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Abstract— This paper presents a method for vision based
estimation of the pose of human hands in interaction with
objects. Despite the fact that most robotics applications of
human hand tracking involve grasping and manipulation of
objects, the majority of methods in the literature assume a
free hand, isolated from the surrounding environment. Our
hand tracking method is non-parametric, performing a nearest
neighbor search in a large database (100000 entries) of hand
poses with and without grasped objects. The system operates
in real time, it is robust to self occlusions, object occlusions and
segmentation errors, and provides full hand pose reconstruction
from markerless video. Temporal consistency in hand pose is
taken into account, without explicitly tracking the hand in the
high dimensional pose space.

I. I

Articulated tracking and reconstruction of human hands
has received an increased interest within the fields of com-
puter vision, graphics and robotics [1] and applications in-
clude learning from demonstration, rehabilitation, prosthesis
development, human-computer interaction. Our goal is to
equip robots with the capability of observing human hands in
interaction with objects based solely on vision data, without
markers.

Capturing hand articulation from video without markers
is a challenging problem. A realistic articulated hand model
has at least 28 degrees of freedom, making the state-space
very large. The pose estimation suffers from self-similarity
– fingers are hard to distinguish from each other – and a
high degree of self-occlusion. Furthermore, hands move fast
and non-linearly. Any method is thus computationally costly,
making real-time implementation demanding. Although there
are hand tracking systems developed for specific purposes
such as sign recognition [1], full pose estimation remains an
open problem, specially if real-time performance is required,
as in virtually all robotics applications.

Hand pose estimation methods can largely be divided into
two groups [1]: A) model based tracking and B) single
frame pose detection. Methods of type A) usually employ
generative articulated models [2], [3], [4]. Due to the high
dimensionality of the human hand, they are facing challenges
such as high computational complexity and singularities
in the state space. They are thus generally unsuitable for
robotics applications. Methods of type B) are usually non-
parametric [5], [6]. They are computationally less demanding
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Fig. 1. Left) Original image and Right) Estimated pose.

and more suited for a real-time system, but also more brittle
and sensitive to image noise, since there is no averaging over
time. In this paper we present a type B) non-parametric pose
estimation method (Fig. 1), which takes temporal consistency
into account. The probabilistic framework of this method is
described in Section II. The method is faster and better at
recovering from temporary errors than type A) model-based
tracking methods. In an earlier paper [7] we also showed
that the time continuity constraint makes the method more
accurate and robust than other type B) single frame detection
methods.

The method maintains a large database of (synthetic) hand
images. Each database instance is labeled with 31 parameters
describing the hand articulation and orientation of the hand
with respect to the camera. The 31D hand configuration of
a new (real) image can then be found using an approximate
nearest neighbor approach, taking previous configurations
into account. Section II describes the composition of the
database. The hand image representation is described in Sec-
tion IV and the nearest neighbor-based mapping is described
in Section V.

In the majority of applications, the human hands are
frequently in contact with objects. Despite this, researchers
have up to now almost exclusively focused on estimating
the pose of hands in isolation from the surrounding scene.
A recent notable exception is [8], who describe a type A)
model-based tracker that allows for objects in the hand.
Our method is also able to reconstruct hands both with and
without grasped objects. Reconstruction of a hand grasping
an object is in many ways a much more challenging task
than reconstruction of a free hand, since the grasped object
generally occludes large parts of the hand. The method of
[8] allows for hand pose reconstruction despite the object
occlusion.

On the other hand, knowledge about object shape gives
important cues about the configuration of palm and fingers
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Fig. 2. The non-parametric temporal regression framework.

in contact with the object. Moreover, object shape and
functionality give cues as to how this object is generally
grasped. The relation between object shape and hand shape
is however complex, and this information is hard to exploit
in a type A) generative tracking model. In contrast to [8], our
method is non-parametric, which means that complex object-
hand shape dependencies can be implicitly represented by
examples. Hand views in the database depicting grasping
hands include occlusion from objects with a shape typical
for this kind of grasp (Fig. 1). The occlusion affects the
appearance of a hand view, so that hands with similar
objects in them will appear similarly. Since the underlying
assumption is that appearance similarity implies similarity
in hand pose, the object shape contributes to the hand pose
estimation in our method.

Thus, the main contribution of the paper is a robust non-
parametric method for 3D hand reconstruction, operating
in real-time, that also takes time continuity constraints into
account. The method handles severe occlusions of the hand
and also takes the object shape into account in 3D hand
reconstruction. Experiments in Section VII also show that
the method is robust to segmentation errors, a necessary
requirement for the method to be applicable in a realistic
setting.

II. P F
The following notation is used throughout the paper. In

a specific time instant t, let xt be the articulated hand pose
and yt the observation. Here, xt is a 28 dimensional vector
of joint angles, and yt is a 512D histogram of oriented
gradients (HOG) [9], see Section IV. The space spanned by
x is hereafter called JOINT space, while the space spanned
by y is called HOG space. We assume that p(xt) is uniform
over the JOINT space, and that the process is Markovian,
i.e., xt depends on the previous pose xt−1 only.

As shown in [7], the view yt alone is not enough to non-
ambiguously estimate the articulated hand pose xt. Therefore,
the pose xt−1 at the previous timestep is taken into account
in the estimation. This corresponds to sequential estimation
of p(xt |yt, xt−1), the hand pose given the observation and the
previous state. The temporal regression problem is decom-
posed as p(xt |yt, xt−1) ∝ p(xt |yt)p(xt |xt−1). As shown in Fig. 2,

(a) Original image (b) Segmented hand, (c) NN in database,
HOG HOG

Fig. 3. Data representation.

the method takes as input a monocular image and segments
the hand based on skin color segmentation (a). A HOG yt is
then computed as described in Section IV (b).

The HOG yt is compared to a large database of hand views
(c), returning a weighted set of nearest neighbors {(yi

t, x
i
t,w

i
t)},

as described in Section V (d). Each neighbor view yi
t from

the database has an associated joint angle configuration xi
t,

which, weighted by wi
t, constitute a sampled approximation

of p(xt |yt) (e).
The temporal consistency constraint p(xt |xt−1) is a para-

metric function of xt and xt−1, as explained in Section VI
(f). This term gives a higher probability to estimates where
the hand has moved little over the last time step, thus giving
priority to smooth motion estimates. The multiplication with
p(xt |xt−1) is approximated by updating the database nearest
neighbor weights to w∗it ∝ wi

t p(xi
t |xt−1) (g).

The expected hand pose value at time t is then estimated
as x̂t = E(xt |xt−1, yt) ≈ arg maxxi

t
w∗it , i.e., the database pose

with the highest weight (h).

III. D C

The hand pose xt could potentially be found by expressing
p(xt |y1, xt−1) parametrically, and finding the maxima of this
function using an optimization algorithm. However, this
optimization problem is high dimensional and non-convex.
To alleviate the dimensionality problem, and constrain the
search to commonly observed hand poses, we use a non-
parametric approach: we discretize the state space by creating
a large database of hand poses with synthetic images.



The composition of the database is motivated by our
research aim: understanding human interaction with objects.
Our database has more than 105 images, consisting of 5
different timesteps of 33 object grasping actions observed
from 648 different viewpoints. The grasp types are selected
according to the taxonomy presented in [10]. The graphics
software Poser 7 is used to generate the synthetic hand views.
The synthetic views in the database include basic object
shapes that are usually involved in each kind of grasp (see
Fig. 3c). The objects are considered background (although
colored black for visibility in the figures) and the hand parts
occluded by the object do not provide any features to the
image observation yt. This can be seen in Fig. 3c, bottom,
where there is a “hole” in the middle of the HOG. As
mentioned in the Introduction, the object shape contributes
to the hand pose estimation in our method, since the hand
pose depends on the shape of the object, which in turn affects
the HOG yt.

It can be argued that this method can only work if the
object shape in the real action is the same as in the database.
However, firstly, a particular kind of grasp is executed
usually to similarly shaped objects and, secondly, the features
used in our system (see Section IV) generalizes well over
small variations in object shape. As described in Section II,
p(xt |yt, xt−1) is modeled non-parametrically using {(yi

t, x
i
t)},

a set of database nearest neighbors to yt in HOG space,
weighted by their distance to yt in HOG space and xt−1 in
JOINT space. The weighting is formalized in Sections V
and VI.

IV. I R

The input to the method are monocular images of the
type and quality shown in Figure 3a. In these images, the
hand is segmented using skin color thresholding in HSV
space [11] (Figure 3b, top). From the segmented hand image
a histogram of oriented gradients (HOG) [9] is extracted
(Figure 3b, bottom). This is a rich representation of shape,
with certain robustness towards segmentation errors and
small differences in spatial location and proportions of the
segmented hand. The image is partitioned into cells and a
histogram of gradient orientation is computed for each cell.

The size of the cells and the granularity of the histograms
affect the generalization capabilities of the feature. With
smaller cells and detailed histograms, the feature is richer
but less capable of generalize over small differences. For
our purposes, 8× 8 cells and histograms with 8 bins provide
good generalization with a sufficient level of details. The ob-
servation yt equals the concatenation of the 8× 8 histograms
corresponding to each cell of the image. The dimensionality
of yt is thus 8 × 8 × 8 = 512. A more detailed discussion on
how different parameters of the HOG affect human detection
can be found in [9].

V. N-PM

The probability density function p(xt |yt) is approximated
by indexing into the database of hand poses using the image
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Fig. 4. Two different methods for modeling temporal consistency.

representation yt, and retrieving the k nearest neighbors
(kNN) in the space spanned by y.

As an exact kNN search would put serious limitations on
the size of the database, an approximate kNN search method,
Locality Sensitive Hashing (LSH) [12] is employed. LSH is
a method for efficient ε nearest neighbor (εNN) search. It is
particularly suited for high dimensional data, since its online
complexity does not depend explicitly on the set size or the
dimensionality [12].

Each retrieved εNN yi
t is given a weight wi

t = N(yi
t |yt, σy),

drawn from a 512D Gaussian density centered in yt with
standard deviation σy. This gives higher weight to database
εNN that look similar to the observed hand.

In the database, each HOG y j is associated with a pose
x j. The poses corresponding to the εNN {yi

t} can thus be
retrieved. Together with the weights, they form the set
{(xi

t,w
i
t)} which is a sampled non-parametric approximation

of the density p(xt |yt).
The pose vector x is composed of the rotation matrix of

the wrist wrt the camera and the sines of the joint angles
of the hand (which takes values between [− π2 ,

π
2 ]). Each

component of x therefore lie in the domain [−1, 1], which
makes scaling unnecessary. The advantage of using a rotation
matrix to represent the wrist rotation is that rotation matrices
can be compared in a Euclidean fashion, as opposed to Euler
angles and quaternions. Euclidean comparison of poses is
used in the temporal consistency modeling (Section VI) and
the experimental evaluation (Section VII-A).

VI. T CM

As described in Section II, the temporal consistency con-
straint p(xt |xt−1) is modeled as a parametric function. It is
used to reweight the sampled distribution {(xi

t,w
i
t)}, approxi-

mating p(xt |yt). We propose two ways to model the temporal
consistency constraint, outlined in the two subsections below.

A. Single Hypothesis Gaussian Weighting

The simplest way of modeling temporal consistency is to
assume that poses similar to the previous estimated pose
x̂t−1 are more likely than poses that are very different from
the previous one. Hence, p(xt |xt−1) = N(xt |x̂t−1, σx), a 28D
Gaussian density centered in x̂t−1 with standard deviation σx.
This approach was used in [7] and is depicted in Figure 4a.



(a) α = 0.5% (b) α = 3.3% (c) α = 5%

Fig. 5. Artificial segmentation corruption α added to synthetic sequences.

B. Multiple Hypothesis Kernel Density Estimation Weighting

A drawback of the single hypothesis approach is that all
the “second best" nearest neighbor hypotheses at t − 1 are
thrown away before temporal propagation. A logical im-
provement is to consider the full weighted set of hypotheses
{(xi

t−1,w
∗i
t−1)} instead of the most likely hypothesis x̂t−1 in the

estimation of p(xt |xt−1). This is illustrated in Figure 4b.
Following this idea, we use kernel density estimation

(KDE) [13] over the weighted set of poses of the previous
frame {(xi

t−1,w
∗i
t−1)} to estimate p(xt |xt−1). The system can

then recover from an erroneous estimation of xt−1.
As shown in the experiments in Section VII, KDE leads to

a more robust sequential estimation than Gaussian weighting
in many cases. Furthermore, even though KDE increases
the computational load with a factor corresponding to the
number of nearest neighbors |{xt−1}|, the computational load
of computing the temporal consistency weights is negligible
compared to, e.g., the database εNN lookup. A drawback
of KDE compared to Gaussian weighting is however the
necessity of tuning more parameters, most importantly, the
bandwidth of the kernels.

VII. E

We first experimentally compare the two temporal con-
sistency models detailed in Section VI, using synthetic
sequences with hand pose ground truth. Then, the method is
evaluated on real sequences featuring three different subjects
and three object shapes. The sequences were captured at
10 frames/sec with a Point Grey Dragonfly camera with a
resolution of 640×480 pixels. The method was implemented
in C++ and runs at 10 frames/sec on one of the cores of a
four core 2.66GHz Intel processor.

A. Comparison of Temporal Consistency Models

The single hypothesis and multiple hypothesis temporal
consistency models are first compared in terms of pose
reconstruction accuracy. This quantitative analysis of our
method is done with synthetic sequences, where the hand
pose ground truth is available. To make experimental con-
ditions as realistic as possible, none of the hand poses or
the objects in the synthetic sequences are present in the
database. Moreover, the poses are corrupted with a variable
amounts of segmentation noise (see Fig. 5), to simulate
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Fig. 8. Pose error with increasing segmentation corruption in sequence 1.
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Fig. 9. Pose error with increasing segmentation corruption in sequence 2.

segmentation errors that occur with real sequences. The
segmentation corruption is performed in the following way:
The segmentation mask is first assigned as the full hand view
(without noise). A fraction α of the pixels in the segmentation
mask are set to zero. The error is then propagated through an
erosion followed by dilation. In each frame t, the error of the
estimated hand pose x̂t relative to the ground truth pose xgt

t
is estimated as ‖x̂t − xgt

t ‖, the Euclidean distance in the pose
space explained in Section V. Figures 6 and 7 show the hand
pose estimation of synthetic sequences 1 and 2 respectively,
with segmentation corruption α = 0.5%.

As shown in Fig. 8-9, the multiple hypothesis temporal
consistency model almost consistently gives a better accu-
racy. The effect is more visible with higher segmentation
corruption levels α. The reason for this is that the single-
frame pose estimate p(xt |yt) is more ambiguous for higher
α, which means that there is a higher uncertainty about which
sample xi

t is the best pose estimate at time t. With higher α
it is thus increasingly better to let all samples {(xi

t−1,w
i
t−1)}

influence the temporal model. It can als be seen that the pose
estimation performance is largely unaffected by segmentation
corruption levels up to α = 2%.

B. Real Sequences with Subjects Not in Database

To show the performance of the method on real data, it
was evaluated with sequences of the first author and two
uninstructed persons (one man and one woman) grasping



Fig. 6. Synthetic sequence 1. Top: original synthetic image. Middle: segmentation image with α = 0.5%. Bottom: estimated pose. (The objects in the
database are colored black for visibility here, but do not contribute to the HOGs.) Video at www.csc.kth.se/∼jrgn/VideosICRA2010/synthetic1.mp4

Fig. 7. Synthetic sequence 2. Top: original synthetic image. Middle: segmentation image with α = 0.5%. Bottom: estimated pose. (The objects in the
database are colored black for visibility here, but do not contribute to the HOGs.) Video at www.csc.kth.se/∼jrgn/VideosICRA2010/synthetic2.mp4

three different objects: A cup (with no equivalence in the
database), a tennis ball (similar to a ball in the database),
and a pair of pliers (with no equivalence in the database).
The actions are not required to start from any specific pose.
Naturally, the grasps in the sequences do not have exact
correspondences in the database. Furthermore, the subjects’
hands are of different sizes and shapes.

The multiple hypothesis temporal consistency modeling,
shown above to be consistently better than the single hy-
pothesis alternative, was used throughout the real image
experiments. Fig. 10, 11, and 12, show the result of pose
estimation for the three subjects respectively.

One conclusion that can be drawn is that the method is
robust to individual variations in hand shape and proportions.
The hand model used to generate the database view is
designed to be male. However, the method is successful
in recovering the poses of the considerably more slender
female hand (Fig.”12), as well as of the hand with a larger
proportion of the lower arm uncovered (Fig. 11); this affects
skin segmentation, which in turn affects the HOG yt used for
database lookup.

The results also show that the method generalizes over
grasps and objects that are not exactly represented in the
database. It should be taken into account that two of the
subjects have no previous experience with the method or the
database, and thus can be expected to grasp the objects in
a natural way. The cup and the ball are well represented
by other objects present in the database. However, the pliers
pose a slightly larger challenge for the method. There are two
possible reasons for this. Firstly, the layout of the pliers, with
two separated legs, makes the occlusion of the hand appear
differently than any example in the database. Secondly,

the functionality of the pliers makes the subjects grasp it
differently than other rod-like structures in the database.
Fig. 13 shows the pose estimation of a sequence where large
parts of the hand is occluded by the grasped object showing
the method is robust to large object occlusion.

The pose estimation in Fig. 14 points to an avenue for im-
provement of the method. In our current temporal continuity
approaches we assume that the most probable current pose is
similar to the most probable previous pose. With this we are
making an implicit assumption of static hand pose. However,
this assumption is frequently violated; fast hand motions like
the one shown at the end of the sequence in Figure 14 are
not uncommon. With the assumption of being static in the
temporal consistency model, all poses xi

t selected by the εNN
sampling will be equally unlikely according to the temporal
consistency model. Ambiguities in the HOG signature, e.g.,
between the front and back part of the hand, will then cause
estimation errors as the one in the leftmost frame of Fig. 14.
This issue can be addressed by including a dynamic model
of pose over time.

VIII. C

A non-parametric method for 3D sequential pose esti-
mation of hands in interaction with objects was presented.
The contributions of this paper are the development of a
method that not only handles severe occlusion from objects
in the hand, but also takes the object shape into account
in 3D hand reconstruction. In addition, the method is non-
parametric and provides 3D hand reconstruction, operating
in real-time, taking time continuity constraints into account.

Experiments showed that the method estimates hand pose
in real time robustly against segmentation errors and large
occlusion of the hand from objects. It was also shown that



Fig. 10. Real sequence 1 (male subject 1). Top: image with skin segmentation window highlighted. Bottom: estimated pose. (The objects in the database
are colored black for visibility here, but do not contribute to the HOGs.) Video at www.csc.kth.se/∼jrgn/VideosICRA2010/real1.mp4

Fig. 11. Real sequence 2 (male subject 2). Top: image with skin segmentation window highlighted. Bottom: estimated pose. (The objects in the database
are colored black for visibility here, but do not contribute to the HOGs.) Video at www.csc.kth.se/∼jrgn/VideosICRA2010/real2.mp4

Fig. 12. Real sequence 3 (female subject 3). Top: image with skin segmentation window highlighted. Bottom: estimated pose. (The objects in the database
are colored black for visibility here, but do not contribute to the HOGs.) Video at www.csc.kth.se/∼jrgn/VideosICRA2010/real3.mp4

Fig. 13. Real sequence 4 (male subject 1) with large hand occlusion. Top:
image with skin segmentation window highlighted. Bottom: estimated pose.
Video at www.csc.kth.se/∼jrgn/VideosICRA2010/real4.mp4

Fig. 14. Real sequence 5 (male subject 1) with fast non-linear motion. Top:
image with skin segmentation window highlighted. Bottom: estimated pose.
Video at www.csc.kth.se/∼jrgn/VideosICRA2010/real5.mp4

the robustness to temporary estimation errors is improved
by taking multiple hypotheses of previous hand pose into
account.

Future work includes improving the motion model; cur-
rently, a static temporal model is implicitly assumed. This
can be done in several ways, e.g., by learning low-
dimensional models of hand motion from motion capture
training data. Furthermore, we will enlarge the database to
represent poses of differently shaped hands, grasping a wider
range of objects under different illumination conditions. The
approximate database lookup has a highly sub-linear time
complexity, which allows for a significantly larger database
with a moderate increase in computational load.
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