
Visual Servoing on Unknown Objects

Xavi Gratal, Javier Romero, Jeannette Bohg, Danica Kragic

Computer Vision and Active Perception Lab
Centre for Autonomous Systems

School of Computer Science and Communication
Royal Institute of Technology, 10044 Stockholm, Sweden

{javiergm,jrgn,bohg,danik}@nada.kth.se

Abstract

We study visual servoing in a framework of detection and grasping of
unknown objects. Classically, visual servoing has been used for applications
where the object to be servoed on is known to the robot prior to the task
execution. In addition, most of the methods concentrate on aligning the
robot hand with the object without grasping it. In our work, visual servoing
techniques are used as building blocks in a system capable of detecting and
grasping unknown objects in natural scenes. We show how different visual
servoing techniques facilitate a complete grasping cycle.

Keywords: visual servoing, object grasping, calibration, active vision

1. Introduction

Object grasping and manipulation stands as an open problem in the area
of robotics. Many approaches assume that the object to be manipulated is
known before hand [1, 2, 3, 4]. If the object bears some resemblance to a
known object, experience can be used for grasp synthesis [5, 6, 7, 8]. An
unknown object needs to be analyzed in terms of its 3D structure and other
physical properties from which a suitable grasp can be inferred [9, 10, 11, 12].

Realistic applications require going beyond open-loop execution of these
grasps and the ability to deal with different type of errors occurring in an
integrated robotic system. One kind of errors are systematic and repeatable,
introduced mainly by inaccurate kinematic models. These can be minimized
offline through precise calibration. The second kind are random errors intro-
duced by a limited repeatability of the motors or sensor noise. These have

Preprint submitted to Mechatronics February 20, 2011

to be compensated through online mechanisms.
In this paper, we show how Visual Servoing (VS) can be used at different

stages in a grasping pipeline to correct errors both offline and online. One
of the contributions is the application of VS for automatic calibration of the
hardware. We follow the classical approach of applying VS for aligning the
robot hand with the object prior to grasping it [13]. This requires tracking
of the manipulator pose relative to the camera. Instead of the common ap-
proach of putting markers on the robot hand, we use a model based tracking
system. This is achieved through Virtual Visual Servoing (VVS) in which
the systematic and random errors are compensated for. An additional con-
tribution is the generalisation of VVS to CAD models instead of using object
models tailor-made for the application.

The remainder of this paper is organised as follows. Section 2 formalises
the systematic and random errors inherent to the different parts of the robotic
system. In Section 3, related work in the area of offline calibration as well
as closed-loop control is presented. The approach proposed in this paper is
described in detail in Section 4. Its performance is analysed quantitatively
on synthetic data and qualitatively on our robotic platform. The results of
these experiments are presented in Section 5.

2. Problem Formulation

Object grasping in real world scenarios requires a set of steps to be per-
formed prior to the actual manipulation of an object. A general outline of
our grasping pipeline is provided in Figure 2. The hardware components
of the system as shown in Figure 1 are (i) the Armar III robotic head [14]
equipped with two stereo camera pairs (wide-angle for peripheral vision and
narrow-angle for foveal vision), (ii) the 6 DoF Kuka arm KR5 sixx R850 [15]
and (iii) the Schunk Dexterous Hand 2.0 (SDH) [16].

2.1. Grasping Pipeline

The main pre-requisite for a robot to perform a pick-and-place task is
to have an understanding of the 3D environment it is acting in. In our
pipeline, we perform scene construction by using the active head for visual
exploration and stereo reconstruction as described in detail in our previous
work [17]. The resulting point cloud is segmented into object hypotheses and
background.

2

lower pitch

ya
w

ro
ll

Head Origin

upper pitch

eye pitch

le
ft

ey
e

ya
w

ri
gh

t
ey

e
ya

w

Figure 1: Hardware Components in the Grasping Pipeline. 1(a) Armar III Active Head
with 7 DoF. 1(b) The Kinematic Chain of the Active Head. The upper pitch is kept static.
Right and left eye yaw are actuated during fixation and thereby change the vergence angle
and the epipolar geometry. All the other joints are used for gaze shifts. 1(c) Kuka Arm
with 6 DoF and Schunk Dexterous Hand 2.0 (SDH) with 7 DoF.

The scene model then consists of the arm and the active head positioned
relative to each other based on the offline calibration as described in Sec-
tion 4.4. Furthermore, a table plane is detected and the online detected
object hypotheses are placed on it.

Grasp inference is then performed on each hypothesis. For given grasp
candidates, a collision-free arm trajectory is planned in the scene model and
applied to the object hypothesis with the real arm.

2.2. Error Formalisation

The aforementioned grasping pipeline relies on the assumption that all
the parameters of the system are perfectly known. This includes e.g. internal
and external camera parameters as well as the pose of the head, arm and hand
in a globally consistent coordinate frame.

In reality however two different types of errors are inherent to the system.
One contains the systematic errors that are repeatable and arise from inaccu-
rate calibration or inaccurate kinematic models. The other group comprises
random errors originating from noise in the motor encoders or in the camera.
These errors propagate and deteriorate the relative alignment between hand
and object. The most reliable component of the system is the Kuka arm
that has a repeatability of less than 0.03 mm [15]. In the following, we will
analyse the different error sources in more detail.

3

Visual Scene
Construction

Images

Control Signals

Grasp Planning

Motion Planning

Target Hand Pose

Control Signals

Scene Model

Segmented 3D Point Cloud

Object Hypotheses

3D Scene

Figure 2: Our Open-Loop Grasping Pipeline.

2.2.1. Stereo Calibration Error

Given a set of 3D points QW =
[
xW yW zW

]T
in the world reference

frame W and their corresponding pixel coordinates P =
[
u v 1

]T
in the

image, we can determine the internal parameters C and external parameters
[RC

W |tCW] for all cameras C in the vision system. This is done through stan-
dard methods by exploiting the following relationship between QW and P :

wP =

wuwv
w

 = CPC with PC =

zCyC
zC

 = RC
W

[
PW − tCW

]
(1)

Once we have these parameters for the left camera L and right camera R,
the epipolar geometry as defined by the essential matrix E = RR

L [tRL]× can
be determined. Here tRL defines the baseline and RR

L the rotation between
the left and right camera system.

Our calibration method, which uses the arm as world reference frame,
will be described in Section 4.4. The average reprojection error is 0.1 pixels.
Since peripheral and foveal cameras are calibrated simultaneously, we also
get the transformation between them.

Additionally to the systematic error in the camera parameters, other
effects such as camera noise and specularities lead to random error in the
stereo matching.

4

2.2.2. Positioning Error of the Active Head

We are using the robot head to actively explore the environment through
gaze shifts and fixation on objects. This involves dynamically changing the
epipolar geometry between the left and right camera system. Also the camera
position relative to the head origin is changed. The internal parameters
remain static.

The kinematic chain of the active head is shown in Figure 1(b). Only
the last two joints, the left and right eye yaw, are used for fixation and
thereby affect the stereo calibration. The remaining joints are actuated for
performing gaze shifts.

In order to accurately detect objects with respect to the camera, the
relation between the two camera systems as well as between the cameras and
the head origin needs to be determined after each movement. Ideally, these
transformations should be obtainable just from the known kinematic chain
of the robot and the readings from the encoders. In reality, these readings
are erroneous due to noise and inaccuracies in the kinematic model.

Let us first consider the epipolar geometry and assume that the left cam-
era system defines the origin and remains static. Only the right camera
rotates around its joint by φ at time k. According to the kinematic model
this movement can be expressed by

[Rk
k−1|tkk−1] with Rk

k−1 =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 and tkk−1 =
[
0 0 0

]T
(2)

which is a pure rotation around the z-axis of the joint. The new essential
matrix would then be

Ek = RkR
R
L [tRL]×. (3)

Inaccuracies arise in the manufacturing process influencing the true cen-
ter and axis of joint rotations and in the discrepancy between motor encoder
readings and actual angular joint movement. This is illustrated in Figure 3

showing the translational component δ =
[
δx δy δz

]T
and rotational com-

ponent ε =
[
εx εy εz

]T
of the error between the ideal and real joint posi-

tions. Under the assumption that only small angle errors occur, the error
matrix can be approximated as [18]

[Re|te] with Re =

 1 −εz εy
εz 1 −εx
−εy εx 1

 and te =
[
δx δy δz

]T
(4)

5

x

y

z

x′

y′

z′

δ

εx

εy

εz

Figure 3: Six parametric errors in a rotary joint around the z-Axis. δ = [δx δy δz]
T

is the

translational component and ε = [εx εy εz]
T

is the rotational component of the error.

Based on this, the true essential matrix can be modelled as

Ek = ReRkR
R
L [Ret

R
L + te]×. (5)

Leaving this specific error matrix unmodelled will lead to erroneous depth
measurements of the scene.

Similarly to the vergence angle, error matrices can be defined for every
joint modelling inaccurate positioning and motion. Let us define Jn−1 and Jn
as two subsequent joints. According to the Denavit-Hartenberg convention,
the ideal transformation Tn

n−1 between these joints is defined as

Tn
n−1 = zT

n
n−1(d, φ) xT

n
n−1(a, α) (6)

where zT
n
n−1(d, φ) describes the translation d and rotation φ with respect

to the z-axis of Jn−1. xT
n
n−1(a, α) describes the translation a and rotation

α with respect to the x-axis of Jn. While d, a and α are defined by the
kinematic model of the head, φ is varying with the motion of the joints and
can be read from the motor encoders.

The true transformation eT
n
n−1 will however look different. Modelling the

position error Tpe and motion error Tme as in Equation 4 yields

eT
n
n−1 = zT

n
n−1(d, φ)Tme xT

n
n−1(a, α)Tpe. (7)

These errors propagate through the kinematic chain and mainly affect the x
and y position of points relative to the world coordinate system.

6

Regarding random error, the last five joints in the kinematic chain achieve
a repeatability in the range of ±0.025 degrees [14]. The neck pitch and neck
roll joints in Figure 1(b) achieve a repeatability in the range of ±0.13 and
±0.075 degrees respectively.

2.2.3. Positioning Error of the Cameras with Respect to the Arm

As will be described in Section 4.4, we are using the arm to calibrate the
stereo system. Therefore, assuming that the transformation from the head
origin to the cameras is given, the error in the transformation between the
arm and cameras is equivalent to the error of the stereo calibration.

3. Related Work

3.1. Closed-Loop Control in Robotic Grasping

In the previous section, we summarised the errors in a grasping system
that lead to an erroneous alignment of the end effector with an object. A
system that executes a grasp in closed loop without any sensory feedback is
likely to fail.

In [19, 20] this problem is tackled by introducing haptic and force feedback
into the system. Control laws are defined that adapt the pose of the end
effector based on the readings from a force-torque sensor and contact location
on the haptic sensors. A disadvantage of this approach is that the previously
detected object pose might change during the alignment process.

Other grasping systems make use of visual feedback to correct the wrong
alignment before contact between the manipulator and the object is estab-
lished. Examples are proposed by Huebner et al. [2] and Ude et al. [21], who
are using a similar robotic platform to ours including an active head. In [2],
the Armar III humanoid robot is enabled to grasp and manipulate known
objects in a kitchen environment. Similar to our system [17], a number of
perceptual modules are at play to fulfill this task. Attention is used for scene
search. Objects are recognized and their pose estimated with the approach
originally proposed in [4]. Once the object identity is known, a suitable grasp
configuration can be selected from an offline constructed database. Visual
servoing based on a wrist spherical marker is applied to bring the robotic
hand to the desired grasp position [22]. Different from our approach, ab-
solute 3D data is estimated by fixing the 3 DoF for the eyes to a position
for which a stereo calibration exists. The remaining degrees of freedom con-
trolling the neck of the head are used to keep the target and current hand

7

position in view. In our approach, we reconstruct the 3D scene by keeping
the eyes of the robot in constant fixation on the current object of interest.
This ensures that the left and right visual field overlap as much as possible,
thereby maximizing e.g. the amount of 3D data that can be reconstructed.
However, the calibration process becomes much more complex.

In the work by Ude et al. [21], fixation plays an integral part of the vision
system. Their goal is however somewhat different from ours. Given that an
object has been already placed in the hand of the robot, it moves it in front
of its eyes through closed loop vision based control. By doing this, it gathers
several views from the currently unknown object for extracting a view-based
representation that is suitable for recognizing it later on. Different to our
work, no absolute 3D information is extracted for the purpose of object
representation. Furthermore, the problem of aligning the robotic hand with
the object is circumvented.

3.2. Calibration Methods

In [23], the authors presented a method for calibrating the active stereo
head. The correct depth estimation of the system was demonstrated by let-
ting it grasp an object held in front of its eyes. No dense stereo reconstruction
has been shown in this work.

Similarly, in [24] a procedure for calibrating the Armar III robotic head
was presented. Our calibration procedure is similar to the one described in
those papers, with a few differences. We extend it to the calibration of all
joints, thus obtaining the whole kinematic chain. Also, the basic calibration
method is modified to use an active pattern instead of a fixed checkerboard,
which has some advantages that we outline in Section 4.4.

3.3. Visual and Virtual Visual Servoing

For the accurate control of the robotic manipulator using visual servoing,
it is necessary to know its position and orientation (pose) with respect to
the camera. In the systems mentioned in Section 3.1, the end effectors of
the robots are tracked based on fiducial markers like LEDs, colored spheres
or Augmented Reality tags. A disadvantage of this marker based approach
is that the mobility of the robot arm is constrained to keep the marker
always in view. Furthermore, the position of the marker with respect to
the end effector has to be known exactly. For these reasons, we propose to
track the whole manipulator instead of only a marker. Thereby, we alleviate
the problem of constrained arm movement. Additionally, collisions with the

8

object or other obstacles can be avoided in a more precise way. In this paper
we track the pose of the robotic arm and hand assuming their kinematic chain
to be perfectly calibrated, although the system can be adapted to estimate
deviations in the kinematic chain.

Tracking objects of complex geometry is not a new problem and ap-
proaches can be divided into two groups: appearance-based and model-based
methods. The first approach is based on comparing camera images with a
huge database of stored images with annotated poses [25]. The second ap-
proach relies on the use of a geometrical model (3D CAD model) of the
object and perform tracking based on optical flow [26]. There have also been
examples that integrate both of these approaches [27].

Apart from the tracking itself, an important problem is the initialization
of the tracking process. This can be done by first localizing the object in the
image followed by a global pose estimation step. In our previous work, we
have also demonstrated how the initialization can be done for objects in a
generic way [28]. In the case of a manipulator, a rough estimate of its pose
in the camera frame can be obtained from the kinematics of the arm and the
hand-eye calibration. In [29], it has been shown that the error between this
first estimate and the real pose of the manipulator can be corrected through
virtual visual servoing, using a simple wireframe model of the object. In our
work, a synthetic image of the robot arm is rendered based on a complete
3D CAD model and its initial pose estimate is compared and aligned with
the real image.

In our recent work [30], we demonstrate how pose estimation can be per-
formed for a complex articulated object such as a human hand. The major
contribution of that work is the use of a discriminative machine learning
approach for obtaining real-time tracking of an object with 27 degrees of
freedom. The problem considered in this paper has a lower dimensionality
and a more accurate guess of the initial pose. This makes it possible to
adopt a real-time generative approach that renders the last pose of the ob-
ject in each frame and estimates the new pose through a process of error
minimization.

4. The Proposed System

For overcoming the problem of lacking a globally consistent coordinate
frame for objects, manipulator and cameras, we introduce visual servoing into
the grasping pipeline. This allows us to control the manipulator in closed

9

Visual Scene
Construction

Images

Control Signals

Grasp Planning

Motion Planning

Target Hand Pose

Visual Servoing

Virtual VS

Target Arm Pose
Images

Control Signals

Images Synthetic
Images

Transform
Control Signals

Scene Model

Segmented 3D Point Cloud

Object Hypotheses

3D Scene

Figure 4: A Grasping Pipeline With Closed Loop Control of the Manipulator through
Visual Servoing that is initialised through Virtual Visual Servoing. Armar III Head Model
adapted from [31].

loop using visual feedback to correct any misalignment with the object online.
We then use the camera coordinate frame as the global reference system in
which the manipulated object and robot are also defined.

For accurately tracking the pose of the manipulator, we use virtual visual
servoing. The initialisation of this method is based on the known joint values
of hand and arm and the hand-eye calibration, which is obtained offline.

The adapted grasping pipeline is summarised in Figure 4. What follows
is a more detailed description of all the components of this pipeline.

4.1. Vision System for Constructing the Scene Model

As described earlier, the scene model in which grasping is performed
consists of a robot arm, hand and head as well as a table plane onto which
object hypotheses are placed. The emergence of these hypotheses is triggered
by the visual exploration of the scene with the robotic head. In the following,
we will give a brief summary of this exploration process. More details can
be found in our previous work [3, 32, 33, 17].

The active robot head has two stereo camera pairs. The wide-field cam-
eras, of which an example can be seen in Figure 5(a), are used for scene
search. This is done by computing a saliency map on them and assuming
that maxima in this map are initial object hypotheses (Figure 5(b)). A gaze
shift is performed to a maxima such that the stereo camera with the narrow-
angle lenses center on the potential object. An example of an object fixated
in the foveal view is shown in Figure 5(c). In the following we will label the

10

(a) (b) (c)

(d) (e) (f)

Figure 5: Example Output for Exploration Process. 5(a) Left Peripheral Camera. 5(b)
Saliency Map of Peripheral Image. 5(c) Left Foveal Camera. 5(d) Segmentation on Over-
layed Fixated Rectified Left and Right Images. 5(e) Disparity Map. 5(f) Point Cloud of
Tiger.

camera pose when fixated on the current object of interest as C0. Once the
system is in fixation, a disparity map is calculated and segmentation per-
formed (see Figure 5(e) and 5(d)). For each object, we then obtain a 3D
point cloud (an example is shown in Figure 5(f)).

4.2. Grasp and Motion Planning

Once a scene model has been obtained by the vision system, a suitable
grasp can be selected for each object hypothesis depending on the available
knowledge about the object. In our previous work, we presented grasp plan-
ners on known, familiar or unknown objects [2, 5, 31, 17]. In [2, 31] resulting
grasp hypotheses are tested in simulation on force closure prior to execution.
The set of stable grasps is then returned to plan corresponding collision free
arm trajectories.

The focus of this paper is the application of visual servoing and virtual
visual servoing in the grasping pipeline. We have therefore selected a simple
top-grasp selection mechanism that has been proven to be very effective for
pick-and-place tasks in table-top scenarios [17]. For this, we calculate the
eigenvectors and centre of mass of the projection of the point cloud on the

11

table plane. An example of such a projection can be seen in Figure 5(f)
(left). The corresponding grasp is a top grasp approaching the centre of
mass of this projection. The wrist orientation of the hand is determined
such that the vector between fingers and thumb is aligned with the minor
eigenvector. A grasping point GC0 =

[
zx zy z

]
in camera space C0 is then

formed with the x and y coordinates of the center of the segmentation mask
as obtained during fixating on the object. The depth of this point, i.e the
z coordinate, is computed from the vergence angle as read from the motor
encoders. The goal is then to align the tool center point of the end effector
with this grasping point. Using more sophisticated grasp planners that can
deal with more complex scenarios is regarded as future work.

4.3. Object Localisation in Different Viewing Frames

The robotic head moves during the grasping process for focusing on dif-
ferent parts of the environment (different objects, the robotic hand and arm).
In each of these views the object to be grasped should remain localized rela-
tive to the current camera frame Ck to accurately align the end effector with
it. The new position of the object can be estimated given the new pose of
the head, which is determined based on the motor reading and the forward
kinematics of the head as depicted in Figure 1(b). However, we cannot com-
pletely rely on this estimate due to inaccuracies in the kinematic model and
motor encoders. For this reason we perform a local refinement of the object
position in the new view of the scene based on template matching.

A template is generated for each object when the head is fixated on it.
Based on the segmentation mask in the foveal view as shown in Figure 5(d)
and the calibration between the peripheral and foveal cameras, we generate
a tight bounding box around the object in the peripheral view. Each time
the head moves, the new position of this template can be estimated based on
the old and new pose of the head. We create a window of possible positions
of the object by growing this initial estimate by a fixed amount of pixels. We
perform a sliding window comparison between all possible locations of the
object template within this window and the object template. The location
which returns the lowest mean square error is the one suggested as x and y
coordinates of the object position in the new view.

4.4. Offline Calibration Process

In Section 2.2, we analysed the errors that got introduced by the different
parts of the system. The group of systematic errors can be minimised by

12

(a) Movement pattern of the end effector for of-
fline calibration.

(b) Three viewing directions of a camera ro-
tated around one axis.

Figure 6: Offline Calibration procedure (video available at http://www.youtube.com/

watch?v=dEytfUgmcfA).

offline calibration. In the following, we will introduce our method for stereo
and hand-eye calibration as well as the calibration of the kinematic chain of
the robotic head.

4.4.1. Stereo Calibration

One of the most commonly used methods for finding the transformation
between two camera coordinate systems is the use of a checkerboard which is
observed by two cameras (or the same camera before and after moving) [34].
The checkerboard defines its own coordinate system in which the corners of
the squares are the set of 3D points QA in the arm coordinate system A as
in Section 2.2.1. The detection of these corners in the left and right images
gives us the corresponding pixel coordinates P from which we can solve for
the internal and external camera parameters. Given these, we can obtain the
transformation between the left and right camera coordinate frame.

We used a modified version of this method. Instead of a checkerboard
pattern, we used a small LED rigidly attached to the end effector of the
robotic arm, which we can detect in the image with subpixel precision. Be-
cause of the accuracy and repeatability of the KUKA arm (< 0.3mm), we can
move the LED to a number of places for which we know the exact position
in arm space, which allows us to obtain the transformation between arm and
camera space.

This method has several advantages over the use of a traditional checker-
board pattern:

13

• Instead of an arbitrary checkerboard coordinate system as intermediate
coordinate system, we can use the arm coordinate system. In this way
we are obtaining the hand-eye calibration for free at the same time that
we are performing the stereo calibration.

• In the checkerboard calibration method, the checkerboard ought to be
fully visible in the two calibrating cameras for every calibration pose.
This may be difficult when the two camera poses are not similar or
their field of view is small. With our approach, it is not necessary
to use exactly the same end effector positions for calibrating the two
cameras since all points are defined in the static arm coordinate system
that is always valid independently of camera pose.

• For these same reasons, we found empirically that this approach makes
it possible to choose a pattern that offers a better calibration perfor-
mance. For example, by using a set of calibration points that is uni-
formly distributed in camera space (as opposed to world space, which
is the case for checkerboard patterns), it is possible to obtain a better
characterization of the lenses distortion parameters.

The main building block for this system is a visual servoing loop that
allows us to bring the LED to several predefined positions in camera space.
In this loop, we want to control the position of the LED (3 DOF) using only
its projection in the image (2 DOF). Therefore, we introduce an additional
constraint by limiting the movement of the LED to a predefined plane in arm
space.

We define SA
0 as a point on this plane and SA as its normal vector.

Additionally, we need a rough estimate of the arm to camera coordinate
transformation AC

A, and of the camera matrix C. They are defined as follows:

AC
A =

[
RC

A|tCA
]
,C =

 f 0 0
0 f 0
0 0 1

 (8)

We can then find the plane in camera space:

SC
0 = RC

AS
A
0 + tCA SC = RC

AS
A (9)

The process of moving the LED to a position in the image is then as
follows: we define a target point in the image Pt = (ut, vt) (specified in

14

pixels) where we want to bring the LED. For each visual servoing iteration
we detect the current position Pc = (uc, uc) (again in pixels) of the LED in
the image. We can then use the camera matrix to convert these points to
homogeneous camera coordinates:

PC
t = C−1

[
xt yt 1

]T
=
[

1
f
xt

1
f
yt 1

]T
(10)

PC
c = C−1

[
xc yc 1

]T
=
[

1
f
xc

1
f
yc 1

]T
(11)

Then, we can project these homogeneous points into the plane defined
by SC

0 and SC . A point Q is in that plane if Q · SC = SC
0 · SC . Therefore,

the projection of the homogeneous points PC
t and PC

c into the plane can be
found as

QC
t =

SC
0 · SC

PC
t · SC

PC
t QC

c =
SC

0 · SC

PC
c · SC

PC
c (12)

From these, we can obtain the vector

dC = QC
t −QC

c (13)

which is the displacement from the current to the target LED positions in
camera space, and then

dA = RC
A

−1
dC (14)

which is the correspondent displacement in arm space.
We can easily see that the displacement obtained in arm space is within

the given plane since

dC · SC = (QC
t −QC

c) · SC = QC
t · SC −QC

c · SC = 0 (15)

dA · SA = dA
T
SA = (R−1dC)T(R−1SC) = dC

T
RR−1sC = dC · SC = 0 (16)

We can then use this displacement to obtain a simple proportional control
law

u = kdA (17)

where u is the velocity of the end effector and k is a constant gain factor.
Once we have the system which allows us to bring the LED to a certain

position in the image we can start generating our calibration pattern. First,
we bring the LED to the center of the image in two parallel planes, which are
located at different distances from the camera, and record their positions CA

0

and CA
1 in arm space. From this, we can obtain the vector SA = CA

0 − CA
1

15

Algorithm 1: Pseudo Code for Defining the Calibration Pattern

Data: Number of points n on each depth plane, number of depth planes m
Result: Set of Correspondences

[
QA

i , Pi

]
with (0 < i ≤ m · n)

begin
// Initialising the principal axis of the camera in arm space

// VisualServoing(P,S) is a function that brings the LED to

// the point P in image space within the plane S in arm space

S0 = Some plane at a distance d0 from the camera
CA

0 = VisualServoing((0, 0),S0)

S1 = Some plane at a distance d1 from the camera
CA

1 = VisualServoing((0, 0),S1)

d = (CA
1 − CA

0)/(m− 1)
i = 0
foreach l ∈ [0 . . .m− 1] do

S = plane with normal d which contains CA
0 + ld

foreach Pk with (0 < k ≤ n) do
QA

i = VisualServoing((xk, xy),S)
i+ +

end

end

end

which is parallel to the principal axis of the camera. Any plane perpendicular
to this vector will be parallel to the image plane. We can then bring the LED
to some fixed positions along these planes, thus generating points which are
uniformly distributed both in the image and in depth (by using planes which
are separated by a constant distance). The generated pattern looks like the
one shown in Figure 6(a). Algorithm 1 shows the method in more detail. In
our system, we used 6x6 points rectangular patterns in 6 different depths,
for a total of 216 calibration points. With this, we achieved an average
reprojection error of 0.1 pixels.

4.4.2. Head-Eye Calibration

For a static camera setup, the calibration process would be completed
here. However, our vision system can move to fixate on the objects we ma-
nipulate. Due to inaccuracies in the kinematic model of the head, we cannot
obtain the exact transformation between the camera coordinate system be-
fore and after moving a certain joint from the motor encoders.

In Section 2.2.2, we modelled the transformation error that arises from the
misalignment of the real and ideal coordinate frame of a joint. In our method,

16

we are minimising this error by finding the true position and orientation of
the real coordinate frame as follows:

1. Choose two different positions of the joint, that are far enough apart
to be significant, but with an overlapping viewing area that is still
reachable for the robotic arm.

2. For each of these two positions, perform the static calibration process
as described above, so that we obtain the transformation between the
arm coordinate system and each of the camera coordinate systems.

3. Find the transformation between the camera coordinate systems in
the two previously chosen joint configurations. This transformation
is the result of rotating the joint around some roughly known axis
(it is not precisely known because of mechanical inaccuracies), with a
roughly known angle from the motor encoders. From the computed
transformation, we can then more exactly determine this axis, center
and angle of rotation.

This is illustrated in Figure 6(b).
In our case, the results showed that while the magnitude of the angles

of rotation differed significantly from what could be obtained from the kine-
matic chain, the orientation and position of these axes were quite precise
in the specifications. To avoid overly complicating the model, we decided
to correct only the actual angles α in Equation 6 , except for the vergence
joint. For this joint, the orientation was also corrected, since here small er-
rors have a large impact in the accuracy of depth estimation. Therefore, we
minimised the discrepancy between the true and estimated essential matrix
in Equations 3 and 5 respectively.

4.5. Virtual Visual Servoing

As mentioned in Sections 1 and 3.3, our system uses Virtual Visual Ser-
voing to refine the position of the arm and hand in camera space provided
by the calibration system. In Figure 8, the difference between the estimated
arm pose and the corrected one is visualised. In this section we will formalize
the problem and explain how we solved it.

The pose of an object is denoted by M(R, t) where t ∈ R(3), R ∈ SO(3).
The set of all poses that the robot’s end–effector can attain is denoted with
TG ⊆ SE(3) = R(3) × SO(3).

17

camera

image

3D

model

distance

transform

initial

estimation

render

image

edge

extraction

interaction

matrix

visual

servoing

estimated

pose

Figure 7: Outline of the proposed model-based tracking system based on Virtual Visual
Servoing.

(a) (b)

Figure 8: Comparison of robot localization with (right) and without (left) the Virtual
Visual Servoing correction.

18

Pose estimation considers the computation of a rotation matrix (orienta-
tion) and a translation vector of the object (position), M(R, t):

M =

 r11 r12 r13 TX
r21 r22 r23 TY
r31 r32 r33 TZ

 (18)

The equations used to describe the projection of a three–dimensional model
point Q into homogeneous coordinates of the image point [x y]T are: X

Y
Z

 = R [Q− t] with [wx, wy, w] = P

 X
Y
Z

 (19)

where P represents the internal camera parameters matrix including focal
length and aspect ratio of the pixels, w is the scaling factor, R and t represent
the rotation matrix and translation vector, respectively.

Our approach to pose estimation and tracking is based on virtual visual
servoing where a rendered model of the robot parts is aligned with the current
image of their real counterparts. The outline of the system is presented in
Fig. 7. In order to achieve the alignment, we can either control the position
of the part to bring it to the desired pose or move the virtual camera so
that the virtual image corresponds to the current camera image, denoted
as real camera image in the rest of the paper. Using the latter approach
has the problem that the local effect of a small change in orientation of
the camera is very similar to a large change in its position, which leads to
convergence problems. Therefore, in this paper, we adopt the first approach
where we render synthetic images by incrementally changing the pose of the
tracked part. In the first iteration, the position is given based on the forward
kinematics. Then, we extract visual features from the rendered image, and
compare them with the features extracted from the current camera image.
The details about the features that are extracted are given in Section 4.5.2.

Based on the extracted features, we define an error vector

s(t) = [d1, d2, . . . , dn]T (20)

between the desired values for the features and the current ones. Based on s,
we can estimate the incremental change in pose in each iteration e(s) follow-
ing the classical image based servoing control loop. This process continues

19

until the difference vector s is smaller than a certain threshold. Each of the
steps is explained in more detail in the following subsections. Our current
implementation and experimental evaluation is performed for the Kuka R850
arm and Schunk Dexterous hand, shown in Fig. 9

Figure 9: The Kuka R850 arm and Schunk Dexterous Hand in real images and CAD
models.

4.5.1. Virtual image generation

As we mentioned before, we use a realistic 3D model of the robotic parts
as input for our system. This adds the challenge of having to render this
model at a high frame rate, since our system runs in real time, and several
visual servoing iterations must be performed for every frame that we obtain
from the cameras.

To render the image, we use a projection matrix P , which corresponds
to the internal parameters of the real camera, and a modelview matrix M ,
which consists of a rotation matrix and a translation vector. The modelview
matrix is then estimated in the visual servoing loop.

One of the most common CAD formats for objects such as robotic hands
are Inventor files. There are a number of rendering engines which can deal
with such models, but none of them had the performance and flexibility that
we needed. For that we developed a new scenegraph engine, specific for this
application, which focused on rendering offline images at a high speed. It
was developed directly over OpenGL. We can obtain about 1000 frames per
second with this engine. At the moment the speed of the rendering engine
does not represent a bottleneck to our system.

20

We render the image without any texture or lighting, since we are only
interested in the external edges of the model. We also save the depth map
produced by the rendering process, which will be useful later for the estima-
tion of the jacobian.

4.5.2. Features

The virtual and the real image of the robot parts ought to be compared in
terms of visual features. These features should be fast to compute, because
this comparison will be performed as many times per frame as iterations are
needed by the virtual visual servoing for locating the robot. They should
also be robust towards non-textured models.

Edge-based features fulfill these requirements. In particular chamfer dis-
tances [35] modified to include the alignment of edge orientations [36] are
well suited for matching shapes in cluttered scenes, and are used in recent
systems for object localization [37]. This feature is similar in spirit but more
general than other ones used in the field of Virtual Visual Servoing. Comport
et al. [38] computes distances between real points and virtual lines/ellipsis
instead of virtual points. Klose et al. [39], Drummond and Cipolla [40] search
for real edges only in the perpendicular direction of the virtual edge.

The mathematic formulation of our features is the following. After per-
forming a Canny edge detection on real image Iu and virtual image Iv we
obtain a set of edge points U ,V with their correspondent edge orientations
OU ,OV (from the horizontal and vertical Sobel filter). The sets U ,V are split
into overlapping subsets Ui,Vi according to their orientations:

ou (mod π) ∈ [
2πi

16
,
2π(i+ 1)

16
]⇒ u ∈ Ui (21)

Then for each channel Ui we compute the distance transform [41] which
will allow us to perform multiple distance computations for the same real set
U in linear time with the number of points in each new set V . Based on the
distance transform we obtain our final distance vector s = {dcham(v,U)} =
[d1, d2 · · · dn]T composed by distance estimations for each edge point from our
virtual image Iv.

dtransf (p) = min
u∈Ui
||p− u||, p ∈ Iu (22)

dcham(v,U) = dtransf (v), v ∈ Vi, u ∈ Ui (23)

s = {dcham(v,U)}, dcham(v,U) < δ (24)

21

The points v ∈ V whose distance is higher than an empirically estimated
threshold δ are considered outliers and dropped from s.

4.5.3. Pose correction

Once the features have been extracted, we can use a classical visual ser-
voing approach to calculate the correction to the pose, [42]. There are two
different approaches to vision-based control: Position-based control uses im-
age data to extract a series of 3D features, and control is performed in the 3D
Cartesian space. In image-based control, the image features are directly used
to control the robot motion. In our case, since the features we are using are
distances between edges in an image for which we have no depth information
in the real image, we are using an image-based approach.

The basic idea behind visual servoing is to create an error vector which
is the difference between the desired and measured values for a series of
features, and then map this error directly to robot motion.

As discussed before, s(t) is a vector of feature values measured in the
image, composed by distances between edges in the real and synthetic images
Iu, Iv. Therefore ṡ(t) will be the rate of change of these distances with time.

The movement of the manipulator (in this case, the virtual manipulator)
can be described by a translational velocity T (t) = [Tx(t), Ty(t), Tz(t)]

T and

a rotational velocity Ω(t) = [ωx(t), ωy(t), ωz(t)]
T. Together, they form a

velocity screw:

ṙ(t) =
[
Tx, Ty, Tz, ωx, ωy, ωz

]T
(25)

We can then define the image jacobian or interaction at a certain instant
as J so that:

ṡ = Jṙ (26)

where

J =

[
∂s

∂r

]
=


∂d1
∂Tx

∂d1
∂Ty

∂d1
∂Tz

∂d1
∂ωx

∂d1
∂ωy

∂d1
∂ωz

∂d2
∂Tx

∂d2
∂Ty

∂d2
∂Tz

∂d2
∂ωx

∂d2
∂ωy

∂d2
∂ωz

...
...

...
...

...
...

∂dn
∂Tx

∂dn
∂Ty

∂dn
∂Tz

∂dn
∂ωx

∂dn
∂ωy

∂dn
∂ωz

 (27)

which relates the motion of the (virtual) manipulator to the variation in the
features. The method used to calculate the jacobian is described in detail

22

below.
However, to be able to correct our pose estimation, we need the opposite:

we need to compute ṙ(t) given ṡ(t).
When J is square and nonsingular, it is invertible, and then ṙ = J−1ṡ.

This is not generally the case, so we have to compute a least squares solution,
which is given by

ṙ = J+ṡ (28)

where J+ is the pseudoinverse of J , which can be calculated as:

J+ = (JTJ)−1JT. (29)

The goal for our task is to have all the edges in our synthetic image match
edges in the real image, so the target value for each of the features is 0. Then,
we can define the error function as

e(s) = 0− ṡ (30)

which leads us to the simple proportional control law:

ṙ = −KJ+s (31)

where K is the gain parameter.

4.5.4. Estimation of the jacobian

To estimate the jacobian, we need to calculate the partial derivatives of
the feature values with respect to each of the motion components. When
features are the position of points or lines, it is possible to find an analytical
solution for the derivatives.

In our case, the features in s are the distances from the edges of the syn-
thetic image to the closest edge in the real image. Therefore, we numerically
approximate the derivative by calculating how a small change in the relevant
direction affects the value of the feature.

As we said before, while rendering the model we obtained a depth map.
From this depth map, it is possible to obtain the 3D point corresponding to
each of the edges. Each model point v in Iv is a projection of its corresponding
3D point in the model vm. The derivative of the distance described before
dcham(v,U) , can be calculated for a model point vm with respect to Tx by
applying a small displacement and projecting it into the image:

23

dcham
(
PM(vm + εx),U

)
−D

(
PMvm,U

)
ε

(32)

where ε is an arbitrary small number and x is a unitary vector in the x
direction. P and M are the projection and modelview matrices, as defined in
Section 4.5.1. A similar process is applied to each of the motion components.

4.6. Object grasping

In this section we will combine the grasping point computed in Section 4.2
and the arm pose calculated in Section 4.5 in order to move the arm so that
it can grasp the object.

After finding the grasping position as a point GC0 in camera space, we
move the head to a position where the whole arm is visible, while keeping
the object in the field of view. Then, the object position (x, y) is found in
this new viewpoint using the method in Section 4.3. We assume that the
z coordinate did not change with the gaze shift. Therefore, we use the one
calculated previously in GC0 . The grasping point in camera space for the
current viewpoint is then GC1 =

[
zx zy z

]
.

After this, virtual visual servoing allows us to obtain the transformation
AA

C1
that converts points from camera to arm space, so we can obtain the

grasping point in arm space as GA = AA
C1
GC1 . To account for small errors in

the measurements, we do not move the arm there directly, but take it first to
a position which is a few centimeters (15 cm in our experiments) above GA.

Then, the final step is to bring the arm down so that the object lies
between the fingers of the hand. We do this using a simple visual servoing
loop. The movement to be performed is purely vertical. Therefore, we only
use a single visual feature to control that degree of freedom: the vertical
distance between the arm and the grasping point in the image which will
be roughly aligned with the vertical axis of the arm. In each iteration, we
measure the vertical distance d between the arm and the grasping point in
the image, and use this as input for a simple proportional control law:

ṙy = −kd (33)

where ṙy is the vertical velocity of the arm and k is a gain factor.

24

5. Experiments

5.1. Robustness of Virtual Visual Servoing

In order to evaluate the performance of the virtual visual servoing, we
needed a setup where ground truth data was available, so that the error
both for the input (edge detection and initial estimation) and the output
(estimated pose) is known. Lacking such a setup, we decided to conduct the
experiments using synthetic images as input. These images were generated
using the same 3D model and rendering system that we use in the visual
servoing loop.

The process used in these experiments was as follows:

• Generate a rendered image of the model at a known pose.

• Add some error in translation and rotation to that pose, and use this
as the initial pose estimation.

• Run the virtual visual servoing loop with the rendered image as input.
In some of the runs, noise was added to the detection of edges, to assess
the robustness with respect to certain errors in the edge detection.

• After each iteration, check whether the method has reached a stable
point (small correction) and the difference between the detected pose
and the known pose is below a certain threshold. If this is the case,
consider it a succesful run and store the number of iterations needed.

• If the system does not converge to the known pose after a certain
number of iterations, stop the process and count it as a failed run.

We ran three sets of experiments, each of them focusing on the following
kind of input error:

• Translational error. We evaluated which range of errors in the trans-
lational component of the initial pose estimation allows the system to
converge. To that effect, we added, in each run, a translational error
of known magnitude and random direction.

• Rotational error. We also evaluated the range of errors in the rotational
component of the initial pose estimation for which the system converges
to the correct result. For each run, we added a rotational error of known
magnitude and random direction.

25

• Error in edge detection. To simulate the effects of wrongly detected
edges in the performance of the system, we added random errors to the
edge detection of the input synthetic image. In each run, the detection
of a number of pixels was shifted a random amount. An example of
the result can be seen in Fig. 10.

Figure 10: Edge detection with artificially introduced error (in 30% of the pixels).

The performance of the VVS system is measured in (i) the number of
runs that failed and (ii) , for the runs that succeeded, the average number of
iterations it took to do so. We plot these with respect to the magnitude of
the input error. For each value of the input error, we ran 500 visual servoing
loops. In each of these runs, the magnitude of the error was kept constant,
but the direction (or the particular pixels that were affected in the case of
edge detection) was chosen randomly. Also, the whole process was repeated
for five different configurations of the joints of the arm.

The rest of the parameters of the process were set as follows:

• The threshold for deciding that the algorithm had converged to the
correct pose was 10 mm in translation and 0.5◦ in rotation.

• The number of iterations after which the run was considered a failure
was set to 200.

26

• For the experiments that evaluate robustness with respect to edge de-
tection, a translation error of 100 mm and a rotation error of 10◦ was
used for the initial pose estimation.

Figure 11 shows the result of increasing the translational component of
the error in the estimated initial pose. As we can see, the failure rate is close
to 0 for distances below 100 mm, and then starts increasing linearly. This is
probably due to 100 mm being in the same order of magnitude as the distance
between different edges of the robot which have the same orientation, so the
system gets easily lost, trying to follow the wrong edges. We can also observe
an increase in the iterations needed for reaching the result.

In Figure 12 we can observe a similar behaviour for the tolerance to
errors in the rotational component of the estimated initial pose. Here, the
threshold is around 10◦ and the reason is probably the same as before: this
is the minimum rotation that bring edges to the position of other edges.

With respect to the error in edge detection, we can see in Figure 13 that
when less than 50% of the pixels are wrongly detected, the system performs
almost as well as with no error, and after that the performance quickly de-
grades. It is also significant that for the runs that converge successfully, the
number of iterations is almost independent of the errors in edge detection.

0 50 100 150 200 250
0

20

40

60

80

mm

n
u
m

b
er

of
it

er
at

io
n
s

0 50 100 150 200 250

0

20

40

60

80

mm

fa
il
u
re

ra
te

(%
)

Figure 11: Effects of translational error

5.2. Qualitative Experiments on the Real System

For our experiments with the real robot, we set up a table-top scenario
with two randomly placed objects, as can be seen in the last picture in
Figure 14. The head was initially looking towards the table, where it could

27

0 10 20 30 40 50

20

40

60

80

100

120

degrees

n
u
m

b
er

of
it

er
at

io
n
s

0 10 20 30 40 50

0

20

40

60

80

100

degrees

fa
il
u
re

ra
te

(%
)

Figure 12: Effects of rotational error

0 20 40 60 80 100

50

100

150

200

pixels affected (%)

n
u
m

b
er

of
it

er
at

io
n
s

0 20 40 60 80 100

0

20

40

60

80

100

pixels affected (%)

fa
il
u
re

ra
te

(%
)

Figure 13: Effects of errors in edge detection

see the objects and find them in the saliency map of the attention system.
However, the arm was not fully visible.

We ran the system several times with this setup. In most of these runs,
the virtual visual servoing loop did not converge because it could only see a
small part of the arm. Therefore, we decided to run virtual visual servoing
only after the object is found and after shifting the gaze away from it and
towards the arm. With this change, even if the initial estimation for the
pose of the arm was significantly different, the pose estimated through visual
servoing quickly converged. In Figure 14 we can see, outlined in green, the
estimated pose for the arm and hand over the real image.

The segmentation of the object and detection of the grasping point worked
well. When running virtual visual servoing with the full arm in view, the
hand could be aligned with the object with high accuracy and grasping was

28

Saliency detection
Object segmentation

Grasping pose calculation
VVS robot localization

Search object localization

Hand-object alignmentClose hand
Move arm open loop

Release hand

Figure 14: Grasping system diagram. A video with the whole sequence can be found at
http://www.youtube.com/watch?v=e-O3Y8_cgPw

performed successfully in most of the runs.
However, even if they did not affect the performance of the system, there

are some problems that arise with the use of virtual visual servoing in real
images. For example, as we can see in the upper-right picture of Figure 14,
the upper edge of the reconstructed outline does not match exactly with
the upper edge of the arm. There are two main reasons for this. First, the
illumination of the scene can lead to some edges disappearing, because of the
low contrast. This is usually not a problem, because the correct matching
of other edges will compensate for this. But in this case, there is a second
problem: because of the orientation of the arm with respect to the camera,
the outer silhouette has really few edges. As we can see in the picture below
that, once the pose of the arm changes, the system can recover and show
the correct pose again. As future work, we are considering the possibility of
using not only the outer contour, but also try to match some of the internal
edges of the model. While this can lead to a less robust system, since outer

29

edges are more likely to appear as edges in the real image, it can increase
performance where the number of edges is low.

6. Conclusions

Grasping and manipulation of objects is a necessary capability of any
robot performing realistic tasks in a natural environment. The solutions re-
quire a systems approach since the objects need to be detected and modelled
prior to an agent acting upon them. Although many solutions for known
objects have been proposed in the literature, dealing with unknown objects
stands as an open problem.

Our research deals with this problem by integrating the areas of active
vision and sensor based control where visual servoing methods represent im-
portant building blocks. In this paper, we have presented several ways in
which these methods can add robustness and help minimizing the errors in-
herent to any real system.

First, we showed how visual servoing can be used to automate the offline
calibration process. The robot can, without human intervention, generate a
pattern to collect data that can then be used to calibrate the cameras and
the transformations between the cameras and the arm.

Then, we demonstrated a virtual visual servoing approach to continuously
correct the spatial relation between the arm and the cameras. Though in
its current state the system works well and is useful in the context of the
system, some ideas for future work arise from the experiments we performed.
Using the edges as the only feature in the visual servoing loop works well
with objects which have a complex outline, such as our arm. However, for
other kinds of object, or even some viewpoints of the arm, having a wider
range of features might help. These features may include adding textures to
the models, or using 3D information obtained via stereo or structured light
cameras.

Finally, the last step that brings the arm to the place where the object
can actually be grasped also uses visual information to move the arm down
to the position where the hand can be closed to grasp the object. There is
also room for future improvements here, such as integrating the system with
a more complex grasp planner, which could determine the optimal points
where the fingers should contact the object. Then, visual servoing could be
used to visually bring the fingers to the correct position.

30

Acknowledgement

This work is supported by the EU through the project GRASP, IST-
FP7-IP-215821, Swedish Foundation for Strategic Research and UKF-Unity
through Knowledge Fund.

References

[1] J. Glover, D. Rus, N. Roy, Probabilistic Models of Object Geometry
for Grasp Planning, in: IEEE International Conference on Robotics and
Automation, Pasadena, CA, USA, 2008.

[2] K. Huebner, K. Welke, M. Przybylski, N. Vahrenkamp, T. Asfour,
D. Kragic, R. Dillmann, Grasping Known Objects with Humanoid
Robots: A Box-based Approach, in: International Conference on Ad-
vanced Robotics, 1–6, 2009.

[3] B. Rasolzadeh, M. Björkman, K. Huebner, D. Kragic, An Active Vision
System for Detecting, Fixating and Manipulating Objects in Real World,
Int. J. of Robotics Research To appear.

[4] P. Azad, T. Asfour, R. Dillmann, Stereo-based 6D Object Localization
for Grasping with Humanoid Robot Systems, in: IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), 919–924, 2007.

[5] J. Bohg, D. Kragic, Learning Grasping Points with Shape Context,
Robotics and Autonomous Systems In Press.

[6] A. Saxena, J. Driemeyer, J. Kearns, A. Y. Ng, Robotic Grasping of Novel
Objects, Neural Information Processing Systems 19 (2007) 1209–1216.

[7] J. Speth, A. Morales, P. J. Sanz, Vision-Based Grasp Planning of 3D
Objects by Extending 2D Contour Based Algorithms, in: IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2240–2245,
2008.

[8] M. Stark, P. Lies, M. Zillich, J. Wyatt, B. Schiele, Functional Object
Class Detection Based on Learned Affordance Cues, in: 6th Interna-
tional Conference on Computer Vision Systems, vol. 5008 of LNAI,
Springer-Verlag, 435–444, 2008.

31

[9] K. Huebner, D. Kragic, Selection of Robot Pre-Grasps using Box-Based
Shape Approximation, in: IEEE/RSJ International Conference on In-
telligent Robots and Systems., 1765–1770, 2008.

[10] M. Richtsfeld, M. Vincze, Grasping of Unknown Objects from a Table
Top, in: ECCV Workshop on ’Vision in Action: Efficient strategies for
cognitive agents in complex environments’, Marseille, France, 2008.

[11] D. Aarno, J. Sommerfeld, D. Kragic, N. Pugeault, S. Kalkan,
F. Wörgötter, D. Kraft, N. Krüger, Early Reactive Grasping with Sec-
ond Order 3D Feature Relations, in: ICRA Workshop: From Features
to Actions, 319–325, 2007.

[12] N. Bergström, J. Bohg, D. Kragic, Integration of Visual Cues for Robotic
Grasping, in: Computer Vision Systems, vol. 5815 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 245–254, 2009.

[13] D. Kragic, H. I. Christensen, Cue Integration for Visual Servoing, IEEE
Transactions on Robotics and Automation 17 (1) (2001) 18–27.

[14] T. Asfour, K. Welke, P. Azad, A. Ude, R. Dillmann, The Karlsruhe
Humanoid Head, in: IEEE/RAS International Conference on Humanoid
Robots (Humanoids), Daejeon, Korea, 2008.

[15] KUKA, KR 5 sixx R850, www.kuka-robotics.com, Last Visited Dec’10.

[16] SCHUNK, SDH, www.schunk.com, Last visited Dec’10.

[17] X. Gratal, J. Bohg, M. Björkman, D. Kragic, Scene Representation and
Object Grasping Using Active Vision, in: IROS’10 Workshop on Defin-
ing and Solving Realistic Perception Problems in Personal Robotics,
2010.

[18] A. W. Khan, C. Wuyi, Systematic Geometric Error Modelling for
Workspace Volumetric Calibration of a 5-axis Turbine Blade Grinding
Machine, Chinese Journal of Aeronautics (2010) 604–615.

[19] J. Felip, A. Morales, Robust sensor-based grasp primitive for a three-
finger robot hand, in: Proceedings of the 2009 IEEE/RSJ international
conference on Intelligent robots and systems, IROS’09, 1811–1816, 2009.

32

[20] K. Hsiao, S. Chitta, M. Ciocarlie, E. G. Jones, Contact-Reactive Grasp-
ing of Objects with Partial Shape Information, in: IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), Taipei, Taiwan, 1228–1235,
2010.

[21] A. Ude, D. Omrcen, G. Cheng, Making Object Learning and Recognition
an Active Process, Int. J. of Humanoid Robotics 5 (2) (2008) 267–286.

[22] N. Vahrenkamp, S. Wieland, P. Azad, D. Gonzalez, T. Asfour, R. Dill-
mann, Visual Servoing for Humanoid Grasping and Manipulation Tasks,
in: IEEE/RAS Int. Conf. on Humanoid Robots (Humanoids), 406–412,
2008.

[23] A. Ude, E. Oztop, Active 3-D Vision on a Humanoid Head, in: Int.
Conf.on Advanced Robotics (ICAR), Munich, Germany, 2009.

[24] K. Welke, M. Przybylski, T. Asfour, R. Dillmann, Kinematic Calibration
for Saccadic Eye Movements, Tech. Rep., Institute for Anthropomatics,
Universität Karlsruhe, 2008.

[25] V. Lepetit, J. Pilet, P. Fua, Point matching as a classification problem
for fast and robust object pose estimation, in: CVPR, II: 244–250, 2004.

[26] T. Drummond, R. Cipolla, Real-Time Visual Tracking of Complex
Structures, IEEE Trans. PAMI 24 (7) (2002) 932–946.

[27] V. Kyrki, D. Kragic, Integration of model-based and model-free cues
for visual object tracking in 3D, in: IEEE International Conference on
Robotics and Automation, ICRA’05, 1566–1572, 2005.

[28] D. Kragic, V. Kyrki, Initialization and System Modeling in 3-D Pose
Tracking, in: In IEEE International Conference on Pattern Recognition
2006. ICPR’06, Hong Kong, 643–646, 2006.

[29] A. I. Comport, D. Kragic, E. Marchand, F. Chaumette, Robust Real-
Time Visual Tracking: Comparison, Theoretical Analysis and Perfor-
mance Evaluation, 2841 – 2846, 2005.

[30] J. Romero, H. Kjellström, D. Kragic, Hands in action: real-time 3D
reconstruction of hands in interaction with objects, in: ICRA, IEEE,
458–463, 2010.

33

[31] B. León, S. Ulbrich, R. Diankov, G. Puche, M. Przybylski, A. Morales,
T. Asfour, S. Moisio, J. Bohg, J. Kuffner, R. Dillmann, OpenGRASP:
A Toolkit for Robot Grasping Simulation, in: SIMPAR ’10: Proceed-
ings of the 2nd International Conference on Simulation, Modeling, and
Programming for Autonomous Robots, 2010.

[32] M. Björkman, D. Kragic, Active 3D Scene Segmentation and Detection
of Unknown Objects, in: IEEE International Conference on Robotics
and Automation, 2010.

[33] M. Björkman, D. Kragic, Active 3D Segmentation through Fixation of
Previously Unseen Objects, in: British Machine Vision Conference, to
appear, 2010.

[34] Z. Zhang, A Flexible New Technique for Camera Calibration, IEEE
Transactions on Pattern Analysis and Machine Intelligence 22 (2000)
1330–1334, ISSN 0162-8828.

[35] M. A. Butt, P. Maragos, Optimum design of chamfer distance trans-
forms, IEEE Transactions on Image Processing 7 (10) (1998) 1477–1484.

[36] D. M. Gavrila, Multi-Feature Hierarchical Template Matching Using
Distance Transforms, in: ICPR, Vol I: 439–444, 1998.

[37] M. Liu, O. Tuzel, A. Veeraraghavan, R. Chellappa, Fast directional
chamfer matching, in: CVPR, IEEE, 1696–1703, 2010.

[38] A. I. Comport, É. Marchand, M. Pressigout, F. Chaumette, Real-Time
Markerless Tracking for Augmented Reality: The Virtual Visual Servo-
ing Framework, IEEE Trans. Vis. Comput. Graph 12 (4) (2006) 615–628.

[39] S. Klose, J. Wang, M. Achtelik, G. Panin, F. Holzapfel, A. Knoll, Mark-
erless, Vision-Assisted Flight Control of a Quadrocopter, in: IROS, 2010.

[40] T. Drummond, R. Cipolla, Real-Time Visual Tracking of Complex
Structures, IEEE Trans. Pattern Anal. Mach. Intell 24 (7) (2002) 932–
946.

[41] G. Borgefors, Distance Transformations in Digital Images, Computer
Vision, Graphics and Image Processing 34 (1986) 344–371.

34

[42] S. Hutchinson, G. Hager, P. Corke, A tutorial on visual servo control,
IEEE Transactions on Robotics and Automation 12 (5) (1996) 651–670.

35

