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Abstract— We study the problem of human to robot grasp
mapping as a basic building block of a learning by imitation
system. The human hand posture, including both the grasp type
and hand orientation, is first classified based on a single image
and mapped to a specific robot hand. A metric for the evaluation
based on the notion of virtual fingers is proposed. The first
part of the experimental evaluation, performed in simulation,
shows how the differences in the embodiment between human
and robotic hand affect the grasp strategy. The second part,
performed with a robotic system, demonstrates the feasibility
of the proposed methodology in realistic applications.

I. INTRODUCTION

Programming service robots for new tasks puts significant
requirements on the programming interface and the user.
Programming by Demonstration (PbD) systems offer a great
opportunity to unexperienced users for integrating complex
tasks in a robotic system. However, representing, detecting
and understanding human activities has been proven difficult
and has been investigated closely during the past several
years, [1], [2], [3], [4].

In the past, we have studied imitation of object manipula-
tion tasks, using magnetic trackers, [4]. Although magnetic
trackers and datagloves deliver exact values of hand joints, it
is desirable that the user demonstrates tasks to the robot in a
natural way; the use of gloves or other types of sensors may
prevent a natural grasp. This motivates the use of systems
based on visual input. In this paper, we concentrate on the
use of our vision based grasp classification system presented
in [5] for evaluation and execution of the grasp mapping on
a robot. The contributions of the work presented here are:
• Based on a single image and the classification method-

ology [5], we purpose a mapping strategy between a
human and two robot hands of different kinematical
properties. The mapping is performed according to the
grasp taxonomy proposed in [6], shown in Fig. 1.

• The distinction between the grasp categories is made
based on the preshape of the hand and also in terms of
different strategies for approaching the objects.

• We propose a metric for evaluation of the mapping
strategy and use it in the experimental evaluation.

We start with the state of the art description in Section II,
followed by a short overview of grasp classification in
Section III. Section IV describes the grasp mapping strategy
and Section V presents the evaluation of the system. The
paper is concluded in Section VI.
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(f) 4.Abd.
Thumb

(g) 9.Pinch (h) 10.Power
Sphere

(i) 12.Precision
Disc

(j) Karlsruhe Power. (k) Karlsruhe Wrap. (l) Karlsruhe
Sphere.

(m) Karlsruhe
Disc.

Fig. 1. The six grasps according to Cutkosky’s grasp taxonomy [6]
considered in the classification, and the three grasps for a Barrett hand and
Karlsruhe hand, with human-robot class mappings ((d,e)→(a),(f,g)→(b),
(h,i)→(c)), (d,f,g)→(j), (e)→(k), (h)→(l), (i)→(m) shown. a) Barrett Wrap.
b) Barrett Precision. c) Barrett Precision Disc d) Large Diameter grasp, 1.
e) Small Diameter grasp, 2. f) Abducted Thumb grasp, 4. g) Pinch grasp, 9.
h) Power Sphere grasp, 10. i) Precision Disc grasp, 12. j) Karlsruhe Power,
k) Karlsruhe Wrap, l) Karlsruhe Sphere, m) Karlsruhe Disc

II. RELATED WORK

In the field of robotics, most of the object grasping
systems are based on the a-priori object knowledge where
either analytical or off-line methodology is used for grasp
execution. In the work presented in this paper, we aim for
learning grasps directly from human and mapping them on
different robot hands. This relates to the work of [7] that
classify objects based on their affordances (categories like
“sidewall-graspable”), so the classification itself determines
how to grasp the object. Also, as it has been showed by
[8], the appropriate usage of grasps is not necessarily related
just to the object’s shape. For example, the way to grasp a
hammer is not the most natural or most stable for this object,
but it is the best for the purpose a hammer is used.

According to [9], a grasp action involves two main func-
tions well separated: the approach component (involving the
arm muscles) and the grasp component (involving the hand
muscles). Although it has been showed that these systems



are closely correlated, people focused mainly on one of
the two subsystems. There are systems performing imitation
of the arm [10] or, more generally, the upper-body [11].
The arm/upper-body imitation does not experience the self
occlusion to the same extent as the hand does.

Our previous work [4] considered an HMM framework for
recognition of grasping sequences using magnetic trackers
and evaluated both the fingertip and the posture mapping.
There are approaches that imitate the whole hand posture
[12] or perform a simple mapping to a gripper based on
two fingertips [13]. Mapping grasps to more complex hands
is usually much more complicated. In [14] the concept of
”virtual finger” is introduced: one or more real fingers acting
in unison. Kang and Ikeuchi [15] use this concept as an
intermediate step in their mapping procedure. Our approach
integrates vision based mapping and the notion of virtual
fingers for mapping human grasps to two robot hands: one
of them resembles human kinematics (Karlsruhe hand) and
one of them does not (Barrett hand). Thus, the robot here
does not explore a range of approach vectors, but instead
directly imitates the human approach vector, encoded in the
hand position and orientation relative to the object.

III. VISION BASED GRASP CLASSIFICATION

The details of our methodology for visual recognition of
grasps can be found in our previous work, [5]. We only
summarize the most important aspects. The input to the grasp
classification method is a single monocular image in which
we first segment the hand. The classification method is non-
parametric; grasp classification and hand orientation regres-
sion is formulated as a problem of finding the hand poses
most similar to image example H in a large database. Each
database sample Hsynth

i,j , where i denotes grasp type and j
denotes sample number, has associated with it a class label
yi,j = i and a hand-vs-camera orientation oi,j = [φj , θj , ψj ],
i.e. the Euler angles from the camera coordinate system to
a hand-centered coordinate system. To find the grasp class
ŷ and orientation ô of an unknown grasp view H acquired
by the robot, a distance-weighted k-nearest neighbor (kNN)
classification/regression procedure is used. First the set of
k nearest neighbors to H in terms of Euclidean distance
between gradient orientation histograms obtained from the
grasp images are retrieved from the database. From the found
approximate nearest neighbors, the estimated class of H is
found as a distance-weighted selection of the most common
class label among the k nearest neighbors, and the estimated
orientation as a distance-weighted mean of the orientations
of those samples among the k nearest neighbors for which
yi,j = ŷ.

IV. EXAMPLE-BASED MAPPING OF GRASP TO ROBOT

The estimated grasp class as well as hand and object
orientation and position are used to instantiate a robot
grasp strategy. The human-to-robot grasp mapping scheme
is defined depending on the type of robot hand used. The
Barrett hand is a three fingered, 4DOF robotic hand with
an embodiment substantially different to a human hand.

Karlsruhe hand is a five fingered, 8DOF robotic hand with
an embodiment similar to a human hand. The preshapes used
for the hands are shown in Fig. 1. There are three preshapes
for the Barrett hand:
• Barrett Wrap: used for grasps with a preshape with large

aperture, like Large and Small Diameter grasps;
• Barrett Precision Grasp: for small aperture preshapes

like the Pinch grasp and the Abducted Thumb (executed
as a pinch grasp due to the hand kinematic constraints);

• Barrett Precision Disc: for circular objects.
There are four preshapes for the Karlsruhe hand:
• Karlsruhe Power preshape is applied for grasps with

four parallel fingers and thumb opposed to them, like
Large Diameter, Pinch and Abducted Thumb.

• Karlsruhe Wrap is applied for the Small Diameter where
the thumb is not opposed to the rest of the fingers.

• There are two preshapes for round objects, Karlsruhe
Sphere (for Power Sphere) and Karlsruhe Disc (for
Precision Disc); the differences are in the pose of the
thumb (more opposed in the Disc) and in how straight
are the rest of the fingers (more bent in Power Sphere).

The grasp mapping is performed as shown in Algorithm 1.
The hand orientation estimate oh→c, along with the hand
position estimate ph→c and the estimated position and ori-
entation oo→c, po→c of the grasped object all relative to the
camera are used to derive the estimated position and orien-
tation of the human hand relative to the object oh→o, ph→o.
The hand orientation relative to the table plane oh is extracted
from oh→c and the orientation of the camera oc, obtained
through the robotic head kinematics. The estimation of object
position and orientation is assumed perfect; this part of the
system is not implemented, instead the ground truth is given
in the simulations.

The system first decides which preshape to use based on
the recognized grasp. Then, the approach vector is chosen.
Two different ways of approaching the object are used, based
on the orientation of the human hand; if the palm orientation
oh is similar to the one in Fig. 1(e) the object is approached
from the side, otherwise it is approached from the top. Based
on the estimated type of grasp, the system differentiates
between volar and non-volar grasp, [15], i.e., whether there
should be a contact between the palm and object or not.
The original volar grasps are the Large Diameter, Small
Diameter, Abducted Thumb and Power Sphere grasps, see
Fig. 1. However, the limitations of the hands embodiments
make impossible to use the palm in the Abducted Thumb
and Power Sphere grasps. In a human Abducted Thumb
grasp the palm adapts its shape to the object, and the
abduction/adduction degrees of freedom of the fingers are
used; the robotic hands studied here lack those degrees of
freedom, so the Abducted Thumb is mapped to a Pinch
Grasp. In the case of the Power Sphere, the robotic hands
cannot apply a volar grasp due to the larger length of robotic
fingers.

The volar grasping is performed in the following order:
1) The robot adopts the hand orientation and preshape



Data: Human Grasp Gh, ph→o,oh→o, oh
/* Robot Hand H ∈ {Barrett,Karlsruhe} */
/* Robotic Grasp Gr */
/* Approach Vector a */
/* Distance palm-fingertip δ */
if H = Barrett then

if Gh ∈ {LargeDiameter, SmallDiameter} then
Gr = BarrettWrap;

else if Gh ∈ {Pinch,Abducted} then
Gr = BarrettPrecision;

else if Gh ∈ {PowerSpherical, PrecisionDisc}
then

Gr = BarrettPrecisionDisc;

else if H = Karlsruhe then
if Gh ∈ {LargeDiameter, P inch,Abducted} then

Gr = KarlsruhePower;
else if Gh = SmallDiameter then

Gr = KarlsruheWrap;
else if Gh = PowerSphere then

Gr = KarlsruhePowerSphere;
else if Gh = PrecisionDisc then

Gr = KarlsruhePrecisionDisc;

if oh = oside then ; /* see Fig. 1(e) */

a = as; /* approach from side */

else
a = av; /* approach from top */

/* execute */
Set hand to preshape Gr;
Set hand to orientation oh→o;
if Gh ∈ {LargeDiameter, SmallDiameter} then ;
/* if volar */

Approach following a towards ph→o until contact;
while contact pc out of palm do

Retreat;
ph→o = αpc + (1− α)ph→o;
Approach following a towards ph→o;
α = α2;

else ; /* if non-volar */

Approach following a towards ph→o − δ;
Grasp;

Algorithm 1: Pseudo-code for grasp mapping.

corresponding to the estimated human grasp.
2) The robot hand approaches the object centroid until it

detects contact on the palm sensor. After that, it closes
the hand.

When the robot detects that the first contact did not
occurred in the palm, the trajectory is replanned. The new
goal position for the hand is a weighted average between the
detected contact pc and the original goal position ph→o, as

explained in Algorithm1. The non-volar grasps, which have
no contact between the palm and the object, are originally the
Pinch and Precision Disc grasps (see Fig. 1). Since there is no
contact between the tactile sensor in the palm and the object,
in our system the grasp is performed without any feedback.
For this reason, the non-volar grasps depend heavily on the
precision of the object position and orientation estimation.
The difference between non-volar and volar strategies is the
absence of the loop where the contact location is checked
(see Algorithm 1).

V. EXPERIMENTAL RESULTS

We first evaluate our approach in the GraspIt! simulator
and then demonstrate it in a real robotic scenario.

A. Simulated grasping with GraspIt

As stated, evaluating the performance of a grasp imitation
system is not trivial. It cannot be based on grasp stability,
and comparison between joint angles in robotic hands and
human hand is not possible because of the differences in the
embodiment. We have decided to compare the grasps using
the concept of virtual fingers ([14]), computed based on the
equations stated in [16]. As cited in Section II, a virtual
finger is a group of real fingers (including the palm) that act
in unison. So, in theory, the average position and orientation
of the virtual finger contacts in the imitated grasp should be
similar to the ones in the original grasps. However, as it will
be discussed later, that is not always the case.

The virtual finger configuration tries to minimize two
factors: the number of virtual fingers N , in order to achieve
a compact representation, and the heterogeneity of the real
fingers Ri conforming each virtual finger Vk, described as
a cohesive index for virtual finger k, CVk

. The cohesive
index of each virtual finger is computed based on the degree
of force coupling (cosine of the angle between the forces)
between each two forces fi, fj applied with any of the fingers
within a virtual finger:

Dc(i, j) =
fi · fj
|fi| · |fj |

, mij =
1 +Dc(i, j)

2

CVk
=

∏
i∈Ri,j∈Rj

Ri,j∈Vk

mξ
ij , ξ =

(
F (Vk)

2

)−1

where F (Vk) is the number of fingers within Vk. For
example, if all forces within a virtual finger k are parallel,
CVk

= 1. If any two forces belonging to the virtual finger
are perpendicular, CVk

= 0. So, in order to find the best
configuration of virtual fingers, we maximize the cohesive
indexes CVk

trying to keep the number of virtual fingers
small:

Maximize Ceff = ( 1
N !

∏N
i=1 CV,i)

1
N

Subject to N ∈ 1, 2, 3, 4, 5, 6,
⋃N
i=1 Vi = R

Vi ∩ Vj = ∅, i 6= j, 1 ≤ i, j ≤ N

So for every possible combination of real fingers Ri
assignment to virtual fingers Vk, the coefficient Ceff is
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Fig. 2. First and third row shows the grasp execution in absence of errors for Barrett and Karlsruhe Hand. Second and forth row show a comparison
between the contacts for Barrett(black)-Human(blue) hands and Karlsruhe(black)-Human(blue) hands. The big arrows show the average pose of the virtual
fingers,PVk

computed. The assignment with the highest Ceff is selected
as the virtual finger representation of the grasp. The position
and orientation of contacts is automatically extracted from
the robotic simulator for the robot grasps, and it was tagged
manually from images for the human grasp.

So far, all the real fingers Ri have been assigned to a
virtual finger Vk. In order to compare the configuration of
different hands we will define the contact pose (6d, including
position and orientation) PVk

of a virtual Vk as the average
of the contact poses Pi within this virtual finger:

PVk
=

1
T (Vk)

∑
i∈Ri
Ri∈Vk

Pi

T (Vk) ≡ number of contacts within Vk

In the first experiment, perfect object pose estimation and
perfect hand pose recognition is assumed. Fig. 2 represents
the grasps and the contact comparison between the robotic
hands (black) and the human hand (blue). The big arrows
show PVk

, and the small arrows show all Pi. It can be
seen in this figure that the pose of the virtual fingers and
even the number of them does not coincide always. For
example, the Barrett hand has three virtual fingers for the

Small Diameter grasp, while Human and Karlsruhe hands
have two (Fig. 2a,g,m,s). The reason for this mismatch is
that Barrett fingers are longer than human and Karlsruhe
fingers, so the object is touched by the last phalanx in the
edges instead of the face. Another significant difference in
the number of virtual fingers appears in the Power Sphere
grasp (Fig. 2c,k,q,w). The human grasp has just one virtual
finger, while the robotic hands have two. For the human,
placing the thumb opposed to the rest of the fingers is
uncomfortable. The big contact surface and therefore big
friction between the hand and the ball allows him to place
the fingers in a relatively unstable way. However, the contact
surface between the robotic hands and the object is much
smaller, so the thumb should be placed in opposition to
the rest of the fingers. In contrast, in the Precision Disc
grasp (Fig. 2f,r,l,x) the human needs to place the thumb
in opposition to the rest of the fingertips due to the lower
friction between the hand and the object. It is also interesting
to reason about the results for the Large Diameter grasp
(Fig. 2b,h,n,t). Apparently there is a big difference between
the average virtual finger position, but the actual contacts
look similar. The reason is that the human fingers have
contacts in both the proximal and distal phalanges, while



the robot achieves a contact just in the distal ”phalanges”.
Finally, it should be pointed that despite the impossibility of
imitating properly the Abducted Thumb grasp, the position
of the virtual fingers is quite accurate, with a deviation in
orientation in one of them due to the two contacts from the
human palm and index fingertip in the top of the object,
inexistent in the robotic grasps.

We present a more concise view of the experiments in
Fig. 3: it represents the average error in virtual fingers
position and orientation (position and orientation component
of PVk

) between the robotic hands (where Barrett error is
represented in black and Karlsruhe in white) and the human
hand. However, it should be noted that this measure is a lower
bound of the error: in cases where the number of virtual
fingers is different, this represents the average distance
between the best matching virtual fingers. Sometimes this
mismatch is known and natural (like the different number
of virtual fingers in the Power Sphere grasp), but sometimes
this means that one finger failed to touch the object. This
happens mainly in the experiments with position error with
the Karlsruhe hand, and will be mentioned later. For the
case of perfect data (Fig. 3a for orientation, Fig. 3e for
position) we can infer a number of conclusions: Karlsruhe
hand performance in terms of orientation is better than the
performance of Barrett hand; the performance in terms of
position of the virtual fingers is similar; the biggest errors
appear in the Large Diameter grasp, for the reasons stated
before.

The next experiment tests the robustness with respect to
the object position errors. We introduced an error of ρ = 5cm
in 6 different directions:

p̂o = po + ρ[cosβ, sinβ, 0]

β = {0, π
3
, 2
π

3
, 3
π

3
, 4
π

3
, 5
π

3
}

The difficulty of the problem should be noted: the size of
the objects in their biggest axis is around 10cm, so the
error is significant compared to their size. Another factor
is the lack of any visual feedback. This experiment show us
principally the importance of the feedback (tactile feedback
in our case) in the presence of errors. The only grasps where
tactile feedback was used are the Large and Small Diameter
grasps. The reason for that is because those grasps are the
only ones where we expect a first contact with the palm:
this means that a first contact detected in any other finger
suppose an error in the object pose detection that should
be corrected. It can be seen that, in the presence of object
pose errors, the error increases much more in the grasps
without corrective movements (grasps 3,4,5 and 6) than in the
ones with corrective movements (grasps 1 and 2). Another
thing that can be inferred in Fig. 3b,f is that the Karlsruhe
hand is more sensitive to the errors that the Barrett hand;
the error increases more for Karlsruhe hand in presence of
errors than for the Barrett hand. Actually the error for the
Karlsruhe hand in non-corrected grasps is higher than the
one showed, because the thumb usually fail to touch the

object, and therefore the thumb virtual finger not compared.
There are principally two reason for this worse robustness
to errors: first, the shorter length of the fingers; second, the
palm configuration in the Karlsruhe hand. The shorter length
of Karlsruhe fingers affect the non-volar grasps, as we can
see in Fig. 4a,b. The small distance between the base of
the thumb and the base of the rest of the fingers affects
the volar grasps, that usually collide with the finger bases
before touching the palm. However, this is mostly solved by
the corrective movements.

(a) (b)

Fig. 4. Example of performance of a grasp without corrective movements

B. Real grasping with a KUKA arm

An image of the human grasp is captured and passed to the
grasp recognition module [5], which returns the type of grasp
and the position and orientation of the hand. Using the object
pose, the grasp policy is selected and executed. The scenario,
illumination and subject is different to the experiments in
[5], but we get similar results in the classification. Large
diameter, small diameter and abducted thumb are correctly
classified most of the time, while pinch grasp, power sphere
and precision disc grasp are sometimes confused with the
power grasp. In terms of orientation, the typical error is
around 15 degrees, which is acceptable in the execution of
the grasp. The object position is given manually, with an
error of ±3 cm. The position error did not inflict on the grasp
execution, except when performing Precision Disc grasp with
a ball, which rolled when the hand was not centered over
the ball. Fig. 5 shows the robot being shown four different
grasps (Large Diameter, Abducted Thumb, Pinch and Preci-
sion Disc, respectively), mapping them and performing the
corresponding grasp (Barrett Wrap, Barrett Precision, Barrett
Precision and Barrett Precision Disc, respectively).

VI. CONCLUSIONS

We have presented a human-to-robot grasp mapping sys-
tem based on a single image. We have proposed an evaluation
metrics for assessing the quality of mapping. The approach
was demonstrated both in simulation and in a real robot
setup. The system presented here can be improved in several
ways. The database of hand poses should include more
objects of different sizes, and more advanced non-parametric
regression methods could be employed for estimating grasp
type and hand pose. Moreover, the addition of visual servo-
ing would improve considerably the performance in grasps
without tactile feedback (volar grasps) or grasps when the



(a) Orientation error: perfect pose (b) Orientation error: 5cm pose error (c) Position error: perfect pose (d) Position error: 5cm pose error

Fig. 3. Error in position (mm) and orientation (degrees) for each of the six grasps tested (Small Diameter, Large Diameter, Abducted Thumb, Pinch,
Power Sphere, Precision Disc). Each column represents experiments with no error and error of 5cm.

(a) 9 → Barrett Precision. (b) 12 → Barrett Precision
Disc.

(c) 1 → Barrett Wrap. (d) 4 → Barrett Precision.

Fig. 5. Execution of grasps in a real robot environment: original images,
nearest neighbors in the database and robot execution.

tactile feedback fail due to the limitations of the hand
sensors. Finally, we will investigate the performance using a

humanoid robot hand.
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