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Abstract— Understanding the spatial dimensionality and tem-
poral context of human hand actions can provide representa-
tions for programming grasping actions in robots and inspire
design of new robotic and prosthetic hands. The natural repre-
sentation of human hand motion has high dimensionality. For
specific activities such as handling and grasping of objects, the
commonly observed hand motions lie on a lower-dimensional
non-linear manifold in hand posture space. Although full body
human motion is well studied within Computer Vision and
Biomechanics, there is very little work on the analysis of hand
motion with nonlinear dimensionality reduction techniques. In
this paper we use Gaussian Process Latent Variable Models
(GPLVMs) to model the lower dimensional manifold of human
hand motions during object grasping. We show how the
technique can be used to embed high-dimensional grasping
actions in a lower-dimensional space suitable for modeling,
recognition and mapping.

I. INTRODUCTION

Modeling of human hand motion is receiving an increasing
interest in areas such as computer vision, graphics, robotics
and psychology. The goal of the work presented here is
to study and model the spatial dimensionality and temporal
context of human hand actions to i) provide representations
for programming grasping actions in robots, and ii) use
these for designing new robotic and prosthetic hands. In
robotics, it has been argued that continuous motion mapping
from human to robot requires suitable spatio-temporal rep-
resentations of human and robot motions, [1], [2]. However,
most of the work on grasp mapping is based on hand-
designed grasping taxonomies considering a discrete set of
hand postures, [3], [4].

The main contribution of the work presented here is the
study of spatial and temporal context of human grasping
actions. Recently, significant advances have been achieved
in full body human motion modelling by exploiting the low-
dimensional nature of the data [5]. Despite the wide use
of subspace representations in human body motion analysis,
the work on human hand motion is limited. The work in [6]
indicates that, similarly to full body modelling, hand data
would also benefit from a similar methodology.

However, compared to the state-of-the-art on the human
body modelling, the methods applied in [6] are significantly
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less flexible since they assume the manifold is linear. In
this work we apply a recently proposed generative model
(GPLVM) to shape the manifolds of high-dimensional human
grasping motions. The adopted technique has been used in
several recent studies of human body motion but has not
been applied to human hand motion. One of the motivations
for this model is its capability to regenerate grasping actions
when, for example, task constraints need to be taken into
account, [7].

Despite the wide use of subspace representations in human
body motion analysis [5], the work on human hand motion
is limited. An analysis of low-dimensional embeddings of
human hand grasping was performed in [6]. However, the
data was recorded from subjects imagining grasp actions
instead of applying them. Furthermore, the low-dimensional
space was created with PCA, which is limited by its linear
nature. The benefits of non-linear dimensionality reduction
schemes are shown in [8], where a 2D space is used for
the control of robotic grasps. In a similar way, we compare
the 2D latent space generated by our model and other di-
mensionality reduction techniques such as Principal Compo-
nent Analysis (PCA), Isomap or Locally Linear Embedding
(LLE), showing the advantages of our approach.

II. CONTRIBUTIONS AND RELATED WORK

Research on human grasps concentrates on the design
of grasping taxonomies based on the observation of human
grasping actions. Grasp classes are often based on heuristics
motivated by intuition and application. In general, there is
very little consensus between the different taxonomies. Our
recent study, [4] analyzes several taxonomies proposed in the
areas of robotics, biomechanics and medicine. An important
observation is that the taxonomies have not been contrasted
against the actual data extracted from subjects performing the
grasps. Work in that direction was presented in [6]. Subjects
were asked to shape the hand as if they were grasping
different objects. A CyberGlove was used to record 15 joint
angles of the grasping hand. This data was projected onto a
low-dimensional space with PCA. The main conclusion was
that the first two components of the projected data accounts
for 80% of the variance of the data.

In our work, we further develop these ideas in several
directions. First, we consider the whole grasping sequence
instead of just a single grasp posture. This facilitates the
spatial and temporal reconstruction of a grasping action.
Second, the latent space is reconstructed from end-effector
data (fingertip position and orientation relative to the palm)
instead of joint angles. Thus, we avoid the problem of
proximal joints having a higher impact on the position of
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the fingertip. End-effector data is also easier to translate to
other embodiments than the joint angle data. Third, instead
of studying how different objects are grasped, we study how
different grasps are performed. The motivation for this is that
some objects can be grasped in different ways depending
on the goal of the grasp (pick a pen or write with a pen).
Fourth, due to the non-linearity of the human hand motion,
we use non-linear methods to construct the low-dimensional
representation space.

The work by Ciocarlie et al. [9], [10] focuses on reducing
the complexity of robotic grasping through the use of PCA.
The low-dimensional space extracted in [6] is used both for
reducing the complexity of grasp space exploration [9] and
for mapping between an operator and a simulated hand [10].
Since the space contains only hand postures where the final
grasp has been achieved, the approach phase of the grasp
is not taken into account. In [11] whole grasp sequences
(including the approach phase) are used for optimizing the
final grasp pose in a simulation environment. However, the
optimization does not distinguish between approach and
grasping phase; therefore the optimized grasp pose might be
based only on approaching poses. In [8] data from a Vicon
optical motion capture system is used to create a latent space
for “Interactive Control of a Robot Hand” using Isomap.
The data is a concatenation of different grasps and tapping
demonstrations. Contrary to our approach, the authors do not
provide any study of the similarity between the demonstrated
grasps. In Section IV-C, we will also discuss the performance
of Isomap for our purposes.

In this paper, we use GPLVMs for creating a low-
dimensional grasp space in which we can reason about
the similarities and differences between a set of predefined
grasps [4]. GPLVM places a Gaussian Process (GP) prior
over the generative mapping from latent space to data space.
Through marginalization of this mapping, the marginal like-
lihood of observed data given the latent locations can be
found. The latent locations are then found by maximizing
this likelihood. Due to the flexibility of GPs, the generative
mapping is not constrained to be linear as is the case of
PCA. Moreover, it has been shown that it is more efficient
than other techniques like Isomap when dealing with noisy
and incomplete training data, [12].

In the context of full-body human motion, GPLVMs have
been employed both for visual tracking of full-body motion
[5] and for classification of full-body actions [13]. Modeling
the dynamics in embedded spaces of lower dimensionality
decreases the amount of training data needed [5] and fa-
cilitates the generation of natural and physically plausible
motion [14].

Similarly to full-body motion analysis, an immediate ap-
plication of this latent space is a non-parametric dynamic
model of grasping actions for tracking and classification;
however, this is out of the scope of the work presented
here. For our purpose, we do not model dynamics explicitly
as in [5], but include back-constraints (Section III) that
indirectly enforce temporal continuity in the latent space.
This avoids the unimodal nature of the GPDM dynamics. The

created GPLVM model allows the generation of concatenated
grasping actions with natural transitions. This can be done
by applying constraints in the latent space in a similar way
as constraints are applied in [15].

III. THEORETICAL FORMULATION

Let D denote the dimension of the data space and q the
dimension of the latent space. Given N observations, the
matrix containing the data points is denoted Y ∈ RN×D and
the matrix of the corresponding points in the latent space is
X ∈ RN×q . The marginal likelihood P of the datapoints y,
given the latent positions x and the hyper-parameters θ, is a
product of D independent GPs [16]:

P (Y |X, θ) =
D∏

j=1

1

(2π)
N
2 |K| 12

e−
1
2y
T
j K−1yj (1)

where yj ∈ RN×1 is the jth column of the data matrix and
K ∈ RN×N is the kernel or covariance matrix specified by
θ. In the GP-LVM framework the latent location X and the
hyper-parameters θ are found using Maximum Likelihood.
In general, this optimization has many solutions since the
function is not convex [16]. To remove additional degrees
of freedom non-informative priors are placed over the latent
locations and hyper-parameters.

A. Covariance Functions

The covariance matrix K in Eq. (1) is determined by the
covariance or kernel function k:

Ki,j = k(xi, xj) (2)

The choice of the covariance function is critical, since
characterizes the functions most prominent in the prior. This
is also an advantage of the method, since it allows adaptation
to the specific needs of the task and the dataset at hand. Most
commonly, K is determined by a sum of several different
kernels, like the Radial Basis Function (RBF), bias and noise
kernels. The RBF kernel is defined as follows:

k(xi, xj) = α e−
γ
2 (xi−xj)

T (xi−xj) (3)

where α defines the output variance and the inverse kernel
width γ controls the smoothness of the function. By using a
smooth covariance function like the RBF kernel, we encode
a preference towards smooth generative mappings in the GP
prior. This implies that points close in the latent space will
remain close in the observed space (when projected using the
mean prediction of the GP). However, it is not guaranteed
that the inverse is true, i.e. points close in the observed space
remain close in the latent space ( see Subsection III-B). In
addition to the RBF kernel we also include a bias term which
accounts for translations in the data and a white noise term.

B. Back Constraints

As stated above, a GPLVM in its basic form does not
guarantee that a smooth inverse exists to the generative
mapping [17]. However, this can be incorporated into the
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model by representing the latent locations xi in terms of a
smooth parametric mapping gj from the observed data yi.

xij = gj(yi, a) =

N∑
n=1

ajnkbc(yi − yn) (4)

where kbc is the back constraint kernel. This means that the
maximum likelihood solution of these parameters a rather
than the latent locations are sought. This is referred to as a
back-constrained GPLVM. In addition to preserve the local
smoothness of the observed data, previously unseen data can
be projected onto the latent space in an efficient manner by
pushing them through this back-mapping.

IV. EVALUATION ON REAL DATA

The proposed technique was evaluated on data generated
by 5 subjects (3 male, 2 female). All subjects are right
handed and have not reported any hand disabilities. A
Polhemus Liberty system with six magnetic sensors was used
for recording the data. The spatial and angular resolution
of each sensor is 0.8 mm and 0.15 degrees respectively.
One sensor was applied to each fingertip, positioned on the
fingernail and one was placed on the dorsum of the hand.
See Figure 1 for an image of the markers applied to the hand.

The subjects were asked to perform 31 grasp types from
the 33 in [4]. We excluded “Distal Type” and “Tripod
Variation” due to their very specific nature. A picture of
each grasp was shown to the subjects and a demonstration
of the grasp was performed for the most difficult ones. Then
the subjects were instructed to grasp with that specific grasp
type. The data was then further processed as follows:

Fig. 1. Placement of the sensors. Five sensors are placed on the fingertips
and one is positioned on the wrist.

1) Calibration that aligns the coordinate systems of the
sensors with the actual anatomical direction.

2) Transformation of the fingertip data into the wrist coor-
dinate system. To provide some invariance to different
approach movements, the hand pose is defined in terms
of the relative position and orientation of the fingertip
sensors with respect to the wrist.

3) Translation of the position of the fingertip origin to the
center of the distal finger segment and normalization
of the dimensions to a standard range.

The transportation component of a grasp movement varies
significantly depending on the orientation and distance of the
object to the hand. Therefore, hand pose is here defined as
the pose of the fingers relative to the palm. The sensors create
a space of dimensionality 35 where each of the 5 sensors has

Fig. 2. Grasp space spanned by the execution 31 grasp types by five
subjects. Each color represents one of the clusters represented in Figure 5.

7 dimensions: 3 for position and 4 for orientation (we used
quaternions to represent rotations). From each trial we took
30 equally distributed samples. Overall this resulted in a data
matrix of size 4650× 35.

A. Low dimensional representation of the grasp movements

We created the GPLVM latent space spanned by this data
with the Matlab FGPLVM toolbox [17]. We should note
that the datapoints were not tagged with any information
about grasp class, subject or timestamp in the creation of
the GPLVM. Several different configurations of the GPLVM
parameters (with and without back constraints, different back
constraint types, variation of parameters) were analyzed.
Scaled conjugate gradient optimization was used in order
to obtain maxima of Eq.(1). The best results were achieved
with a kernel composed of RBF, bias and noise, and kernel
based regression back constraints with an RBF kernel. The
inverse width parameter was set to 0.001 by inspection.
Following [6], [8], we selected a dimensionality of 2 for
the latent space, simplifying the visualization of the results.
Although higher dimensional latent spaces could improve
the separability of grasps, the advantages of GPLVM over
other dimensionality reduction techniques can be shown
already in 2D. The model was initialized with different
dimensionality reduction methods (PPCA, Isomap, LLE) and
the one with lowest reconstruction error was kept. In our
case this was an initialization with PPCA and the result of
the optimization can be seen in Figure 2. We observe that the
space has a common starting point in the lower right corner
(corresponding to the initial “flat hand” position), then all the
grasps follow the same path for few timesteps ( transition
from flat hand to relaxed hand) and finally different grasp
classes diverge.

B. Gaussian Mixture Regression (GMR) of Grasps

Since the data contains multiple subject demonstrations
over time, the representation of each grasp in latent space
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Fig. 3. GMR regression on the 31 grasp movements of all subjects. The dark line indicates the mean trajectory and the light area correspond to the
uncertainty. The grasp are sorted, so the first row contains grasps 1 to 8 and so on.

should encompass temporal information as well as multiple
subject variance. We have used GMR [15] for getting a
unique dynamic model for each grasp type. We will briefly
introduce this representation (check [15] for more informa-
tion). First, for each grasp the datapoints in latent space
(2D data, see first row of Figure 4) are extended with
the time dimension. Then this data (3D) is fitted into a
Gaussian Mixture Model (GMM)(second row of Figure 4)
by an expectation-maximization procedure initialized with
K-means. Empirically, we found that using more than 3
gaussians did not improve the quality of the fitting. Based
on that mixture of gaussians a hand posture is inferred for
each time step by using GMR. This creates a continuous
path through the latent space that describes the grasp (third
row of Figure 4). That path has a mean and a variance. The
paths corresponding to each of the 31 grasps can be found
in Figure 3. The GMM/GMR representation of the grasps is
a powerful tool that can be used for several purposes. One is
the generation of new actions under some constraints [15]. In
our case, this could help to generate an action composed of
two grasps without coming back to the rest position between
them. The second grasp can be constrained to start in a
specific pose or after a specific time frame of the first grasp.

C. Comparison of Dimensionality Reduction Algorithms

For comparison, other dimensionality reduction algorithms
were applied to the same dataset of real human grasps. The
latent space dimensionality for all the algorithms was set
to 2. Algorithms used were Principal Components Analysis
(PCA), Isomap (from [18]) and Locally Linear Embedding
(LLE) (from [19]). Figure 4 shows the low dimensional
trajectories of all subjects performing grasp 1 and as back-
ground the corresponding latent space. This grasp is a
typical example and the other grasp types show a similar
pattern throughout all dimensionality reduction algorithms.
The points of the PCA solution lie on an “arc” and the

starting position is on the right side. This shape seems to
be due to PCA being a linear method. It can only unravel
the global motion in the data. Since this arc is rather narrow
there is little distinction between different grasp trajectories
and fine details of the manifold cannot be extracted.

Isomap shows some sort of star-like structure, but one
branch does not represent one grasp type as would be
expected. Also the ability to generalize between subjects is
not present: the trajectory of each subject is different without
showing common trends. Modifying the numbers of neigh-
bors did not improve the result, so either the neighborhood
size is too small or the locally linear assumption is violated.

LLE fails to discover any meaningful structure. All dat-
apoints are centered in a certain location without any inner
structure or common trajectories for grasp types.

For a latent space dimensionality of 2, GPLVM (Figure 2
and first column of 4) obtains a higher inter-grasp separa-
bility, lower intra-grasp variance (comparable to PCA) and
preserves time continuity in the trajectories in the latent space
in a better way than the other methods. PCA is limited
since it is a linear method; Isomap and LEE fail since
they are based on local distance measurements which are
very sensitive to noise. Of course these problems also alter
the GMM/GMR algorithm, so that the output is nearly a
point (Isomap) or the trajectory has a very high variance
(LLE). The ability to generalize between subjects is also
visible in PCA, but the whole space is very packed and
the trajectories of all grasp types are within a very small
area. This comparison show us the advantages of GPLVM
for representing high dimensional noisy data in very low
dimensional spaces. The study of which dimensionality is
optimal is left for future work.

D. Similarity Measure and Clustering of Grasps

We used GMM/GMR to measure similarity between hu-
man grasps. Since we have a probabilistic model for each
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Fig. 4. From left to right: GPLVM, PCA, ISOMAP, LLE. From top to bottom : projection of grasp number 1 into latent space( different colors correspond
to different users), GMM fitting, GMR regression. The other grasp types show similar patterns.

grasp in the latent space (through their GMM representation),
we can compute how likely it is that each point x in the space
is generated by a grasp gi.

p(x|gi) =
3∑

k=1

πgi
k N (x|µgi

k σ
gi
k )

p(gj |gi) =
∏
∀x∈gi

p(x|gi)

s(gj , gi) = (p(gj |gi) + p(gi|gj))/2

The product of the likelihoods of points in grasp gj being
generated by grasp gi give us a measure of how well is gj
supported by the gi model. Note that this measure is not
symmetric. We can define the similarity between two grasps
s(gj , gi) as the average of those two quantities.

We performed average linkage clustering (UPGMA from
the Matlab Statistical Toolbox) based on this similarity
measure. The result of the algorithm can be seen in Figure 5.
The number of clusters was chosen to be 5 since further
subdividing the clusters overfits the data, i.e. cluster four was
split into two groups with similar characteristics. Reducing
the number of clusters resulted in large, too general clusters.

The grasps in cluster one resemble each other quite well.
They all are power grasps with all four fingers in contact
with the object. In addition the thumb is in a very adducted
and extended position. The fingers are all in a very similar
position, the MCP joint is rather extended, but the PIP and
DIP joints are strongly flexed.

Cluster two is constructed by grasps that have a “straight”

(extended MCP and IP joint) and mostly adducted thumb.
Side opposition (see [20] for a description of the concept)
is dominant in grasps 16, 27, 30 or at least there are some
aspects that side opposition is involved as in grasps 17 and
18. None of those grasps is a precision grasp.

Only one grasp belongs to Cluster three. This grasp type
does not impose many constraints in the hand pose of the
subject. Therefore the variability of the grasp was high; most
subjects formed this grasp with all fingers extended, but one
subject flexed the ring and the middle finger. Also the index
and the middle finger, which are in contact with the object,
can be bent to a certain degree without affecting the stability
of the grasp. Overall it seems that this grasp is formed in a
rather extended position; this explains why the center of that
grasp is close to the starting position unlike the rest of the
grasps which involve much more flexion of the digits.

The biggest group of grasps is in cluster four. This group
is quite diverse and it offers less distinct properties than the
other groups. Yet all four fingers are all in a mid-flexed
positions and the flexion increases towards the little finger.
This is a clear difference to cluster five, where the little finger
is in an extended position. In addition the thumb is mostly
abducted, except grasp 23 where it is adducted.

Cluster five has a distinct inner structure. The horizon-
tal direction in latent space modulates the overall exten-
sion/flexion of the fingers, whereas the vertical direction
changes the individual index finger flexion.

In addition to those clusters properties, there are some
general trends of the latent space. First, the further away a
grasp is from the starting position (right side of the latent
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space) the more flexed the fingers will be. This is due to the
fact that the starting position is with fingers and thumb totally
extended and the transition between grasp types is smooth.
The clusters seem to be elongated in the start-end posture
direction. This makes sense, since the whole movement was
taken into account when clustering the grasp types.

In the grasp taxonomy of [4] the thumb plays a crucial
role in classifying the grasp types. The clusters which were
created here tend to go in accordance with this thumb
classification, but there are some conflicts. The reason for this
could be that the clustering algorithm gives each finger equal
importance, while in [4] the thumb plays a prominent role.
Some grasp types do not employ all fingers, which means
that potentially some fingers are not relevant for the grasp
definition. Currently those fingers are taken into account with
the same importance as fingers in contact with the object.

Fig. 5. Clusters of the human grasps.

V. CONCLUSIONS

The goal of the work presented here, differently from
all the existing grasp taxonomies, was to model the spatial
dimensionality and temporal context of hand actions. Instead
of studying how different objects are grasped, we study how
different grasps are performed. Apart from the important
insights of human hand motion, the developed technique has
also been used to evaluate the state-of-the-art taxonomies. We
have shown how the technique can be used to embed high

dimensional grasping actions in a lower-dimensional space
suitable for modeling, recognition and mapping. Considering
the whole grasping sequence instead of just a single grasp
posture facilitates the spatial and temporal reconstruction of
a grasping action. The method is evaluated on real data.

An immediate application of the extracted latent space
is a non-parametric dynamic model of grasping actions for
tracking and classification [21]. We do not model dynamics
explicitly but include back-constraints that indirectly enforce
temporal continuity in the latent space. This avoids the
unimodal nature of using an auto-regressive dynamic model.
The created GPLVM model potentially allows the generation
of concatenated grasping actions with natural transitions.
Thus, one idea is to apply constraints in the latent space
in a similar way as in [15]. Together with the evaluation in
terms of grasp classification this remains our future work.
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