Where (dim)i is the dimension of the feature. From this we derive thresholds
for individual feature terms to produce the smallest cost. There must also be some
minimum number of matches before we accept the loop closure. This simple formula
was su�cient for the data sets we worked on.

There are of course situations in which it will fail. Situations where the fea-
tures near the overlapping region are too sparse and/or do not provide su�cient
constraints on the pose to close the loop. There could also be disturbances in the
measurements just in these overlapping regions that caused the estimated maps to
be di�erent. Another problem is as we have already pointed out that as a result of
repetitive patterns in the environment two di�erent areas might look very similar.

Experiments
We again use our ATRV robot equipped with a SICK laser scanner and a 6-axis
inertial sensor. Our automatic loop closing was easily able to �nd the simple loop
shown earlier. We then tried a more challenging robot path around and through our
building with three loops in it. The walls of the building are now partially hidden
from the laser scanner by sca�olding and fencing around the building as there was
renovation work being done. This lead to even more sparse feature measurements.
In addition, we did not correct for the obvious and signi�cant bias in the inertial
and odometry angle estimates, (see �gure 3.6). In �gure 6.15 we show the �rst loop
closing point. The loop was quite far from being closed but after the constraint is
imposed the map is at least topologically correct. We can see that the star node just
inside the building now has four pose nodes attached to it. It is this explicit loop
in the path that is used to set up the constraint matrices for this and subsequent
loop closing calculations as in equation 6.25.

In �gure 6.16 we show the robot closing the second loop. Now the map is
becoming fairly close to the hand made map shown by the dotted lines. When the
second loop was discovered the �rst loop had been built into the graph by forming
a star node with edges to 4 pose nodes. This �rst constraint is included in the

100 CHAPTER 6. GRAPHICAL SLAM

constraint equation having been found by looking for cycles in the graph. The two
loop constraints are solved simultaneously. As the adjustment needed to close the
new loop is much smaller than it was after discovering the �rst loop, a higher weight
is given to the current robot path relative to the star equilibrium path when setting
the coarse adjustment. This helps to speed up the �ne tuning step.

In �gure 6.17 we show the robot closing the third loop. Here there is a slight
problem as the two map sections do not completely �t together. There was ap-
parently some errors when passing through the outer door that cause the part of
the map inside the building to not line up with the parts outside. Thus the match
was made for the inside walls but some of the outside walls could not be consis-
tently matched up. This shows that closing loops with relatively sparse features is
problematic. We needed the features inside before we could be sure of the match
but they were too weakly coupled to the features outside to get a match spanning
both areas. Nevertheless the map is reasonable and the robot returns to its parking
place in the lab room correctly as shown in �gure 6.18. Here we forced a �nal global
update to remove extra tension from the map.

One �nal evaluation of the automatic loop detection and correction using Graph-
ical SLAM was made on the KTH campus. The robot took 58 minutes to travel
the path. A large map containing 667 walls was made of an area 170 by 260 meters.
The task of SLAM was made more di�cult by the fact that the SICK laser scanner
was blinded by the sun at several points and required rebooting. While this was
happening the robot was being driven by hand. The result is several stretches of
2-3 meters with no laser data at all. Three loops were detected automatically. The
�rst loop was closed in an open courtyard about 40 m square, �gure 6.19. .

In �gures 6.20 through 6.23 we show how 2 more loops were automatically
detected and closed by the algorithm. Unfortunately the �nal loop from the start
section to the �nish section was not detected. This was because the stars needed
to close the loop were still part of the formation set at the termination of the
experiment. They had not yet been moved into the loop set.

In �gures 6.24 through 6.27 we show a second experiment on the same data with
di�erent parameters. The di�erences are shown in table 6.1. The di�erences can
be summarized by saying we were more selective in which walls to initialize, the
tail was shortened and the stars somewhat larger. The maps were improved by this
but the main error around the entire path, while smaller, is still present. This error
might be corrected if the �nal loop were detected. As we said above automatic
detection for that loop is not done as the region of overlap was not su�ciently
mature when the program terminated. The overall better result from the second
test is most likely due to using fewer more selective features. This con�rms a rule
of thumb in SLAM that a few good features are better than many features of mixed
quality.

Both tests produced good results and com�rm that the algorithm can correctly
detect and impose loop constraints. We need to point out that on the campus data
the loop detection began to take signi�cant time in those places where there were
many combinations to check. Also the �ne tuning around the loops was more time

6.7. FINDING LOOPS AUTOMATICALLY 101

Figure 6.15: The 1st loop closing, just prior, top and after, bottom. The loop
closing is done on a section of the graph with enough mature features to make
multiple matches possible. The match is made between features near the bottom
left corner both indoor and outdoor walls.

102 CHAPTER 6. GRAPHICAL SLAM

Figure 6.16: The 2nd loop closing, just prior, top and after, bottom. the outdoor
section in the bottom right corner of the building is used to set the constraint.

6.7. FINDING LOOPS AUTOMATICALLY 103

Figure 6.17: The 3nd loop closing, just prior, top and after, bottom. Here the
constraint involves the same section of the map as the �rst constraint.

104 CHAPTER 6. GRAPHICAL SLAM

Figure 6.18: The �nal map with the robot parked back in its lab.

6.7. FINDING LOOPS AUTOMATICALLY 105

Figure 6.19: This is a test of our automatic loop closing using our ATRV robot
on the KTH campus. Here the robot is leaving a courtyard and the loop around
the courtyard has some errors in it. This can be seen by the duplication of walls
near the entry/exit point from the courtyard in the top �gure. In the bottom �gure
the robot has recognized this loop and added a constraint to the graph. One can
see a star has been formed with four connected pose nodes. This star builds the
constraint into the pose only subsystem

106 CHAPTER 6. GRAPHICAL SLAM

Figure 6.20: Here the robot is near the center of the map and has completed a loop
around the large building in the bottom part of the �gure. The loop has errors as
shown by the duplication of walls.

6.7. FINDING LOOPS AUTOMATICALLY 107

Figure 6.21: Here the loop from �gure 6.20 has been automatically detected and
corrected. Now there are two loop constraints on the graph. Notice that there is a
large error on the lower right as the robot was not able to close the central loop as
there was insu�cient overlap with the previous path.

108 CHAPTER 6. GRAPHICAL SLAM

Figure 6.22: Here the robot is again back near where it started its path, to the right
center. A third loop has been detected in the area between the two buildings. The
loop between the start and end of the path has not been detected here. That loop
has not been looked for yet as the end section of the overlap is not yet considered
mature enough.

6.7. FINDING LOOPS AUTOMATICALLY 109

Figure 6.23: Here the loop from �gure 6.22 has been automatically detected and
corrected. Now there are three loop constraints on the graph.

110 CHAPTER 6. GRAPHICAL SLAM

Figure 6.24: By varying some of the parameters, (see table 6.1), we were able to
run through the data again producing a somewhat better map just prior to closing
the second loop.

consuming on this large data set. The loop closing would need to be implemented
as a separate process running on a di�erent computer for real time operation.

6.7. FINDING LOOPS AUTOMATICALLY 111

Figure 6.25: Here the loop from �gure 6.24 has been automatically detected and
corrected. Now there are two loop constraints on the graph.

112 CHAPTER 6. GRAPHICAL SLAM

Figure 6.26: This shows the map from from �gure 6.25 shown from a di�erent angle.

6.7. FINDING LOOPS AUTOMATICALLY 113

Figure 6.27: This shows the �nal map from for test 2 (see table 6.1). This can be
compared to test 1, �gure 6.23.

114 CHAPTER 6. GRAPHICAL SLAM

Parameter Test 1 Test 2
Λ 4 16

Wall Initialization: Length Threshold .5 1.5
Wall Initialization: Number of scan points 75 100

Minimum Tail Length 100 50
Maximum Star Dimension 50 60

Minimum Number of Wall Matches for Loop Detection 4 5

Table 6.1: We show the di�erences between the parameters of the Graphical SLAM
with automatic loop detection between the two trials on the campus data. The Λ
parameter is the feature matching parameter as in equation 6.4. The wall initial-
ization refers to the thresholds for extending the M-Space dimension of walls from
0 to 2 dimensions. There is a threshold on the length and number of scan points.
The minimum tail length is the part of the graph that will be always left with the
exact calculation of measurement energies. The automatic loop detection has only
one parameter which is the minimum number of matches required to match two
sections.

Part III

Insights

115

Chapter 7

Summary and Discussion

The problem of simultaneous localization and mapping (SLAM) is fundamentally
a challenge in estimation, however there are several di�erent issues that must be
considered in the design of real systems.
� Consistent integration of data that are not fully observable.
� Data fusion in the presence of noisy data-associations.
� Maintenance of a consistent map in the presence of non-linearities in the
measurement models.

� Methods that enable introduction of topological constraints, (such as loops)
into a map and the corresponding map update.

� Handling of computational complexity to ensure real-time operation.

Summary
The �rst issue is one of observability. The individual measurements used to build up
the map can have symmetries from dimensions of the features not measured. These
symmetries should be explicitly maintained in order to maintain better consistency
in the map estimates.

The M-Space feature representation has the advantage of being able to partially
initialize the feature dimensions. This allows us to use the information from par-
tially observed features. We can also share feature coordinates between two features
so two walls can both share the same point for a common corner.

Several excellent methods for SLAM are based on the Extended Kalman Fil-
ter (EKF). These include the Compressed Extended Kalman Filter which we have
implemented to study its strengths and weaknesses. The strengths include the rel-
atively simplicity of the algorithm and the improved, (over the standard EKF),
computational complexity. The main weaknesses are the gradual loss of consis-
tency due to the linearizations and the related problem of imposing of topological

117

118 CHAPTER 7. SUMMARY AND DISCUSSION

constraints. It also su�ers from the early commitment to data associations and the
need to quickly initialize the features.

We formulate the estimation problem as an energy optimization problem where
the energy function re�ects the structure of the information being gathered by tak-
ing measurements from robot poses along a path. This structure leads us to a
graphical representation of the energy. The graph structure is given by the con-
nections between poses along the path of the robot. This tends to form a sparse
structure. The sparseness can lead to constant time updates of the map if exploited.
The sparseness is destroyed if one choses to marginalize out all robot poses except
the current pose. By instead allowing a few poses to remain we maintain sparseness
while simplifying the graph.

By making changes to the connections of edges in our graph we can merge
features or change data associations easily at any time. We can turn o� certain
edges in order to simplify calculations and then turn them back on to �ne tune the
map. We can wait to initialize feature dimensions as long as we like. When we
decide to do the initialization, we still can use the very �rst piece of information.
This kind of �exibility is a great advantage of the graphical method.

The M-Space allows us to factorize the energy of our graph into a part that is
a result of the symmetries, translational and rotational invariances and a part that
encapsulates the information actually measured. By maintaining this explicate
factorization we eliminate many of the problems of linearization and numerical
computation errors.

The consistency of the map will deteriorate as a result of linearization errors.
We can minimize this problem by re-linearizing the less mature measurements each
time they are used for updates and linearizing in a local frame when we �nally do
permanent linearizations. This local frame is the base frame of our star nodes.

The relaxation of the graph will take a time that is independent of the size of
the graph. This is true since the calculation propagates only to the parts of the
graph that have signi�cant stresses. Far from the nodes being added to the graph
the e�ect of the new nodes will be small since the stress will be small.

The graphical relaxation works very well when the robot is exploring new areas.
Then the stress of new nodes being added is small and easy to relax. When going
back to areas previously visited the stress will necessarily be greater and harder to
relax. If the robot is continuously driven back and forth over the mapped area the
graph can become intertwined and relaxation can become di�cult. If there is any
bias in the sensors it will worsen this e�ect.

When closing loops the graph can be used to form a simple system which can
be used to approximate the full system. This approximation takes account of the
constraint of common features for pose nodes that have a common star, but not
those separated by more than one star node. This approximation is very close to
the true system if such constraints are not very important. Here again having an
intertwined graph can make the approximation less good. If the constraints implied
by common features between stars are enough to de�ne a transformation the stars
can be merged. This then builds in the constraint in the approximate system and

119

will help maintain the quality of the approximation. If this is not possible poor
results can occur when using the approximation.

Using the graph approximation we can impose multiple constraints on the graph
with little calculation. These constraints all correspond to cycles in the graph when
traversing it through pose and star nodes only. Each independent cycle gives one
loop constraint.

Having solved the approximate system the exact system is then used to �ne tune
the map. It is this �ne tuning that is time consuming. If the coarse adjustment was
not good the system will end up in one of the many local minima. Also the time
for the �ne tuning is strongly dependent on the quality of the coarse adjustment.

The distance along the graph can be used as a measure of the correlation between
state nodes. We therefore do not try to match individual features that are far in
graph distance from our current pose node. This is how we avoid false matches.
As we can later move these measurements to any other state nodes, we can �x this
matching later by considering larger sets of matched features.

Two sections of the map close in metric distance and far in graph distance can be
matched using an energy criteria. A key element of this criteria is the consideration
of the likelihood of not seeing features in one section that we saw in the �rst section.
Thus the match criteria depends on both the matched features and the unmatched
features.

A nice feature of our loop closure criteria is that it depended on no new parame-
ters. One simply has to count the number of matches to features and the number of
iterations that the feature was visible and could have been observed by the sensor.

Discussion
We have shown a �exible way to make data associations that allows one to reconsider
the decisions made in light of subsequent information. This goes a long way towards
eliminating the problems of incorrect data associations.

The unwanted e�ects of linearization are generally the result of having done the
linearizations around many di�erent states. In EKF SLAM the linearizations are
done around the best current state and then never recalculated. By re-linearizing all
the currently relevant measurements continuously we can eliminate these e�ects.
Furthermore we have shown that many measurements can be combined without
approximating the most important non-linearities by using the star nodes. Thus
we can signi�cantly reduce the amount of calculation for the re-linearization.

The star nodes have also lead us to a strategy for handling topological con-
straints in SLAM. We can simplify our representation by simply ignoring the fea-
tures attached to the star nodes. This becomes a reasonably good approximation
to the true system and can be used to quickly adjust the position of the stars to
solve the topological constraint. Then we can include the features again to �ne
tune the solution.

Some methods are provably consistent and convergent for linear Gaussian sys-
tems. For the general non-linear system no algorithm can be sure to avoid the

120 CHAPTER 7. SUMMARY AND DISCUSSION

local minima of the SLAM problem. Therefore, discussions of convergence and
consistency must be taken with a grain of salt.

We can say that the graph energy can be used to form correct relative inferences
about states of the system. By this we mean we can say things like map 1 is
three times more probable than map 2. Furthermore, since we have been very
careful to minimize all approximations we are con�dent that we can make such
statements with greater accuracy than for example the EKF, EIF or other methods
that linearize in the global frame.

The issue of the local minima is both a problem and an advantage for our
method. We accurately model most of these local minima. As a result we get stuck
in them. Sub-map methods that do not try to impose global consistency between
the features in di�erent sub-maps have less of this structure in the model and thus
have less problems. One can expect that the inferences made using these models
are less accurate than using our model. On the other hand the local maps of these
other models are individually more accurate locally than ours.

We found that in those cases that the EKF works well, it is very hard to beat in
terms of producing nice maps easily. It is the hard situations that other methods
become interesting.

The computational complexity of our method does not depend on the size of the
map but does depend on the path of the robot. Paths that mostly are single passes
through long sections of the environment with a few intersections and crossing
points work very well. Paths with lots of backtracking and multiple paths through
the same areas lead to more tension in the graph and are harder to relax.

We have evaluated our method on several di�erent platforms.

Chapter 8

Ideas for Future Work

While the present work has addressed many of the fundamental problems in SLAM,
there are still many problems that could be addressed in future work. Some of them
are outlined below.

Idea 1: Star Multi-grid
In the course of the present work we found that the limitation on the size of the
star nodes sometimes prevented simplifying the graph. It also made working with
very dense features, (seeing more than 12 features in one 'local area'), impossi-
ble. Thus it would be nice if we could make the complexity of forming very large
stars manageable in real-time. The main limiting step is the eigenvalue problem,
equation 6.19.

The other bene�t might be a more e�cient large scale (or global) update. The
current approach of relaxing locally works well sometimes but not always. Partic-
ularly when the graph often crosses back over itself and contains many medium to
large scale constraints, the graph can become di�cult to relax.

We might investigate eliminating the eigenvalue problem from the procedure for
making a star node. In that case, one could make very large star nodes. Even as
large as the whole graph. This would then be essentially an Extended Information
Filter.

By saving the the energy nodes that were combined into each star we could
imagine being able to go back and forth between di�erent levels of stars. So that
the star for the whole graph, (except for the tail), would be the coarsest level. We
could open that star up and go down to any �ner level we wanted and relax there.
We would then re-linearize and merge into the coarser stars again. This might be a
way to do multi-grid like relaxation that is based on the SLAM problem structure
rather than forcing the SLAM problem into a multi-grid format designed for �nite
element problems.

121

122 CHAPTER 8. IDEAS FOR FUTURE WORK

Idea 2: Free Stars
The main di�culty with the graphical method is trying to relax the graph in the
situation of multiple passes through the same area. As the graph becomes inter-
twined it becomes harder to avoid local minima. One way to avoid problems with
the intertwined graphs is to let the features seen from di�erent stars be considered
to be di�erent features permanently. Thus we have several representation of the
same physical landmark. This is the approach taken in some other sub-map meth-
ods. The graph updates would always be very quick. Even loop closing will be
possible in real time.

The duplication of features is a problem only when presenting the map to other
agents that want to use the map. We are primarily interested in the map for
localization and thus care less about this duplication.

An improvement of this separated star node idea is to let the star base nodes
be nodes in a second layer graph. Where the energy nodes in that graph are set by
somehow gathering the e�ects of all the features that really are the same between
two star nodes. So that we would have a sort of special pose node only graph. One
would set the pose nodes by relaxing this second graph and then the features of
each star would simply move to the position given by the new pose nodes attached
to their star. In this way the feature locations would be indirectly pushed toward
being consistent with the matching feature locations of other stars. This is similar
to the Atlas framework [20].

Idea 3: Sensor Grids
Another possibility is making SLAM graphs with more than one robot. This intro-
duces a new type of energy node connecting two robots. With such a team SLAM
approach it is possible to make maps or just stay localized with fewer or no envi-
ronmental features at all. This is because the robots themselves can act as movable
features for one another. With such a scheme a team of robots with relatively poor
sensors could by working together to make good maps or just not get lost.

There is something natural about using the graphical method for networks of
sensors whether on mobile robots or stationary. In the future we will begin to have
sensor networks throughout our environment and the issues around understanding
the information these networks provide is going to be an important research area.

Idea 4: Model Non-White and Non-Gaussian Noise
Another idea is to use a graph to represent time correlated errors such as those
from GPS. The GPS sensor gives a triangulation �x on the robot based on the time
of �ght estimates of signals from orbiting satellites. These estimates are typically
accurate to tens of meters. By using corrections available via a FM radio signal
one can get better than 1 meter accuracy. The main problems with GPS are that
the errors are not Gaussian and are in fact time correlated [90, 91].

123

Typically, one observes the GPS pose as continuous for a time and then a
large jump of up to tens of meters followed by continuous readings. The reason is
satellites coming in and out of view, re�ections of the signals and multiple paths
for the signals. This type of data is incompatible to most of the SLAM estimation
techniques. One proposed solution is given in [91].

These types of errors could be modeled in a graph by having the GPS mea-
surements be measurements of a GPS feature. The GPS feature has an edge to
a non-Gaussian energy node that models the probability distribution of the GPS
system in the absence of changes to the satellite reception. The other edges go
to Gaussian energy nodes connected to the robot pose nodes where GPS readings
were received. Thus the location of the GPS feature will be estimated by relax-
ation. When a jump occurs a new GPS feature will be initialized. The new GPS
feature might be using di�erent satellites or have some other multi-path problems
than the previous GPS feature. This could be a way to deal with these wonderful
but di�cult GPS measurements.

Chapter 9

Conclusions

We have addressed some of the practical issues for implementing SLAM. These
issues are:
� observability of the model,
� the data associations,
� the handing of non-linearities with regard to �nal consistency,
� the enforcing of topological constraints on the map,
� and the real-time computational issues of complexity.
The observability of the features is allowed to change in our M-Space represen-

tation. This observability is an explicit and generic part of the representation. By
using the M-Space we have a formalism that allows the generic handling of both this
observability issue and the centrally important coordinate transformations. We are
then able to formulate algorithms that automatically account for these potentially
troublesome issues.

The approach we advocate for data association is to increase the �exibility
in making associations. Thus, one can both wait longer to make the association
and then at any time remove the association if subsequent information contradicts
the earlier decision. We do this in our graphical framework by simply moving or
removing edges from a graph.

The problems encountered with linearization are mostly due to not knowing the
true underlying state of the system. If that were known one could safely linearize
about that state. Instead, the best one can do is linearize around the current best
estimate of that state. As a result of the changes to that best estimate many
methods for SLAM develop inconsistencies for larger maps.

With our graphical method the linearizations are also done around the best
estimate of the state but we also recalculate the previous linearizations as needed to
assure that all linearization is done around the same, best estimate of the state. We

125

126 CHAPTER 9. CONCLUSIONS

have developed a way to combine measurements together without fully linearizing
them, so that the important non-linearities are still calculated exactly.

We have shown how our graphical SLAM method can be used to both discover
and solve multiple topological constraints on the map. We have done extensive tests
with real data to con�rm the validity of our approach. Our experience with these
tests was that the search for and imposition of the topological constraints added
about 10 to 20% overhead to the SLAM program. This depends on how often loops
are formed. This overhead comes at the time the robot returns to a previously
explored region. The criteria we use for loop detection proved to be very e�ective
and should be generally useful for closing loops even for other SLAM approaches.
It seems to be important to consider the chance of not seeing features as well as
measuring the similarity of the matched features.

While the robot is exploring new areas SLAM is done quite quickly and the
calculation time is independent of map size. For small maps the time and quality
is comparable to our EKF implementation. For medium size maps the quality of
the EKF solution is seen to be inferior to the graphical SLAM one. Most likely a
result of the linearizations. The more complete use of early feature measurements,
(before feature initialization) is another possible reason.

One expects that this method will be substantially faster and produce better
maps than and EKF for really large data sets. This is due to the better treatment
of non-linearities and the fact that the updates are all local until global constraints
are imposed.

Part IV

Appendices

127

Appendix A

Notation

We often signify blocks of a larger matrix by giving the subscripts of a set of
row/columns. So Jof would be a block of the Jacobian of xo(xb,xf) corresponding
to the feature coordinates.

Subscripts:
r is the robot pose which can include parts to go from the center of the robot

to the sensor frame,
f is the feature parameters,
p is the measured subspace perturbations,
s is the state,
b is the base or reference pose of a star node,
q is the rest of a star node coordinates other than the base,
o is a feature point or robot pose relative to a robot pose,
d is dead-reckoning.

Vectors:
x is a coordinate vector,
v is some measurement,
Uk is an eigenvectors of Hqq,
λk is a eigenvalue of Hqq,
η(v,xo) is the innovation function,
uk is UT

kQxo,
x̄ is a linearization point,

129

130 APPENDIX A. NOTATION

ūk is UT
kQx̄o.

Matrices:
H is the Hessian matrix of the Energy,
G is the gradient vector,
J is a Jacobian matrix,
B is the symmetry matrix,
B̃ is the dual symmetry matrix,
C is a covariance matrix,
I is an identity matrix,
Q is BJ−1

of ,
Q̃ is (Job, Jof B̃).

Other Quantities:
E is the Energy,
ha is the data association between measurements and features,
h is ({xr}, {xf}, ha),
Λ is the match parameter,
Nf is the number of features,
nj are the number of measurements of feature j,
R is a rotation matrix, (either 2 or 3 dimensions),
θ is the rotation angle around the z axis,
Do is {Jor, Jof B̃} which projects the incremental changes to some relative

base frame.
Do the relative derivative, equal to ∂

∂xo
. This is the derivative with respect

to coordinates in some relative base frame. Do = ∂
∂xq

BJ−1
of where q and

f include the entire state except the base pose.

De�nitions
� ATLAS Framework. A sub-map graph method for SLAM [20].
� Compressed Extended Kalman Filter, CEKF. An optimization of the calcula-
tion of the EKF where high frequency local updates and low frequency global
updates are done [19].

131

� Data Association. The match between measurements and the elements of the
model that gave rise to them.

� Dead-reckoning. An estimate of the robot pose from adding up the small
changes from the incremental estimates of the motion.

� Dense Information. The raw data used by the feature prior to initialization
to estimate its parameters.

� Energy Node. A node that can calculate an energy and its derivatives based
on the value of the state for all attached state nodes.

� Extended Kalman Filter, EKF. This is a general estimation method which
when applied to the SLAM problem becomes an iterative method that relies
on �rst linearizing the measurements and the using a Kalman �lter to estimate
the state.

� Expectation Maximization, EM. A two phase SLAM method that searches
the space of all hypotheses.

� FastSLAM. A method of doing SLAM where possible paths are particles in a
particle �lter [45, 46, 43, 47, 48, 49].

� Features. Geometric landmarks designed to provide localization information
on the robot pose.

� Feature Node. A state node that represents a feature.
� Formation Set. A set of star nodes that are being combined pair wise to form
larger stars.

� Inconsistent SLAM. A SLAM method that produces incorrect error estimates
for the state.

� Innovation. A function of the measurement and state that has expectation
value of zero and often assumed to have white Gaussian noise from the mea-
surement uncertainty.

� Loop Set. The set of star nodes that is being checked to see if it matches
older regions of the graph in order to close loops.

� Loop Features. The set of feature nodes with edges to star nodes in the Loop
Set.

� Mature Nodes. The Stars that are older than the loop set stars.
� Maximum A Posteriori, MAP, Hypothesis. The most probable hypothesis
given the measurement data.

132 APPENDIX A. NOTATION

� Maximum Likelihood Hypothesis. The hypothesis that produces the highest
probability for the measurement data.

� Measurement Space, M-Space. The measured part of the parameter space of
the feature.

� P-dimension, P-dim. The dimension of the M-Space.
� Pose. The position and orientation.
� Pose Node. A state node that represents a pose the robot had while taking
measurements.

� Simultaneous Localization and Mapping, SLAM. The problem of having a
robot make a map of an area while using the map to localize itself.

� Sparse Extended Information Filter, SEIF. A method of doing SLAM us-
ing the inverse of the covariance matrix or Information matrix. By doing a
sparsi�cation step on this matrix constant time SLAM can be achieved.

� State Node. A node of the graph that contains the state information on some
element of the model. Examples are pose nodes and feature nodes.

� Star Node. An energy node that is formed by combining multiple measure-
ments linearized in a local frame.

� Tail. A section of the graph consisting of the pose nodes from the current
robot pose node back to the formation set.

Appendix B

Robots

Here we brie�y describe some of the robot used in the experiments.

Pioneer

Figure B.1: Here is our ActivMedia Pioneer Robot. Goofy.

In Figure B.1 we show our ActivMedia Pioneer robot named Goofy. This robot
is designed as a research robot for indoor environments. For detection of objects in
the environment it is equipped with a SICK LMS Laser scanner and a set of sonar
range sensors. It also has an QuickCam camera mounted pointing upwards. It has
a wide-angle lens, 283 pixel focal length for 320x240 images. This camera is used

133

134 APPENDIX B. ROBOTS

in one of our experiments. We observed signi�cant vibration of the camera when
mounted as shown.

ATRV

Figure B.2: Here is our ATRV Robot, Pluto.

In Figure B.2 we show our iRobot ATRV robot named Pluto. This robot is
designed for outdoor use on roads and easier terrain. For detection of objects in
the environment it is equipped with a SICK LMS 291 Laser scanner (range 82 m)
and a set of 12 sonar range sensors, (range 8 m). It also has an Axis Network
Camera. The laser and camera are mounted on a pan tilt device. The robot has
an IMU unit, (Crossbow DMU-FOG) and a GPS unit to help with motion and
location estimation.

135

Figure B.3: Here is Dumbo. Our ActivMedia PowerBot Robot.

PowerBot
In Figure B.3 we show our ActivMedia PowerBot robot named Dumbo. This robot
is designed as a research robot for indoor environments. For detection of objects
in the environment it is equipped with a SICK LMS Laser scanner and a set of
sonar range sensors. It also has an web camera and an arm. It is primarily used
for experiments in active perception.

PeopleBot
In Figure B.4 we show our ActivMedia PeopleBot robot named Minnie. This robot
is designed as a research robot for indoor environments. For detection of objects
in the environment it is equipped with a SICK LMS Laser scanner and two sets of
sonar range sensors. It also has an web camera mounted on a pan-tilt device. It is
primarily used for experiments on robot-human interaction.

136 APPENDIX B. ROBOTS

Figure B.4: Here is our ActivMedia PeopleBot Robot, Minnie.

Appendix C

Details of Hough Line Extraction

The SICK Laser scanner gives range data in a 180 degree arc in a 2D plane. These
ranges are spaced either 1 or 1/2 degree apart. We need to extract straight lines
form this raw data. For this we use the range weighted Hough transform. The
details of this algorithm are given here. The other parts of the line extraction were
explained in the section 4.1.

Figure C.1 illustrates the basic idea of the two stage range weighted Hough
Transform. Each scan point �lls cells in a coarse accumulator with a weight equal
to its range value. The cells �lled are those for which the point is consistent with
the cells ρ and γ, the perpendicular distance of the line from the origin and the
angle of the line normal with the x-axis. The coarse grid has cells 8 degrees per
cells and a total of 32 ρ levels, a 32 x 45 grid.

The �ne grid is only 8 x 8 which is a 1 degree and 1/256 of the maximum ρ is
the �ne resolution. The resulting set of points is tested to remove points that are
far from the �t line. Finally if the remaining points pass tests on continuity, length
and number of points, we remove these points from the accumulator and repeat the
process until no new lines are found.

137

138 APPENDIX C. DETAILS OF HOUGH LINE EXTRACTION

γγ

Remove Outliers

Least Square Fit.
ρρ

Remove points

Two Stage Range Weighted Hough Transform

Figure C.1: The �rst accumulator has a coarse grid of ρ and γ. The maximum cell's
contents is the used to �ll a �ner grid accumulator. A preliminary �t is done to a
line. After removing outlining points far o� the �t line, a �nal �t is done adjusting
the points for �nite beam width. The �nal set of scan ranges are removed from the
accumulators and a new maximum is found.

Appendix D

Transformation Rules

A feature coordinate is xf and a feature in the sensor frame is xo = T (xf |xr). We
can write the transformation rules:

x3D
o = R3D(x3D

f − xr), (D.1)
x2D
o = R2D(x2D

f − xr), (D.2)
xSo = xSf , (D.3)

where R is the rotation matrix from the map frame to the sensor frame.
We de�ne the 2-D points as having an x and y but extending to plus/minus

in�nity in the z direction. This then implies that the rotation of a 2-D point to
a general frame will produce a line in the new frame that will not in general be
vertical. We resolve this by taking the z of the transformed point to be the same as
it was in the original frame. This may sound strange, but it is what is needed for
the important case of a wall or vertical pole being observed by a 2D laser scanner.
If the sensor is rotated it will still see a line on the wall but the end points might
be at di�erent heights. R2D can then be written terms of the Euler angles θ, φ and
ψ as,

R2D =

(
cos θ+sin θ sinφ tanψ

cosφ
sin θ−cos θ sinφ tanψ

cosφ
− sin θ
cosψ

cos θ
cosψ

)
For the 3D rotations we get the normal rotation matrix,

R3D =

 cos θ cosφ sin θ cosφ − sinφ
− sin θ cosψ + cos θ sinφ sinψ cos θ cosψ + sin θ sinφ sinψ cosφ sinψ
sin θ sinψ + cos θ sinφ cosψ − cos θ sinψ + sin θ sinφ cosψ cosφ cosψ

The Jacobians are given by di�erentiating (D.1),(D.2)and (D.3).

Jor =
∂xo
∂xr

(D.4)

139

140 APPENDIX D. TRANSFORMATION RULES

Jof =
∂xo
∂xf

(D.5)

So a robot pose might consider the variable part of the map to sensor transfor-
mation to be just xr = (x, y, θ)T . Then Jor would only contain columns for these.
However the robot pose could also include the pitch, roll, height or sensor o�set
pose from the robot center point.

Appendix E

Test of Su�ciency

We need to test if a subset of features ixf are su�cient to fully de�ne a transforma-
tion based on minimizing equation (6.35) to the matched j features. We start with
the identity transformation with xr = 0 as our linearization point. jxo = T (jxf |xr).
To �nd the correction we would need to solve:∑

i∈matched

rijJ
T
orB

T
i HiBi(ixf − jxo − Jorδxr+) = 0. (E.1)

where the sum is over the subset of loop features that are matched. The rij are the
weights from equation 6.32. So if the matrix multiplying δxr is rank 3 the subset
is su�cient.

Notice that here the transformation is applied to jxf . When we actually close
the loop we apply the inverse transform to ixf . It is the need for the Hessian,
Hi, that makes it easier to transform jxf in estimating the transform. We solve
this iteratively re-linearizing each time until the adjustment to the transformation
becomes small.

141

Appendix F

Graph Distances

We use a distance measure for an edge based on the Hessian of the edge's energy
node. We consider the sub-matrix of the energy node's Hessian that correspond to
the edge's state node. We calculate the eigenvalues and average the reciprocals of
the non-zero eigenvalues. This is then the distance measure for the edge.

B

B

B
B

B

C

A

dAC

P

F

F

P

F

F

Figure F.1: Here we illustrate the calculation of the graph distance. .

dAC = mean(
1
λi

) (F.1)

where λi are the eigenvalues of HAA. Where the energy of the star node is
expanded about the linearization point by:

EC = Ē + GAδxA + GBδxB +
1
2
δxTAHAAδxA + · · · (F.2)

When doing the graph search we do not search paths that pass through feature
nodes as the features normally are not su�cient to de�ne the transformation. Thus
the paths pass through pose nodes and star nodes along the pose-star and star-star
edges. The feature distances are then found by following all the feature's edges to
a pose or star node and taking the lowest distance.

143

144 APPENDIX F. GRAPH DISTANCES

The search is repeated each time a loop closing is search for, which happens at
a relatively low frequency. During the time between such searches the distances are
approximated locally as we add edges to the graph.

Bibliography

[1] A. Elfes, �Using occupancy grids for mobile robot perception and navigation,�
Computer, vol. 22, no. 6, pp. 46�57, 1989.

[2] J.-S. Gutmann and C. Schlegel, �AMOS: comparison of scan matching ap-
proaches for self-localization in indoor environments,� in Proc. of the First
Euromicro on Advanced Mobile Robot, 1996, pp. 61�67.

[3] D. Pagac, E. Nebot, and H. Durrant-Whyte, �An evidential approach to map-
building for autonomous vehicles,� IEEE Transaction on Robotics and Au-
tomation, vol. 14, no. 4, pp. 623�629, Aug. 1998.

[4] R. Kuc, �Forward model for sonar maps produced with the polaroid ranging
module,� in Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS2003), vol. 1, 2003, pp. 358�364.

[5] S. Thrun, �Learning occupancy grids with forward models,� in Proc. of the
IEEE International Conference on Intelligent Robotics and Systems (IROS01),
2001, pp. 1676�1681.

[6] F. Lu and E. Milios, �Optimal global pose estimation for consistent sensor data
registration,� in Proc. of the IEEE International Conference on Robotics and
Automation (ICRA'95), 1995, pp. 93�100.

[7] J. Gutmann and K. Konolige, �Incremental mapping of large cyclic environ-
ments,� in Proc. of the 1999 IEEE International Symposium on Computational
Intelligence in Robotics and Automation, vol. 1, 1999, pp. 318�325.

[8] O. Bengtsson and A.-J. Baeveldt, �Robot localization based on scan-matching�
estimating the covariance matrix for the idc algorithm,� IEEE Transactions on
Robotics and Automation, 2004.

[9] B. Kuipers, �Modeling spatial knowledge,� Cognitive Science, vol. 2, pp. 129�
153, 1978.

[10] R. A. Brooks, �Aspects of mobile robot visual map making,� in Proc. of 2nd
International Symposium on Robotics Reseach, Kyoto, Japan, Aug. 20-23,
1984, pp. 369�375.

145

146 BIBLIOGRAPHY

[11] R. Chatila and J. P. Laumond, �Position referencing and consistent world mod-
eling for mobile robots,� in Proc. of the IEEE International Conference on
Robotics and Automation (ICRA93), vol. 1, 1985, pp. 138�145.

[12] H. Choset and K. Nagatani, �Topological simultaneous localization and map-
ping (SLAM): Toward exact localization without explicit localization,� IEEE
Transactions on Robotics and Automation, vol. 17, no. 2, pp. 125�137, Apr.
2001.

[13] P. Moutarlier and R. Chatila, �Stochastic multisensory data fusion for mobile
robot location and environmental modelling,� in Proc. of the International
Symposium on Robotics Research, 1990, pp. 85�94.

[14] J. Leonard and H. Durrant-Whyte, �Mobile robot localization by tracking geo-
metric beacon,� IEEE Transactions on Robotics and Automation, vol. 7, no. 3,
pp. 376�382, June 1991.

[15] Z.Wang, S. Huang, and G. Dissanayake, �Decoupling localization and mapping
in SLAM using compact relative maps,� in Proc. of the IEEE International
Conference on Intelligent Robots and Systems (IROS05), vol. 1, 2005.

[16] P. Newman, J. Leonard, J. Tardós, and J. Neira, �Explore and return: Experi-
mental validation of real-time concurrent mapping and localization,� in Proc. of
the IEEE International Conference on Robotics and Automation (ICRA'02),
Washinton, DC, USA, May 2002, pp. 1802�1809.

[17] S. Thrun, �Robotic mapping a survey,� Tech. Rep. CMU-CS-02-111, Carnegie
Mellon University, 2002.

[18] J. Folkesson and H. I. Christensen, �Outdoor exploration and SLAM using a
compressed �lter,� in Proc. of the IEEE International Conference on Robotics
and Automation (ICRA03), vol. 1, 2003, pp. 419�427.

[19] J. E. Guivant and E. M. Nebot, �Optimization of the simultaneous localization
and map-building algorithm for real-time implementation,� IEEE Transactions
on Robotics and Automation, vol. 17, no. 3, pp. 242�257, June 2001.

[20] M. Bosse, P. Newman, J. Leonard, and et al., �An atlas framework for scalable
mapping,� in Proc. of the IEEE International Conference on Robotics and
Automation (ICRA03), vol. 1, 2003, pp. 1899�1906.

[21] Castellanos, J. J. A., Neira, and J. D. Tardós, �Limits to the consistency of
the EKF-based SLAM,� in Intelligent Autonomous Vehicles (IAV-2004), M. I.
Ribeiro and J. Santos-Victor, Eds., IFAC/EURON, IFAC/Elsevier, 2004.

[22] S. J. Julier and J. K. Uhlmann, �A counter examplee to the theory of simul-
taneous localization and map building,� in Proc. of the IEEE International
Conference on Robotics and Automation, May 2001, pp. 4238�4243.

147

[23] F. Lu and E. Milios, �Globally consistant range scan alignment for environ-
mental mapping,� Autonomous Robots, vol. 4, pp. 333�349, 1997.

[24] J. Folkesson and H. I. Christensen, �Graphical SLAM - a self-correcting map,�
in Proc. of the IEEE International Conference on Robotics and Automation
(ICRA04), vol. 1, 2004.

[25] S. Thrun, D. Fox., and W. Burgard, �A probalistic approach to concurrent
mapping and localization for mobile robots.� Autonomous Robots, vol. 5, pp.
253�271, 1998.

[26] C. Martin and S. Thrun, �Real-time acquistion of compact volumetric 3D maps
with mobile robots,� in Proc. of the IEEE International Conference on Robotics
and Automation (ICRA02), 2002, pp. 311�316.

[27] R. Rikoski, J. J. Leonard, and P. M. Newman, �Stocastic mapping frameworks,�
in Proc. of the IEEE International Conference on Robotics and Automation
(ICRA02), 2002, pp. 426�432.

[28] J. Neira and J. Tardós, �Data association in stocastic mapping using the joint
compatibility test,� IEEE Transaction on Robotics and Automation, vol. 17,
no. 6, pp. 890�897, Dec. 2001.

[29] J. Tardós, J. Neira, P. Newman, and J. Leonard, �Robust mapping and lo-
calization in indoor environments using sonar data,� International Journal of
Robotics Research,, vol. 4, 2002.

[30] J. Folkesson and H. I. Christensen, �Closing the loop with graphical SLAM,�
Submitted: IEEE Transactions on Robotics and Automation, 2005.

[31] M. E. Je�eries, W. Weng, J. T. baker, M. C. Cosgrove, and M. Mayo, �A
hybrid approach to �nding cycles inhybird maps,� in Proc. of the Australian
Conference on Robotics and Automation, vol. 1, 2003.

[32] B. Stewart, J. Ko, D. Fox, and K. Konolige, �The revisiting problem in mob-
nile robot map building: A hierarchical baysian approach,� in Proc. of the
Conference on Uncertainty in Ati�cial Intelligence, vol. 1, 2003.

[33] P. Buschka and A. Sa�otti, �Some notes on the use of hybrid maps for mo-
bile robots,� in Proc. of the IEEE International Conference on Intelligent Au-
tonomous Systems, vol. 1, 2004.

[34] B. J. Kuipers, �Representing knowledge of large-scale space,� MIT Arti�cial
Intelligence Laboratory, Tech. Rep. TR-418 (revised version of Doctoral thesis
May 1977, MIT Mathematical Department), July 1977.

[35] R. Smith, M. Self, and P. Cheeseman, �A stochastic map for uncertain spatial
relationships,� in 4th International Symposium on Robotics Research, 1987.

148 BIBLIOGRAPHY

[36] J. A. Castellanos, J.M.Martinez, J. Neira, and J. D. Tardós, �Simultaneous map
building and localization for mobile robots: A multisensor fusion approach,�
in Proc. of the IEEE International Conference on Robotics and Automation
(ICRA98), vol. 1, 1998, pp. 1244�1250.

[37] J. A. Castellanos, J. Montiel, J. Neira, and J. D. Tardós, �The spmap: a
probabilistic framework for simultaneous localization and map building,� IEEE
Transactions on Robotics and Automation, vol. 15, no. 5, pp. 948�952, Oct.
1999.

[38] G. Dissanayake, H. Durrant-Whyte, and T. Bailey, �A compuationally e�ecient
solution to the simultaneous localization and map building (SLAM) problem,�
in Proc. of the IEEE International Conference on Robotics and Automation,
Apr. 2000, pp. 1009�1014.

[39] J. E. Guivant, F. R. Masson, and E. M. Nebot, �Simultaneous localization and
map building using natural features and absolute information,� Robotics and
Autonomous Systems, pp. 79�90, 2002.

[40] J. E. Guivant and E. M. Nebot, �Solving the computaional and memory
requirements for feature-based simultaneous localization and mapping algo-
rithms,� IEEE Transactions on Robotics and Automation, vol. 19, no. 4, pp.
749�755, Aug. 2003.

[41] J. E. Guivant, E. M. Nebot, and S. Baker, �Localization and map building using
laser range sensors in outdoor applications,� Journal of Robotic Systems, pp.
565�583, 2000.

[42] Y. Lui and S. Thrun, �Results for outdoor-SLAM using sparse extended in-
formation �lters,� in Proc. of the IEEE International Conference on Robotics
and Automation (ICRA03), vol. 1, 2003, pp. 1227�1233.

[43] S. Thrun, Y. Liu, D. Koller, A. Ng, Z.Ghahramani, and H. Durrant-White,
�Simultaneous localization and mapping with sparse extended information �l-
ters,� International Journal of Robotics Research, vol. 23, no. 8, pp. 690�717,
2004.

[44] M. A. Paskin, �Thin junction tree �lters for simultaneous localization and map-
ping,� in Proc. of the 18th Joint Conference on Arti�cial Intelligence (IJCAI-
03), G. Gottlob and T. Walsh, Eds. San Francisco, CA: Morgan Kaufmann
Publishers, 2003, pp. 1157�1164.

[45] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, �FastSLAM: A factored
solution to the simultaneous localization and mapping problem,� in Proc. of the
National Conference on Arti�cial Intelligence (AAAI-02), Edmonton, Canada,
2002.

149

[46] M. Montemerlo and S. Thrun, �Simultaneous localization and mapping with
unknown data association using FastSLAM,� in Proc. of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA03), vol. 1, 2003, pp.
1985�1991.

[47] J. Nieto, J. E. Guivant, and E. Nebot, �Real time data association for Fast-
SLAM,� in Proc. of the IEEE International Conference on Robotics and Au-
tomation (ICRA03), 2003.

[48] D. Hähnel, W. Burgard, D. Fox, and S. Thrun, �An e�cient FastSLAM al-
gorithm for generating maps of large-scale cyclic environments form raw laser
range measurements,� in Proc. of the IEEE International Conference on Intel-
ligent Robots and Systems, vol. 1, 2003, pp. 206�211.

[49] C. Stachniss, D. Hähnel, and W. Burgard, �Exploration with active loop-
clossing for FastSLAM,� in Proc. of the IEEE International Conference on
Intelligent Robots and Systems, vol. 1, 2004.

[50] A. Eliazar and R. Parr, �Dp-SLAM: Fast, robust simultateous localization and
mapping without predetermined landmarks,� in Proc. of the Joint Conference
on Arti�cial Intelligence (IJCAI-03), 2003.

[51] R. Eustice and M.W. J. Leonard, �Sparse extended information �lters: Insights
into sparsi�cation,� in Proc. of the IEEE/RSJ International Conference on
Intellegent Robots and Systems (IROS05), 2005.

[52] Castellanos, J. M. Devy, and J. D. Tardós, �Towards a topoligical representa-
tion of indood environments: A landmark-based approach,� in IEEE Conf.on
Intelligent Robots and Systems IROS99, 1999.

[53] J. Leonard and P. Newman, �Consistent, convergent and constant-time
SLAM,� in Proc. of the 18th Joint Conference on Arti�cial Intelligence (IJCAI-
03). San Francisco, CA: Morgan Kaufmann Publishers, 2003.

[54] P. Newman, J. Leonard, and R. Rikoski, �Towards constant-time slam on an
autonomous underwater vehicle using synthetic aperture sonar,� in Proc. of
the International Symposyum on Robotics Research (ISRR03), 2003.

[55] C. Estrada, J. Neira, and J. D. Tardós, �Hierarchical SLAM: real-time ac-
curate mapping of large environments,� IEEE Transactions on Robotics and
Automation, 2004.

[56] M. Golfarelli, D. Maio, and S. Rizzi, �Elastic correction of dead-reckoning errors
in map building,� in Proc. of the IEEE International Conference on Intelligent
Robots and Systems, vol. 1, 1998, pp. 905�911.

150 BIBLIOGRAPHY

[57] T. Duckett, S. Marsland, and J. Shapiro, �Learning globally consistent maps
by relaxation,� in Proc. of the IEEE International Conference on Robotics and
Automation (ICRA00), 2000.

[58] ��, �Fast, on-line learning of globally consistant maps,� Autonomous Robots,
vol. 12, pp. 287�300, 2002.

[59] U. Frese and T. Duckett, �A multigrid approach for accelerating relaxation-
based SLAM,� in "Proc. of the IJCAI-03 Workshop on Reasoning with Uncer-
tainty in Robotics (avail at http://www.aass.oru.se/Agora/RUR03/"), 2003.

[60] H. J. Chang, C. G. Lee, Y.-H. Lu, and Y. C. Hu, �A computational e�cient
SLAM algorithm based on logarithmic-map partitioning,� in Proc. of the IEEE
International Conference on Intelligent Robots and Systems (IROS04), vol. 1,
2004, pp. 1041�1046.

[61] N. Tomatis, I. Nourbakhsh, and R. Siegwart, �Hybrid simultaneous localization
and map building: a natural integration of topological an metric,� Robotics
and Autonomous Systems, pp. 3�14, 2003.

[62] J. Nieto, J. E. Guivant, and E. Nebot, �A novel hybrid map representation
for denseSLAM in unstructured large environments,� in Proc. of the IEEE
International Conference on Robotics and Automation (ICRA03), 2004.

[63] F. Masson, J. Guivant, and E. Nebot, �Hybrid architecture for simultaneous
localization and map building in large outdoor areas,� in Proc. of the IEEE
International Conference on Intelligent Robots and Systems(IROS02). IEEE,
2002.

[64] J. A. Castellanos, J. Neira, and J. D. Tardós, �Multisensor fusion for simul-
taneous localization and map building,� IEEE Transactions on Robotics and
Automation, vol. 17, no. 6, pp. 908�914, Dec. 2001.

[65] S. H. G. ten Hagen and B. J. Krose, �Towards global consistent pose estimation
from images,� in Proc. of the IEEE International Conference on Intellegent
Robotics and Systems (IROS02), vol. 1, 2002, pp. 466�471.

[66] D. Burschka and G. D. Hager, �V-GPS(SLAM): Vision-based inertial system
for mobile robots,� in Proc. of the IEEE International Conference on Robotics
and Automation (ICRA04), vol. 1, 2004, pp. 409�415.

[67] M. A. Garcia and A. Solanas, �3D simultaneous localization and model from
stereo vision,� in Proc. of the IEEE International Conference on Robotics and
Automation, vol. 1, 2004, pp. 847�853.

[68] S. Se, D. G. Lowe, and J. Little, �Mobile robot localization and mapping with
uncertainty using scale-invariant visual landmarks,� International Journal of
Robotics Research, vol. 21, no. 8, pp. 735�58, 2002.

151

[69] A. Costa, G. Kantor, and H. Choset, �Bearing-only landmark initialization with
unknown data association,� in Proc. of the IEEE International Conference on
Robotics and Automation (ICRA04), vol. 1, 2004, pp. 1764�1770.

[70] S. Williams and I. Mahon, �Simultaneous localization and mapping on the
Great Barrier Reef,� in Proc. of the IEEE International Conference on Robotics
and Automation (ICRA04), vol. 1, 2004, pp. 1771�1776.

[71] A. Davison, �Real-time simultaneous localization and mapping with a single
camera,� in Proc. of the IEEE International Conference on Computer Vison,
2003.

[72] A. Davison, Y. G. Cid, and N. Kita, �Real-time 3D SLAM with awide-angle
vision,� in Intelligent Autonomous Vehicles (IAV-2004), M. I. Ribeiro and J.
Santos-Victor, Eds., IFAC/EURON, IFAC/Elsevier, 2004.

[73] L. Goncalves, E. D. Bernardo, D. Benson, M. Svedman, J. Ostrowski, N. Karls-
son, and P. Pirjanian, �A visual front-end for simultaneous localization and
mapping,� in Proc. of the IEEE International Conference on Robotics and
Automation (ICRA05), 2005.

[74] N. Karlsson, E. D. Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and
M. Munich, �The vSLAM algorithm for robust localization and mapping,�
in Proc. of the IEEE International Conference on Robotics and Automation
(ICRA05), 2005.

[75] D. Asmar, J. S. Zelek, and S. M. Abdallah, �SmartSLAM: localization and
mapping accross multi-environments,� in Proc. of the IEEE International Con-
ference on Systems,Man and Cybernetics, vol. 2. IEEE, 2004, pp. 5240�5245.

[76] K. S. Chong and L. Kleeman, �Accrate odometry and error modeling for a
mobile robot,� in "Proc. of the IEEE International Conference on Robotics
and Automation (ICRA'97)", 1997, pp. 2783�2788.

[77] M. G. Dissanayake, S. Sukkarieh, E. Nebot, H. Durrant-Whyte, and M. Corba,
�The aiding of a low-cost strapdown inertial measurement unit using vehi-
cle model constraints for land vehicle applications,� IEEE Transactions on
Robotics and Automation, vol. 17, no. 5, pp. 731�747, Oct. 2001.

[78] H. Bulata and M. Devy, �Incremental construction of a landmark-based and
topological model of indoor environments by a mobile robot,� in Proc. of the
IEEE International Conference on Robotics and Automation (ICRA96), 1996.

[79] A. Martinelli, N. Tomatis, and R. Siegwart, �Open challenges in SLAM: An
optimal solution based on shift and rotation invariants,� in Proc. of the IEEE
International Conference on Robotics and Automation (ICRA04). IEEE,
2004.

152 BIBLIOGRAPHY

[80] H.-W. R. Madhavan, �Natural landmark-based autonomous vehicle naviga-
tion,� Journal of Robotics and Autonomous Systems, vol. 1, pp. 79�95, 2004.

[81] A. Diosi and L. Kleeman, �Uncertainty of line segments extracted from static
sick laser scans,� in Australasian Conference on Robotics and Automation,
2003, pp. 1�6.

[82] ��, �Advanced sonar and laser range �nder fusion for SLAM,� in Proc. of the
IEEE International Conference on Intellegent Robotics and Systems (IROS04),
vol. 1, 2004, pp. 1854�1860.

[83] P. Jensfelt, �Approaches to mobile robot localization in indoor en-
vironments,� Ph.D. dissertation, Signal, Sensors and Systems (S3),
Royal Institute of Technology, SE-100 44 Stockholm, Sweden,
http://www.cas.kth.se/� patric/publications/phd.html, 2001.

[84] D. Sack and W. Burgard, �A comparison of methods for line extraction from
range data,� in Proc. ofthe IFAC Symposium on Intelligent Autonomous Ve-
hicles (IAV2004), vol. 1, 2004.

[85] J. Leonard, R. Rikoski, paul Newman, and M. Bosse, �Mapping partially ob-
servable features from multiple uncertain vantage points,� IJRR International
Journal on Robotics Research, vol. 7, no. 3, pp. 943�975, Oct. 2002.

[86] J. Folkesson, P. Jensfelt, and H. I. Christensen, �Vision SLAM in the measure-
ment subspace,� in Proc. of the IEEE International Conference on Robotics
and Automation (ICRA05), 2005.

[87] ��, �Graphical SLAM using vision and the measurement subspace,� in
Proc. of the IEEE/RSJ International Conference on Intellegent Robots and
Systems (IROS05), 2005.

[88] J. W. Weingarten, G. Gruener, and R. Siegwart, �Probabilistic plane �tting in
3D and an application to robotic mapping,� in Proc. of the IEEE International
Conference on Robotics and Automation (ICRA'04), vol. 1, 2004, pp. 927�932.

[89] J. Folkesson and H. I. Christensen, �Robust SLAM,� in Proc. ofthe IFAC Sym-
posium on Intelligent Autonomous Vehicles (IAV2004), vol. 1, 2004.

[90] S. Sukkarieh, E. Nebot, H. Durrant-Whyte, and M. Corba, �A high integrity
IMU/GPS navigation loop for autonomous land vehicle applications,� IEEE
Transactions on Robotics and Automation, vol. 15, no. 3, pp. 572�578, June
1999.

[91] J. E. Guivant and F. Masson, �Using absolute non-Gaussian non-white obser-
vations in Gaussian SLAM,� in Proc. of the IEEE International Conference on
Robotics and Automation (ICRA05), vol. 1, 2005, pp. 338�343.

