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Abstract— This paper presents a vision based method for
grasp classification. It is developed as part of a Programming
by Demonstration (PbD) system for which recognition of objects
and pick-and-place actions represent basic building blocks for
task learning. In contrary to earlier approaches, no articulated
3D reconstruction of the hand over time is taking place. The
indata consists of a single image of the human hand. A 2D
representation of the hand shape, based on gradient orientation
histograms, is extracted from the image. The hand shape is then
classified as one of six grasps by finding similar hand shapes
in a large database of grasp images. The database search is
performed using Locality Sensitive Hashing (LSH), an approx-
imate k-nearest neighbor approach. The nearest neighbors also
give an estimated hand orientation with respect to the camera.
The six human grasps are mapped to three Barret hand grasps.
Depending on the type of robot grasp, a precomputed grasp
strategy is selected. The strategy is further parameterized by
the orientation of the hand relative to the object. To evaluate
the potential for the method to be part of a robust vision
system, experiments were performed, comparing classification
results to a baseline of human classification performance. The
experiments showed the LSH recognition performance to be
comparable to human performance.

I. INTRODUCTION

Programming service robots for new tasks puts significant
requirements on the programming interface and the user. It
has been argued that the Programming by Demonstration
(PbD) paradigm offers a great opportunity to unexperienced
users for integrating complex tasks in the robotic system [1].
The aim of a PbD system is to use natural ways of human-
robot interaction where the robots can be programmed for
new tasks by simply observing human performing the task.
However, representing, detecting and understanding human
activities has been proven difficult and has been investigated
closely during the past several years in the field of robotics
[2], [3], [4], [5], [6], [7], [8].

In our work, we have been studying different types of
object manipulation tasks where grasp recognition represents
one of the major building blocks of the system [1]. Grasp
recognition was performed using magnetic trackers [7], to-
gether with data gloves the most common way of obtaining
the measurements in the robotics field. Although magnetic
trackers and datagloves deliver exact values of hand joints,
it is desirable from a usability point of view that the user
demonstrates tasks to the robot as naturally as possible; the
use of gloves or other types of sensors may prevent a natural
grasp. This motivates the use of systems with visual input.
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Fig. 1. Human grasps are recognized and mapped to a robot. From
one time frame of video, the hand is localized and segmented from the
background. The hand orientation relative to the camera, and type of grasp
is recognized by nearest neighbor comparison of the hand view with a
database, consisting of synthesized views of all grasp types from different
orientations. The human grasp class is mapped to a corresponding robot
grasp, and a predefined grasp strategy, the whole approach-grasp-retreat
sequence, for that grasp is selected. The strategy is parameterized with the
orientation and position of the hand relative to the object, obtained from the
hand and object positions and orientations relative to the camera. (In our
experiments, the object position and orientation were obtained by hand.)



(a) 1. (b) 2. (c) 4. (d) 9. (e) 10. (f) 12.

(g) Barret Wrap. (h) Barret Two-finger Thumb. (i) Barret Precision Disc.

Fig. 2. The six grasps (numbered according to Cutkosky’s grasp taxonomy [9]) considered in the classification, and the three grasps for a Barret hand,
with human-robot class mappings ((a,b,c,e)→(g), (d)→(h), (f)→(i)) shown. a) Large Diameter grasp, 1. b) Small Diameter grasp, 2. c) Abducted Thumb
grasp, 4. d) Pinch grasp, 9. e) Power Sphere grasp, 10. f) Precision Disc grasp, 12. g) Barret Wrap. h) Barret Two-finger Thumb, i) Barret Precision Disc.

Vision based recognition of a grasping hand is a difficult
problem, due to the self occlusion of the fingers as well as the
occlusion of the hand by the grasped object [10], [11], [12],
[13]. To simplify the problem, some approaches use optical
markers [14], but markers make the system less usable when
service robot applications are considered. We therefore strive
to develop a markerless grasp recognition approach.

Figure 1 outlines the whole mapping procedure. Although
the scientific focus of this paper is on the classification on
human grasps, the classification method should be thought
of as part of the whole mapping procedure, which consists
of three main parts: The human grasp classification, the
extraction of hand position relative to the grasped object
(with object detection not implemented for our experiments),
and the compilation of a robot grasp strategy, parameterized
by the type of grasp and relative hand-object orientation and
position, described in Section VI.

The main contribution of this paper is a non-parametric
method for grasp recognition. While articulate 3D recon-
struction of the hand is straightforward when using magnetic
data or markers, 3D reconstruction of an unmarked hand
from images is an extremely difficult problem due to the
large occlusion [10], [11], [12], [13], actually more difficult
than the grasp recognition problem itself as discussed in
Section II. Our method can classify grasps and find their
orientation, from a single image, from any viewpoint, without
building an explicit representation of the hand, similarly
to [12], [15]. Other grasp recognition methods (Section II)
consider only a single viewpoint or employ an invasive
sensing device such as datagloves, optical markers for motion
capture, or magnetic sensors.

The general idea to recognize the human grasp and select
a precomputed grasping strategy is a secondary contribution
of the paper, since it differs from the traditional way to go
about the mapping problem [7]; to recover the whole 3D pose
of the human hand, track it through the grasp, and then map
the motion to the robot arm. A recognition-based approach
such as ours avoid the difficult 3D reconstruction problem,
and is also much more computationally efficient since it only
requires processing of a single video frame.

The grasp recognition problem is here formalized as the
problem of classifying a hand shape as one of six grasp
classes, labeled according to Cutkosky’s grasp taxonomy [9].
The classes are, as shown in Figure 2a-f, Large Diameter
grasp, Small Diameter grasp, Abducted Thumb grasp, Pinch
grasp, Power Sphere grasp and Precision Disc grasp.

The input to the grasp classification method is a single
image (one time instance, one camera view point) from the
robot’s camera. The hand is segmented out using skin color
segmentation, presented in more detail in Section III. From
the segmented image, a representation of the 2D hand shape
based on gradient orientation histograms is computed as
presented in Section IV. A large set of synthetic hand views
from many different viewpoints, performing all six types of
grasps has been generated. Details are given in Section III.
The new hand shape is classified as one of the six shapes by
approximate k-nearest neighbor comparison using Locality
Sensitive Hashing (LSH) [16]. Along with the grasp class,
the estimated orientation of the hand relative to the camera
is obtained by interpolating between the orientations of the
found nearest neighbors. This is presented in Section V.

Experiments presented in Section VII show the method



(a) Input image I. (b) Hand image H. (c) Synthetic hand image Hsynth.

Fig. 3. Processing of image data. a) Input I from the robot, grabbed with an AVT Marlin F-080C camera. b) Segmented hand image H. c) Synthetic
view of hand Hsynth, generated in Poser 7.

to perform comparably to humans, which indicates that it
is fit to be included into complex vision system, such as
the one required in a PbD framework. Comparison of the
system’s and human performance should also be considered
as a contribution since, according to the authors’ knowledge,
such an evaluation has not been considered previously in
similar applications.

II. RELATED WORK

Classification of hand pose is most often used for gesture
recognition, e.g. sign language recognition [12], [17]. These
applications are often characterized by low or no occlusion
of the hands from other objects, and a well defined and
visually disparate set of hand poses; in the sign language
case they are designed to be easily separable to simplify
fast communication. Our problem of grasp recognition differs
from this application in two ways. Firstly, the grasped object
is usually occluding large parts of the grasping hand. We
address this by including expected occlusion in our dataset;
occluding objects are present in all example views (Section
III). Secondly, the different grasping poses are in some cases
very similar, and there is also a large intra-class variation,
which makes the classification problem more difficult.

Related approaches to grasp recognition [14], [18] first
reconstruct the hand in 3D, from infrared images [18] or
from an optical motion capture system which gives 3D
marker positions [14]. Features from the 3D pose are then
used for classification. The work of Ogawara et al. [18]
views the grasp recognition problem as a problem of shape
reconstruction. This makes their results hard to compare to
ours. In addition, they also use a wide baseline stereo system
with infrared cameras, which makes their approach difficult
to adopt in a case of a humanoid platform.

The more recent work of Chang et al. [14] learns a
non-redundant representation of pose from all 3D marker
positions – a subset of features – using linear regression
and supervised selection combined. In contrast, we use a
completely non-parametric approach where the classification
problem is transformed into a problem of fast LSH nearest

neighbor search (Section IV). While a linear approach is
sufficient in the 3D marker space of Chang et al. [14] , the
classes in the orientation histogram space are less Gaussian
shaped and more intertwined, which necessitates a non-linear
or non-parametric classifier as ours.

Using 3D motion capture data as input, Chang et al. [14]
reached an astonishing recognition rate of up to 91.5%. For
the future application of teaching of service robots it is
however not realistic to expect that the teacher will be able
or willing to wear markers to provide the suitable input for
the recognition system. 3D reconstructions, although with
lower accuracy, can also be achieved from unmarked video
[19], [20]. However, Chang et al. [14] note that the full
3D reconstruction is not needed to recognize grasp type.
Grasp recognition from images is thus an easier problem
than 3D hand pose reconstruction from images, since fewer
parameters need to be extracted from the input. We conclude
that the full 3D reconstruction is an unnecessary (and error
prone) step in the chain from video input to grasp type.

Our previous work [7] considered an HMM framework for
recognition of grasping sequences using magnetic trackers.
Here, we are interested in evaluating a method that can
perform grasp classification based on a single image only,
but it should be noted that the method can easily be extended
for use in a temporal framework.

III. EXTRACTING THE HAND IMAGE

Since the robot grasp strategies are predefined, and only
parameterized by the hand orientation, position and type of
grasp, there is no need for the human to show the whole grasp
procedure; only one time instance is enough (for example,
the image that is grabbed when the human tells the robot
”now I am grasping”).

The input to the recognition method is thus a single
monocular image I from the a camera mounted on the robot.
For our experiments, we use an AVT Marlin F-080C camera.
An example of an input image is shown in Figure 3a. Before
fed into the recognition, the image is preprocessed in that the
grasping hand is segmented from the background.
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Fig. 4. Gradient orientation histograms from the hand image H of Figure 3b, with B = 4 bins, on level l = 1 in the pyramid of L = 4 levels (spatial
resolution 8× 8). a) Bin 1, orientation π
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A. Segmentation of hand images

The hand segmentation could be done using a number of
modalities such as depth (estimated using stereo or an active
sensor) or color. We choose to use skin color segmentation;
the details of the method used is described in [21]. To remove
segmentation noise at the borders between background and
foreground, the segmentation mask is median filtered three
times with a 3× 3 window.

The segmented image Ĥ is cropped around the hand
and converted from RGB to grayscale. An example of the
resulting hand image H is shown in Figure 3b.

B. Generation of synthetic hand images for the classification

The fact that the classification method (Section V) is non-
parametric and that no explicit model of the hand is built
(Section IV) means that a very large set of examples, from
many different views, is needed for each grasp.

As it is virtually intractable to generate such training sets
using real images, we use a commercial software, Poser
7, to generate synthetic views Hsynth of different hand
configurations. Poser 7 supplies a realistic 3D hand model
which can be configured by bending the finger joints. For
our purposes, the model was configured by hand into the
6 iconic grasps, which were a little exaggerated to provide
clear distinctions between the classes. 900 views of each
configuration were generated, with viewing angles covering
a half-sphere in steps of 6 degrees in camera elevation and
azimuth; these are the views which can be expected by a
robot with cameras above human waist-height. The synthetic
hand was grasping an object, whose shape was selected to
be typical of that grasp [9]. The object was black (as the
background), and occluded parts of the hand as it would in
the corresponding real view of that grasp. This will make
the synthetic views as similar as possible to the real views
(e.g. Figure 3b), complete with expected occlusion for that
view and grasp. Figure 3c shows such a database example.

The synthetic images Hsynth can be seen as ideal versions
of the segmented and filtered real hand images H. Note that
the recognition method is tested (Section VII) using real hand
images prepared as described in the previous subsection, and
that the synthetic images are used only for the database. Note

further that the hand in the database is not the same as the
hand in the test images.

IV. IMAGE REPRESENTATION

For classification of grasps, we seek a representation of
hand views (Figures 3b and 3c) with as low intra-class
variance, and as high inter-class variance as possible. We
choose gradient orientation histograms, frequently used for
representation of human shape [22], [23].

Gradient orientation Φ ∈ [0, π) is computed from the
segmented hand image H as

Φ = arctan(
∂H
∂y

/
∂H
∂x

) (1)

where x denotes downward (vertical) direction and y right-
ward (horizontal) direction in the image.

From Φ, a pyramid with L levels of histograms with
different spatial resolutions are created; on each level l, the
gradient orientation image is divided into 2L−l×2L−l equal
partitions. A histogram with B bins are computed from each
partition. An example of histograms at the lowest levels of
the pyramid can be seen in Figure 4.

The hand view is represented by x which is the concate-
nation of all histograms at all levels in the pyramid. The
length of x is thus B

∑L
l=1 22(L−l). The performance of the

classifier is quite insensitive to choices of B ∈ [3, 8] and
L ∈ [2, 5]; in our experiments in Section VII we use B = 4
and L = 3.

V. APPROXIMATE NEAREST NEIGHBOR CLASSIFICATION

A database of grasp examples is created by synthesizing
N = 900 views Hsynth

i,j with i ∈ [1,M ], j ∈ [1, N ], from
each of the M = 6 grasp classes (Section III), and generating
gradient orientation histograms xi,j from the synthetic views
(Section IV). Each sample has associated with it a class label
yi,j = i and a hand-vs-camera orientation oi,j = [φj , θj , ψj ],
i.e. the Euler angles from the camera coordinate system to a
hand-centered coordinate system.

To find the grasp class ŷ and orientation ô of an unknown
grasp view x acquired by the robot, a distance-weighted k-
nearest neighbor (kNN) classification/regression procedure is



(a) 1, 0.5039, (0,−90,−132). (b) 1, 0.5238, (0,−96,−138). (c) 1, 0.5308, (0,−96,−132). (d) 1, 0.5517, (0,−90,−126).

(e) 1, 0.5523, (0,−96,−144). (f) 1, 0.5584, (0,−102,−132). (g) 1, 0.5870, (0,−90, +108). (h) 4, 0.6068, (0,−90, +120).

Fig. 5. Distance-weighted nearest neighbor classification. a-h) Some of the approximate nearest neighbors to the hand view in Figures 3b, with associated
grasp class yi,j , distance in state-space di,j , and 3D orientation oi,j .

used. First, Xk, the set of k nearest neighbors to x in terms
of Euclidean distance di,j = ‖x− xi,j‖ are retrieved.

As an exact kNN search would put serious limitations on
the size of the database, an approximate kNN search method,
Locality Sensitive Hashing (LSH) [16], is employed. LSH
is a method for efficient ε-nearest neighbor (εNN) search,
i.e. the problem of finding a neighbor xεNN for a query x
such that

‖x− xεNN‖ ≤ (1 + ε)‖x− xNN‖ (2)

where xNN is the true nearest neighbor of x. This is done
as (see [16] for details): 1) T different hash tables are
created independently. 2) For t = 1, . . . , T , the part of state
space in which the dataset {xi,j}i∈[1,M ],j∈[1,N ] resides is
randomly partitioned by K hyperplanes. 3) Every point xi,j

can thereby be described by a K bit binary number ft,i,j
defined by its position relative to the hyperplanes of table t.
4) As the total number of possible values of ft,i,j is large,
a hash function h(ft,i.j) gives the index to a hash table of
fixed size H .

The εNN distance to the unknown grasp view x is now
found as: 1) For each of the T hash tables, compute hash
indices h(ft) for x. 2) Let X∪ = {xm}m∈[1,N∪] be the
union set of found examples in the T buckets. The εNN
distance ‖x − xεNN‖ = minm∈[1,N∪] ‖x − xm‖. In analog,
the min(N∪, k) ε-nearest neighbors Xk are found as the
min(N∪, k) nearest neighbors in X∪.

The parameters K and T for a certain value of ε is dataset
dependent, but is learned from the normal data itself [24].
We use ε = 0.05.

The computational complexity of retrieval of the εNN with
LSH [16] is O(DN

1
1+ε ) which gives sublinear performance

for any ε > 0. For examples of ε-nearest neighbors to the
hand in Figure 3b, see Figure 5.

From Xk the estimated class of x is found as,

ŷ = arg max
i

∑
j:xi,j∈Xk

exp(−
d2

i,j

2σ2
) , (3)

i.e. a distance-weighted selection of the most common class
label among the k nearest neighbors, and the estimated
orientation as

ô =

∑
j:xŷ,j∈Xk

oŷ,j exp(−d2
ŷ,j

2σ2 )∑
j:xŷ,j∈Xk

exp(−d2
ŷ,j

2σ2 )
, (4)

i.e. a distance-weighted mean of the orientations of those
samples among the k nearest neighbors for which yi,j = ŷ.
(The cyclic properties of the angles is also taken into account
in the computation of the mean.) As we can see in Figure 5h,
the orientation of a sample from a different class has very
low correlation with the real orientation, simply because the
hand in a different grasp has a different shape. Therefore,
only estimates with the same class label as ŷ are used in the
orientation regression. All in all, the dependency between
the state-space and the global Euler angle space is highly
complex, and that is why it is modeled non-parametrically.

The standard deviation σ is computed from the data as

σ =
1√

2MN

∑
i

∑
j1,j2∈[1,N ],j1 6=j2

‖xi,j1 − xi,j2‖ , (5)



Fig. 6. Barret Wrap grasp, carried out on the same type and size of object as the human Large Diameter grasp shown in Figure 3b.

the mean intra-class, inter-point distance in the orientation
histogram space [25].

The obviously erroneous neighbors in Figures 5g
and 5h could maybe have been avoided with a larger
database containing hands of varying basic shape, such as
male/female/skinny/fat/long-fingered/short-fingered hands.
The hand in the test images (Figure 3b) is considerably
different from the synthetic Poser 7 hand (Figures 3c, 5),
and thus their 3D shapes are different even though they take
the same pose. This poses no problem to the method in
general; since the approximate kNN classification/regression
has a sub-linear complexity, the database can be increased
considerably to a limited computational cost.

VI. EXAMPLE-BASED MAPPING OF GRASP TO ROBOT

To illustrate how the grasp classification can be employed
for human-to-robot mapping in a pick-and-place scenario, a
simulated robot arm is controlled with parameterized pre-
defined grasping strategies as illustrated in Figure 1.

A human-to-robot grasp mapping scheme is defined de-
pending on the type of robot hand used; here we use a Barret
hand with three types of grasps as shown in Figure 2. The
type of robot grasp defines the preshape of the robot hand.

The hand orientation estimate ô relative to the camera,
along with the hand position estimate and the estimated
position and orientation of the grasped object relative to
the camera, are used to derive the estimated position and
orientation of the human hand relative to the object, as
depicted in Figure 1. The estimation of object position and
orientation is assumed perfect; this part of the system is
not implemented, instead the ground truth is given in the
simulations.

In contrary to related grasp approaches [26], the robot here
does not explore a range of approach vectors, but instead
directly imitates the human approach vector, encoded in the
hand position and orientation relative to the object. This
leads to a much shorter computational time at the expense
of the non-optimality of the grasp in terms of grasp quality.
However, since the the selection of robotic preshape has
been guided, the stability of the robotic grasp will be similar
to the human one, leading to a non-optimal but successful

grasp provided that the errors in the orientation and position
estimate are sufficiently small.

An analysis of the robustness to position errors can be
found in [26]. For an optimally chosen preshape, there is a
error window≥ 4 cm× 4 cm about the position of the object,
within which the grasps are successful. The positioning of
the robot hand can also be improved by fusing the estimated
human hand position with an automatic selection of grasping
point based on object shape recognition [27].

The robustness to orientation errors depends greatly on
the type of grasp and object shape. We investigate the
robustness of the Barret Wrap grasp with an approach vector
perpendicular to the table (Figure 6). We get good results
for orientation errors around the vertical axis of up to 15
degrees. As a comparison, the mean regression error of this
orientation (Section VII-B) is on the same order as the
error window size, 10.5 degrees, which indicates that the
orientation estimation from the grasp classifier should be
used as an initial value for a corrective movement procedure
using e.g. the force sensors on the hand.

VII. EXPERIMENTAL RESULTS

Quantitative evaluations of the grasp classification and
orientation estimation performance were made.

For each of the six grasp types, two video sequences of
the hand were captured, from two different viewpoints. From
each video, three snapshots were taken, one where the hand
was starting to reach for the object, one where the hand was
about to grasp and one where the grasp was completed. This
test set is denoted X .

The test examples from the beginning of the sequences
are naturally more difficult than the others, since the hand
configuration in those cases are closer to a neutral configu-
ration, thus more alike than the examples taken closer to the
completed grasp. It is interesting to study the classification
rate for the different levels of neutrality, since it indicates
the robustness to temporal errors when the robot grabs the
image upon which the classification is based (Section III). In
some tests below, we therefore removed the 12 most neutral
examples from the test set, denoted X ′. In other tests, we
kept only the 12 most specific examples, denoted X ′′.
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(a) LSH, all hand images: 61%.
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(b) LSH, hand close to object: 71%.
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(c) LSH, hand grasping object: 75%.
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(d) Human, all hand images: 74%.

Fig. 7. Confusion matrices for classification of the six grasps. White represents a 100% recognition rate, while black represents 0%. a) LSH performance, all
hand images (X): 61% correct classifications. b) LSH performance, images with hand close to object (X′): 71% correct classifications. c) LSH performance,
images with hand grasping object (X′′): 75% correct classifications. d) Human performance, all hand images (X): 74% correct classifications.

A. Classification of human grasps: Comparison of LSH and
human classification performance

Figures 7a, 7b, and 7c show the confusion matrices for
LSH classification of test set X , X ′, and X ′′, respectively.
Apart from the fact that the performances on X ′ and X ′′

are better than for X , it can be noted that the performance
on Pinch grasp (9) and Precision Disc grasp (12) are very
good. This is expected since these grasps are visibly very
different from the others. Interestingly, it also concords with
the mapping to the Barret grasps (Figure 2) in which these
grasps have unique mappings while the others all are mapped
to the same grasp. Note however that the human grasps map
differently to more articulated robot hands.

The error rates alone say little about how the method
would perform in a PbD system. The grasp recognition
would there interact with methods for object, shape and
action recognition, and a perfect performance in an isolated
grasp recognition task is probably not needed.

How do we then know what error rate is ”enough”?
Humans are very good at learning new tasks by visual
observation, and reach a near perfect performance on com-
bined object, shape, action and object recognition. Human
recognition performance on the same task as our classifier,
with the same indata, would thus be a good baseline.

As an important side note, two things can be noted about
this comparison. Firstly, in a natural learning situation, a hu-
man would use information about the grasped object and the
motion of the hand as well. This information is removed for
this experiment. As discussed in the Conclusions, we intend
to integrate automatic grasp, object and action recognition
in the future. Secondly, it is debated how important depth
perception is for human recognition; humans perceive depth
both through stereo and through prior knowledge about the
hand proportions. For this experiment, we disregard depth as
a cue in the human experiment.

Figure 7d shows the classification performance of a human
familiar with the Cutkosky grasp taxonomy. The human was
shown the segmented hand images H in the set X in random
order and was asked to determine which of the six grasp
classes they belonged to.

Interestingly, the human made the same type of mistakes

as the LSH classifier, although to a lower extent. He some-
times misclassified Power grasp (10) as Large Diameter grasp
(1), and Small Diameter grasp (2) as Abducted Thumb grasp
(4). This indicates that these types of confusions are intrinsic
to the problem rather than dependent on the LSH and training
set. Since humans are successful with grasp recognition in
a real world setting, these confusions are compensated for
in some other way, probably by recognition of shape of the
grasped objects. It can also be noted that the human was
better at recognizing the most neutral grasps present in X
but not in X ′ or X ′′.

Overall, the LSH performance is at par with, or slightly
worse than human performance. This must be regarded as a
successful experimental result, and indicates that the grasp
recognition method can be a part of a PbD system with low
error rate.

B. Classification of human grasps: Orientation accuracy
Figure 8 shows the mean orientation error for regression

with X . The angular displacement of the two coordinate
systems corresponds to how far off a robot hand would be
in grasping an object without corrective movements during
grasping. As noted in Section VI, the orientation estimate
from this method should only be regarded as an initial
value, from where a stable grasp is found using a corrective
movement procedure.

VIII. CONCLUSIONS

PbD frameworks are considered as an important area for
future robot development where the robots are supposed to
learn new task through observation and imitation. Manipu-
lating and grasping known and unknown objects represents
a significant challenge both in terms of modeling the obser-
vation process and then executing it on the robot.

In this paper, a method for classification of grasps, based
on a single image input, was presented. A grasping hand was
represented as a gradient orientation histogram; a 2D image-
based representation. A new hand image could be classified
as one of six grasps by a kNN search among large set of
synthetically generated hand images.

On the isolated task of grasp recognition, the method
performed comparably to a human. This indicates that the



Fig. 8. Mean orientation error, all hand images (X): (0, 0.29, 0.18) radians
= (0, 16.8, 10.5) degrees.

method is fit for use in a PbD system, where it is used
in interaction with classifiers of object shape and human
actions. The dataset contained grasps from all expected
viewpoints and with expected occlusion. This made the
method view-independent although no 3D representation of
the hand was computed.

The method was considered part of a grasp mapping
framework, in which precomputed grasp strategies were
compiled based on the detected type of grasp and hand-object
orientation.

A. Future Work

It would be interesting to add an object orientation estima-
tion technique to the system, and to execute the grasps on a
real robot arm. Furthermore, we will investigate the inclusion
of automatic positioning methods into the grasp strategies,
as suggested in Section VI.

The classifier will also benefit from a training set with
hands of many different shapes and grasped objects of
different sizes. Although, this will increase the size of the
database, the sub-linear computational complexity of the
LSH approximate kNN search ensures that the computation
time will grow at a very limited rate.

This paper discussed instantaneous recognition of grasps,
recognized in isolation. Most probably, a higher recognition
performance can be reached using a sequence of images
over time. Moreover, there is a statistical correlation between
types of objects, object shapes, human hand actions, and
human grasps in a PbD scenario. We are therefore on our
way to integrating the grasp classifier into a method for
continuous simultaneous recognition of objects and human
hand actions, using conditional random fields (CRF) [28].
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