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Abstract— Markerless, vision based estimation of human
hand pose over time is a prerequisite for a number of robotics
applications, such as Learning by Demonstration (LbD), health
monitoring, teleoperation, human-robot interaction. It has spe-
cial interest in humanoid platforms, where the number of
degrees of freedom makes conventional programming challeng-
ing. Our primary application is LbD in natural environments
where the humanoid robot learns how to grasp and manipulate
objects by observing a human performing a task. This paper
presents a method for continuous vision based estimation of
human hand pose. The method is non-parametric, performing
a nearest neighbor search in a large database (100000 entries)
of hand pose examples. The main contribution is a real time
system, robust to partial occlusions and segmentation errors,
that provides full hand pose recognition from markerless
data. An additional contribution is the modeling of constraints
based on temporal consistency in hand pose, without explicitly
tracking the hand in the high dimensional pose space. The pose
representation is rich enough to enable a descriptive human-
to-robot mapping. Experiments show the pose estimation to
be more robust and accurate than a non-parametric method
without temporal constraints.

I. INTRODUCTION

Vision based, markerless human hand tracking in natural
environments with and without interaction with objects is
an important building block for various human-machine
interaction and robot learning tasks. An important aspect
considered in our work is enabling robots to learn how
to grasp and manipulate objects just by observing humans.
Another aspect is monitoring of humans in everyday environ-
ments for designing hand prosthesis able of performing most
common human grasps. However, capturing hand articulation
is a challenging problem. Using the joint angle representation
of hand pose requires 28-dimensional configuration space. In
addition, self-occlusions of fingers introduce uncertainty for
the occluded parts. Although there have been examples of
systems that can track hands for very specific purposes such
as sign recognition, full pose estimation remains an open
problem, specially if real-time performance is required.

In robotic applications, an important aspect of task mod-
eling is how different objects involved in the task should
be grasped and manipulated. Humanoid robots are equipped
with more and more dexterous humanoid hands, capable of
perform human-like grasps. However, the control of these
hands is far from trivial; therefore LbD is an attractive way
of teaching the robot how to grasp [1]. While observing
the human, the robot must estimate the human hand pose

(a) (b)

Fig. 1. a) ARMAR head, b) ARMAR head observing human grasp
demonstration

over time, and then map the hand pose to its own hands
or grippers. In this paper we focus on visual estimation of
human hand motion during object manipulation. While hand
motion can be robustly extracted using 3D magnetic sensors
or datagloves [2], the usability of a home service robot is
compromised if the user is required to carry special markers
during task instruction. The visual hand pose estimation is
therefore required to be markerless.

Humanoid heads are constraint to have small baseline,
lightweight stereo vision systems (see Figure I). This makes
the stereo-matching problem difficult and sometimes inaccu-
rate, specially for textureless surfaces as human hands. For
this reason visual hand pose estimation based on monocular
images can be an attractive field for humanoid robot research.

Markerless 3D reconstruction of hand pose based on
a single image is an extremely difficult problem due to
the large self-occlusion, high dimensionality and non-linear
motion of the fingers. There are different ways of addressing
these difficulties. Hand pose estimation method can largely
be divided into two groups [3]: model based tracking and
single frame pose estimation. Due to the high dimensionality
of the human hand, articulated 3D model based trackers are
facing challenges such as high computational complexity
and singularities in the state space [4].Single frame pose
estimation is usually more computationally efficient than
model based tracking, but lacks the notion of temporal
consistency, which is an important cue to hand pose [5],
[6].

In earlier work [6], we presented a method for non-
parametric estimation of grasp type and hand orientation
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from a single monocular image. The method maintained a
large database of (synthetic) hand images. Each database
instance was labeled with the grasp type and the orientation
of the hand with respect to the camera. The grasp type and
orientation of a new (real) image could then be found using a
nearest neighbor approach. For completeness, the hand image
representation is described in Section III and the nearest
neighbor-based mapping is described in Section IV.

In the current work, we have further developed the initial
approach in two ways; I) by including temporal consistency
in the distance measure used for database retrieval. This
greatly enhances the robustness of the hand pose estimation,
as it will be shown in Section VI; II) by extending the state
space to a full joint angle representation, allowing a full 3D
reconstruction of hand pose. This facilitates the learning of
rich human-to-robot hand pose mapping. Development II)
is the main contribution of this paper, described in more
detail in Section IV and it is possible in part because of
Development I), which is a secondary contribution, detailed
in Section V.

Experiments in Section VI show that we can reconstruct
the hand pose in real time and that our method is consider-
ably robust to segmentation errors, a necessary requirement
for the method to be applicable in a realistic setting. Addi-
tionally, it is shown that the temporal consistency constraint
has a profound effect on the pose estimation accuracy and
robustness.

II. RELATED WORK

Analysis of human hand pose for the purpose of LbD [7]
has been thoroughly investigated, almost exclusively with the
help of markers and/or 3D sensors attached to the human
hand [2]. However, we envision a LbD scenario were the
teaching process can be initiated without calibration and
where the robot-user interaction is as natural as possible.
For this reason we want to reconstruct the hand posture in a
visual markerless fashion.

The field of markerless visual hand pose estimation has
been mainly devoted to hand gesture or sign language
recognition [8]. A common approach is to estimate the hand
pose from a single frame and use this pose as the input to a
recognition module [5], [9], [10].The pose estimation is made
easier by the fact that the range of poses can be constrained
to the discrete set of specific gestures.

Methods for hand pose estimation that are not constrained
to a limited set of poses can largely be classified into
two groups [3]: I) model based tracking and II) single
frame pose estimation. Methods of type I) usually employ
generative articulated models [11], [4].Since the state space
of a human hand is extremely high-dimensional, they are
generally very computationally demanding, which currently
makes this approach intractable for a robotics application.
Methods of type II) are usually non-parametric [6].They are
less computationally demanding and more suited for a real-
time system, but also more brittle and sensitive to image
noise, since there is no averaging over time. The method
presented here falls into the second approach. However, it

(a) HOG x, JOINT p (b) HOG x1, JOINT p1 (c) HOG x2, JOINT p2

Fig. 2. Ambiguity in mapping from HOG space to JOINT space. Even
though it is visually apparent that ‖p−p2‖ � ‖p−p1‖ in JOINT space,
database instance 1 will be regarded as the nearest neighbor as ‖x−x1‖ <
‖x−x2‖. Note that the object in the hand just contributes with occlusion of
the hand in HOG extraction, as it is then colored uniformly with background
color.

takes temporal continuity into account and it can be used for
on-line real-time reconstruction.

For LbD purposes, it is relevant to investigate what hand
pose information the robot needs in order to perform a
successful human-to-robot mapping of the hand motion. In
[12], [13] the control of a grasping hand was performed from
a low dimensional space thanks to dimensionality reduction
techniques.

III. IMAGE REPRESENTATION

The input to the method is a sequence [It], t = 1, . . . , n
of monocular images of the human hand. The same image
representation was used in our previous work [6], where a
more elaborate description can be found.

In each frame It, the hand is segmented using skin color
segmentation based on color thresholding in HSV space. The
result is a segmented hand image Ht. Due to a number of
factors such as image noise, skin color in the background
and non-skin colored areas on the hand (e.g. jewellery), the
segmentation is more or less erroneous.

The shape information contained in Ht is represented with
a Histogram of Oriented Gradients (HOG). This feature has
been frequently used for representation of human and hand
shape [14], [15].It has the advantage of being robust to small
differences in spatial location and proportions of the depicted
hand, while capturing the shape information effectively.

Gradient orientation Φt ∈ [0, π) is computed from the
segmented hand image Ht as Φt = arctan(∂Ht

∂y /
∂Ht

∂x ).
From Φt, a pyramid with L levels of histograms with

different spatial resolutions are created; on each level l, the
gradient orientation image is divided into 2L−l×2L−l equal
partitions. A histogram with B bins is computed from each
partition.

The hand view at time t is represented by the HOG xt
which is the concatenation of all histograms at all levels in
the pyramid. The length of xt is thus B

∑L
l=1 22(L−l). Em-

pirically, we obtained the best performance with a reasonable
running time using B = 8 and L = 3. A discussion about
how different parameters of the HOG affect human detection
can be found in [16].

IV. NON-PARAMETRIC POSE RECONSTRUCTION

In this section, we regard the problem of estimating a
single pose p from a single HOG x omitting the time index.
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The goal of the hand pose reconstruction process is to find
the mapping p̂ =M(x), where p̂ is the estimated 31D hand
pose in terms of global orientation (lower arm yaw, pitch,
roll) and joint angles (3 wrist joint angles, 5 joint angles per
finger) , and x is the observed 168D HOG representation of
the hand view, described in Section III.

The mapping function M can be expected to be highly
non-linear in the HOG space, with large discontinuities. Fol-
lowing [6], M is therefore represented non-parametrically,
i.e., as a database of example tuples {〈xi,pi〉}, i ∈ [1, N ].
Due to the high dimensionality of both the HOG space
(168D) and the state space (hereafter denoted JOINT space,
31D), the database needs to be of a considerable size to cover
all hand poses to be expected; in our current implementation,
N = 90000. This has two implications for our mapping
method, as outlined in the subsections below.

A. Generation of Database Examples

Generating a database of 105 examples from real images
is intractable. Instead, we used the graphics software Poser 7
to generate synthetic views Hsynth

i (see Figure 4) of different
poses. The database was generated offline and it took around
5 days to render all the poses on a standard desktop computer.
We are here motivated by the LbD application where we
envision human to perform different types of grasps on
objects in the environment. Therefore, the database examples
are chosen as frames from short sequences of:

1) different grasp types, from
2) different view points, with
3) different grasped objects, and with
4) different illuminations.
The grasp types are selected according to the taxonomy

developed in the GRASP project1, which integrates the
Cutkosky [17], Kamakura [18], and Kang [19] taxonomies.
The whole database is also available at the same place.
For each grasp type, a number of poses from whole grasp
sequences (rest, approach and grasp) are included. Each pose
is rendered with four different illuminations and from 386
different points of view uniformly distributed on a sphere.
Standard objects are included to simulate typical occlusions.

From each example view Hsynth
i , the tuple 〈xi,pi〉 is

extracted, where xi is generated from Hsynth
i as described

in Section III, and pi is the pose used to generate the view
Hsynth
i in Poser 7.

B. Approximate Nearest Neighbor Extraction

Given an observed HOG x, the goal is to find an esti-
mated pose p̂ = M(x). With the non-parametric mapping
approach, the mapping task p̂ =M(x) is one of searching
the database for examples 〈xi,pi〉 such that xi ≈ x. More
formally, Xk, the set of k nearest neighbors to x in terms
of Euclidean distance in HOG space, di = ‖x − xi‖ are
retrieved.

As an exact kNN search would put serious limitations on
the size of the database, an approximate kNN search method,

1www.grasp-project.eu.

Fig. 4. Synthetic sequence not contained in the database. Note that the
object in the hand just contributes with occlusion of the hand in HOG
extraction, as it is then colored uniformly with background color.

Locality Sensitive Hashing (LSH) [20] is employed. LSH is a
method for efficient ε-nearest neighbor (εNN) search, i.e. the
problem of finding a neighbor xεNN for a query x such that

‖x− xεNN‖ ≤ (1 + ε)‖x− xNN‖ (1)

where xNN is the true nearest neighbor of x.
The number of hyperplanes and number of tables used in

the LSH search are learned from the database, as explained in
[20]. In our current implementation, K = 30 and T = 5000.

The computational complexity of εNN retrieval with LSH
[20] is O(DN

1
1+ε ) which gives sublinear performance for

any ε > 0.

C. The Mapping M is Ambiguous

The database retrieval described above constitutes an
approximation to the true mapping p̂ = M(x), robust to
singularities and discontinuities in the mapping functionM.

However, it can be shown empirically thatM is inherently
ambiguous (one-to-many); substantially different poses p can
give rise to the similar HOGs x [14]. An example of this is
shown in Figure 2.

Thus, the true pose p can not be fully estimated from a
single HOG x (using any regression or mapping method);
additional information is needed. In the next section, we de-
scribe how temporal continuity assumptions can be employed
to disambiguate the mapping from HOG to hand pose.

V. TIME CONTINUITY ENFORCEMENT IN JOINT SPACE

We now describe how temporal smoothness in hand mo-
tion can be exploited to disambiguate the mapping M.

Consider a sequence of hand poses [pt], t = 1, . . . , n,
that have given rise to a sequence of views, represented
as HOGs [xt], t = 1, . . . , n. Since the mapping M is
ambiguous, the k nearest neighbors to xt in the database,
i.e. the members of the set Xk, are all similar to xt but
not necessarily corresponding to hand poses similar to pt.
An important implication of this is that a sequence of hand
poses [pt], t = 1, . . . , n does not necessarily give rise to a
sequence of HOGs [xt], t = 1, . . . , n continuous in the HOG
space. This is illustrated in the upper part of Figure 3, where
we see that the red crossed arrow forcing continuity in HOG
space points to the wrong pose.

This property of the data makes the problem of continuous
hand pose recognition intrinsically different to other continu-
ous NN problems found in the literature. For example, in [21]
the “visible” feature displays time continuity, thus allowing
the kNN answers from previous time steps to guide a new
kNN query.
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Fig. 3. Due to the underlying physics, a sequence of poses is continuous in the JOINT space, but not in HOG space.

However, due to the physics of the human body, the speed
of the hand articulation change is limited. Thus, the sequence
of hand poses [pt], t = 1, . . . , n, i.e. the hidden variables,
display a certain continuity in the JOINT space. This is
illustrated in Figure 3.

The hand pose recognition for a certain frame t is therefore
divided into two stages; I) retrieval of a set of k nearest
neighbors Xk using single frame non-parametric mapping,
as described in Section IV; II) weighting of the members of
Xk according to their time continuity in the JOINT space.

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

Fig. 5. Recognition of hand pose with perfect segmentation. Row 1: query
pose pt; Row 2: estimated pose p̂t; Row 3: estimated pose p̂uniform

t .

Let Pk be the set of poses corresponding to the kNN set
Xk found in stage I). Moreover, let p̂t−1 be the estimated
pose in the previous time step. In stage II), the members
pj , j ∈ [1, k] of Pk are weighted as

ωj = e−
‖pj−p̂t−1‖

2σ2 . (2)

where σ2 is the variance of the distance from each entry pose
pj to the previous estimated pose pt−1.

The pose estimate at time t is computed as the weighted
mean of Pk:

p̂t = (
k∑
j=1

ωjpj)/(
k∑
j=1

ωj) . (3)

It should be noted that this is very similar in spirit to
temporal filtering. The main difference is that a filtering
approach can be regarded as top-down, making predictions
about future poses according to some motion model, pre-
dicting how the observations of those prior poses should
appear, and comparing the expected observations with the
actual observations. Our approach can instead be regarded as
bottom-up, making estimates directly from the observations,
and then evaluating them in terms of the motion model.

In order to weight the poses pj , pt−1 could be substituted
by more complex predictions such as Kalman Filters or
Particle Filters. However, the dynamics of the joints are not
easy to model, so we preferred to keep the assumption about
the dynamics as simple as possible as a first step. We leave
the inclusion of a particle filter predictor for future work.
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(a) α = 0% (b) α = 1% (c) α = 5%

Fig. 6. Synthesizing imperfect segmentation for synthetic images with
3 noise levels: fraction α pixels removed, followed by an opening-closing
operation on the image.

Fig. 7. Mean square error of 31D pose vector for continuous and non-
continuous recognition

VI. EXPERIMENTS

The experiments are designed to measure the effect of tak-
ing time continuity into account in the hand pose estimation
as described in Equations (2), (3) as opposed to unweighted
averaging

p̂uniform
t = (

k∑
j=1

pj)/k . (4)

Firstly, a quantitative analysis is made, using a synthetic
sequence not included in the database. Secondly, the perfor-
mance of the method is qualitatively evaluated on real images
with hand poses not included in the database.

A. Quantitative Analysis

It is difficult to obtain ground truth poses pt for a real im-
age sequence; this would mean introducing markers, which
would seriously affect the appearance of the hand. Therefore,
a synthetic sequence is created, shown in Figure 4. The
sequence depicts a typical approach-grasp action. Neither the
rest position, the pose after the approach nor the final grasp
pose are included in the database.

The quality of the estimated pose vector p̂t is measured
in terms of Euclidean distance from the ground truth pose
vector pt in JOINT space: Et = ‖p̂t − pt‖.

Fig. 8. General comparison. Row 1: query pose pt, not included in the
database; Row 2: estimated pose p̂t; Row 3: estimated pose p̂uniform

t .

Figure 5 shows reconstructed poses p̂t compared to the
baseline of p̂uniform

t . The time continuity constraint is clearly
effective: The estimates p̂uniform

t are much more incoherent
over time than p̂t. Figure 7, leftmost bar, shows that the
mean error of sequence [p̂t], t = 1, . . . , n is 50% lower than
that of [p̂uniform

t ], t = 1, . . . , n.
The comparison becomes more valid if we simulate realis-

tic image noise conditions for this synthetic sequence. Noise
is thus introduced in the segmentation of the image, in order
to simulate imperfect segmentation in real sequences. This
is done by removing a certain fraction of the pixels in the
segmentation mask, followed by opening-closing morpholog-
ical operations. Figure 6 shows how this operation affects the
segmentation mask.

Figure 7 shows how the error (vertical axis) develops
as the image segmentation noise level increases (horizontal
axis). It is apparent that the estimation with pose continuity
is much more robust to segmentation errors up to α = 2%.
α = 5% there is an abrupt increase in error for both methods,
indicating that the segmentation (Figure 6c) then is too poor
to yield descriptive HOGs.

B. Qualitative Analysis

The algorithm was also evaluated with a real image
sequence without known ground truth. The sequence contains
grasps that do not correspond exactly to poses included in
the database. Moreover, some grasps are performed with high
velocity, yielding frames with substantial motion blur.

It should be noted that the experiments were performed
with different people, only changing parameters of color
skin segmentation. The system is quite robust to different
hand shapes. The sequences were recorded with the ARMAR
humanoid head (see Figure I). There is a decrease on
performance when the hand occupies less than approximately
40x40 pixels.

Sample frames from the sequence are shown in Figure 8.
The whole video with the results from the recognition system
can be found at http://www.csc.kth.se/˜jrgn/
handTracking264.mov.

The main point of using continuity is to overcome ambi-
guity arising during a few frames, by taking into account past
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Fig. 9. Segmentation error comparison. Column 1: query pose pt; Column
2: segmentation mask; Column 3: estimated pose p̂t; Column 3: estimated
pose p̂uniform

t .

(a) t = 1 (b) t = 3 (c) t = 5 (d) t = 7

Fig. 10. Blurriness persistence. Row 1: query pose pt; Row 2: estimated
pose p̂t; Row 3: estimated pose p̂uniform

t .

estimations. As expected, Figure 8 shows that the estimates
p̂uniform
t are less robust to temporal ambiguities in the

mapping M. Enforcing continuity over time also improves
the robustness towards motion blur and bad segmentation, as
shown in Figures 10, 9. However, if the different problems
(blurriness, poor segmentation) persist over more than 5–10
frames, the continuity enforcement does not contribute to the
same extent.

Finally, we got some early results on a humanoid LbD
scenario for grasping purposes 2.

VII. CONCLUSIONS

A non-parametric method for 3D hand pose estimation
over time from a monocular video sequence was presented.
Experiments showed that the system estimates the hand pose
in real time robustly against segmentation errors. It was
also shown that enforcing continuity in the hand pose space
improves the quality of the hand pose estimation. Initial
results showed that the system can be used in a LbD scenario
for humanoid imitation.

Future work along these lines includes improving the
motion model; currently, a static model is implicitly assumed.
We can for example include angular velocities in the pose
state space, thus encapsulating velocity information in the
database examples. Furthermore, we will update the database
to represent poses of differently shaped hands under different
illumination conditions. We also plan to investigate methods
for mapping the human hand pose to a lower dimensional
space suitable for the robot hand that is going to actuate the
grasp after LbD.

2http://www.csc.kth.se/˜jrgn/
GraspRecognitionDivx.avi
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