
Virtual Visual Servoing for

Real-Time Robot Pose Estimation

Xavi Gratal ∗ Javier Romero ∗∗ Danica Kragic ∗∗∗

∗ e-mail: gratal@gmail.com
∗∗ e-mail: jrgn@kth.se
∗∗∗ e-mail: dani@kth.se

Abstract:
We propose a system for markerless pose estimation and tracking of a robot manipulator. By
tracking the manipulator, we can obtain an accurate estimate of its position and orientation
necessary in many object grasping and manipulation tasks. Tracking the manipulator allows
also for better collision avoidance. The method is based on the notion of virtual visual servoing.
We also propose the use of distance transform in the control loop, which makes the performance
independent of the feature search window.

1. INTRODUCTION

The ability of robot systems to grasp and manipulate
objects has become one of the most important areas
in robotics. Most of the state-of-the-art systems use vi-
sual/camera input as it offers rich information about the
state of the environment such as number of objects, their
positions, categorical information, etc. For the accurate
control of a robotic manipulator using visual information,
it is necessary to know the position and orientation (pose)
of the manipulator with respect to the camera and/or the
object it is supposed to manipulate. A rough estimation of
the pose can be obtained from the kinematics of the manip-
ulator and calibration camera-robot. However, sometimes
a kinematic model may not be accurate or available at all.
Also, in some cases it is desirable to have a very accurate
estimation of the pose.

Classically, vision based control — visual servoing (Kragic
and Christensen [2001]) has been used to align the robot
hand with the object prior to applying a grasp to it.
The most common solution to this problem is to place
fiducial markers on the robotic manipulator. For cases
in which the manipulator has a big planar surface, ART
tags (Kato and Billinghurst [2004]) are a common choice,
see Figure 1(a). However, more dexterous manipulators
resembling the human hand may not have a surface to
which such a marker can be attached. In these cases one
possibility is to rigidly attach an easily trackable object to
the wrist, like the red sphere in Figure 1(b). However, the
usage of markers can limit substantially the mobility of the
manipulator, since the markers have to remain visible in
the camera(s). Moreover, the control of the manipulator’s
end-effector depends on the calibration accuracy of the
transformation that links the marker to the end-effector’s

1 This work is supported by EU through the project GRASP,
IST-FP7-IP-215821 ,Swedish Foundation for Strategic Research and
UKF-Unity through Knowledge Fund.The authors are with the
Computational Vision and Active Perception Lab, Centre for Au-
tonomous Systems, CSC-KTH, Stockholm, Sweden.

coordinate system. In other words, if that transformation
changes, the system needs to be recalibrated.

(a) ART marker (b) Red spherical markers

Fig. 1. Different markers on robotic hands. Images ex-
tracted from our previous work Popovic et al. [2010].

We propose an approach that alleviates this problem by
tracking the manipulator itself instead of a marker placed
on it. By tracking the manipulator, we obtain an accurate
estimate of its pose and we do not need to worry about the
visibility constraints as in the case of markers. Tracking the
manipulator allows us to avoid collisions of the end-effector
in a more precise way than by tracking just a marker.

The first contribution of this paper is a real-time model-
based tracking system that alleviates the need for special
markers and is also applicable to complex shapes such
as the three fingered Schunk Dexterous Hand, see Fig. 3.
We show how through the process of rendering the whole
model, occlusions between different parts of the manipu-
lator can be properly dealt with. The second contribution
is related to the use of visual features. Instead of searching
for edges in the neighbourhood of the edge in the virtual
image, we use the distance transform, which makes the
performance independent of the search window.

2. RELATED WORK

Approaches for tracking objects of complex geometry can
be divided in two groups: appearance-based and model-
based methods. The first is based on comparing camera

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

Copyright by the
International Federation of Automatic Control (IFAC)

9017

images with a huge database of stored images with anno-
tated poses (Lepetit et al. [2004]). The second relies on
the use of a geometrical model of the object and perform
tracking based on optical flow (Drummond and Cipolla
[2002]). There have also been examples that integrate both
of these approaches (Kyrki and Kragic [2005]).

The initialization of the tracking process represents an im-
portant problem by itself. This can be done by first local-
izing the object in the image and then using a global pose
estimation step. In our previous work, we have demon-
strated how the initialization can be done for objects in
general settings (Kragic and Kyrki [2006]). In the case of
a manipulator, the initialization step can be performed by
comparing the renderization of its model with the initial
image where the pose for the model is given through the
forward kinematics. Thus, for the initial rendering of the
3D CAD model, the position and orientation are assumed
to be known. The renderization or the synthetic image of
the manipulator is then compared to the camera image,
through a process based on image based control though
virtual visual servoing (VVS) (Comport et al. [2005]).

In this paper, we thus focus on improving the pose esti-
mation of the manipulator by VVS. The system is also
applicable to the estimation of the pose of each finger of
the robot hand with respect to the wrist; however, for the
purposes of this paper, we consider the finger joint angles
and opening of the robot hand to be constant.

The problem of estimating the full pose of the manipulator
can be seen as an instance of the general object pose
estimation problem. An important aspect to take into
account is the type of visual features that can be used for
tracking. The use of different types of interest points such
as corners is common (Lepetit et al. [2004]). While this
approach works well for textured objects, it is not suitable
for our robotic manipulator, which is non-textured and has
highly specular surfaces. Some model-based methods have
been already used for tracking of a robotic manipulator.
The efforts by Comport et al. [2006], Sorribes et al. [2010]
and our previous work Comport et al. [2005] use 3D edges
or ellipses as the input to a VVS loop.

In our recent work Romero et al. [2010], we demonstrate
how pose estimation can be performed for a more complex
object such as a human hand. The major contribution
of the work in Romero et al. [2010] is the use of a
discriminative machine learning approach for obtaining
a real-time tracking performance of an object with 27
degrees of freedom. The problem considered in this paper
has a lower dimensionality and a more accurate guess of
the initial pose. This makes it possible to adopt a real-
time generative approach that renders the last pose of the
object in each frame and estimates the new pose through
a process of error minimization.

3. METHODOLOGY

The pose of an object is denoted by X(R, t) where
t ∈ R(3), R ∈ SO(3). The set of all poses that
the robot’s end–effector can attain is denoted with
TG ⊆ SE(3) = R(3) × SO(3). A positioning task
in general can then be represented by a function

e : S → R(n) (1)

camera

image

3D

model

distance

transform

initial

estimation

render

image

edge

extraction

interaction

matrix

visual

servoing

estimated

pose

Fig. 2. Outline of the proposed model-based tracking
system.

where S, in the case of position based visual servoing,
may represent the task space of the end–effector, TG. In
this case, e is referred to as the kinematic error function,
Hutchinson et al. [1996]. The dimension n of R in (Eq. 1)
depends on the number of degrees of freedom (DOF) of the
robot constrained by e with n ≤ m (m denotes DOF of the
manipulator). In the case of image based visual servoing,
S represents image feature parameter space, F and n ≤ k
where k is the dimension of F .

Pose estimation considers a computation of a rotation
matrix (orientation) and a translation vector of the object
(position), X(R, t):

X =

[
r11 r12 r13 TX
r21 r22 r23 TY
r31 r32 r33 TZ

]
(2)

The equations used to describe the projection of a three–
dimensional model point Q into homogeneous coordinates
of the image point [x y]T are:[

X
Y
Z

]
= R [Q− t] with

[
wx
wy
w

]
= P

[
X
Y
Z

]
(3)

where P is a 3x3 matrix representing the internal camera
parameters matrix including focal length and aspect ratio
of the pixels, w is the scaling factor, R and t represent the
rotation matrix and translation vector, respectively.

Our approach to pose estimation and tracking is based
on virtual visual servoing where a rendered model of the
hand is aligned with the current image of the hand. The
outline of the system is presented in Fig. 2. In order to
achieve the alignment, we can either control the position
of the object to bring it to the desired pose or move the
virtual camera so that the image perceived by the camera
corresponds to the current camera image, denoted as real
camera image in the rest of the paper. In this paper, we
adopt the first approach where we render synthetic images
by incrementally changing the pose of the tracked object.
In the first iteration, the position is given based on the
forward kinematics. Then, we extract visual features from
the rendered image, and compare them with the features

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

9018

extracted from the current camera image. The details
about the features that are extracted are given in the next
section.

Based on the extracted features, we define a difference or
an error vector between the desired values for the features
and the current ones. Based on this error vector, we can
estimate the incremental change in pose in each iteration
following the classical image based servoing control loop.
This process continues until the difference vector is smaller
than a certain threshold. Each of the steps is explained
in more detail in the following subsections. Our current
implementation and experimental evaluation is performed
for the Schunk Dexterous hand, shown in Fig. 3.

Fig. 3. The Schunk Dexterous Hand and a renderization
of our CAD model.

3.1 Virtual image generation

As we mentioned before, we use a realistic 3D model of the
object as input for our system. This adds the challenge of
having to render this model at a high frame rate, since
our system runs in real time, and several visual servoing
iterations must be performed for every frame that we
obtain from the cameras.

To render the image, we use a projection matrix P , which
corresponds to the internal parameters of the real camera,
and a modelview matrix M , which consists of a rotation
matrix and a translation vector. The modelview matrix is
then estimated in the visual servoing loop.

One of the most common CAD formats for objects such
as robotic hands are Inventor files. There are a number of
rendering engines which can deal with such models, but
none of them had the performance and flexibility that we
needed. For that we developed a new scenegraph engine,
specific for this application, which focused on rendering
offline images at a high speed. It was developed directly
over OpenGL. With this engine, we can obtain about
1000 frames per second, and is not, at the moment, the
bottleneck of the system.

We render the image without texture or lighting, since we
are only interested in silhouette of the model. We also save
the depth map produced by the rendering process, which
will be useful later for the estimation of the jacobian.

3.2 Features

As mentioned before, the virtual and the real image will be
compared in terms of visual features. The choice of those
features is crutial because it can affect drastically the speed
and the reliability of the system. The most important
characteristics of such a feature are the following:

• Speed: The feature will be computed once per frame
on the real image and once per iteration (several per
frame) on the virtual image. Therefore the feature
computation could become the system’s performance
bottleneck. Since the virtual image features are com-
puted much more often, features with an asymmetric
computational time can be beneficial.

• Robustness towards illumination changes: Our robotic
hand model, as many other models, does not have a
proper model for the specularity and reflectance of
the hand surface. Consequently, the selected feature
should not depend on the specular reflections or the
reflected color on the hand surface. The main charac-
teristic that the feature should reflect is shape.

• Directed error: Some formulations of the error com-
putation in visual servoing depend on the direction
which minimizes the error. Therefore, it is preferable
to have features where the error direction can be
extracted, so that it is possible to know how this error
will change with respect to motion of the object.

• Robustness for non-textured models: Robot manipu-
lators are usually plain colored or metalic; therefore
features which rely on texture should be avoided.

Harris corners (Harris and Stephens [1988]) or SIFT (Lowe
[1999]) are features which can be extracted fast and
reliably. However, they depend heavily on texture and
are therefore not suitable for our application. In Comport
et al. [2006] the distance between point and a line, and
between ellipse and a line is used. Those features by
themselves do not provide a directed error. But more
importantly, they are not suitable for complex models
with curved lines. Moreover, the creation of the virtual
model is either manual or involves detecting linear or
ellipsoidal patches, which may be non-trivial depending
on the complexity of the model.

Chamfer distance (Butt and Maragos [1998]) can be con-
sidered as a generalisation of the features used in Comport
et al. [2006]. Instead of measuring distance between shapes
and points, it directly measures the distance between
points and their closest match. The sets of points U ,V
considered are usually edges extracted with a Sobel or
Canny operator from images U, V . While standard chamfer
distance measures the distance between two whole shapes
(as the average of the point-to-point distances), we will
focus on the individual distances:

dcham(u) = min
v∈V
||u− v||, u ∈ U (4)

This is a good feature candidate because its computation
is fast and it is robust to illumination and color changes.
In its original design it does not provide directed error,
but that characteristic can be easily added with negligible
computational cost:

ocham(u) = 6 (u− v), u ∈ U , v = arg min
v∈V
||u− v|| (5)

We want to compute the similarities between one real im-
age and multiple virtual images for each frame. Therefore
it makes sense to precompute the distance from each pixel
from the image to the closest edge for the real image.That
is the so called distance transform Borgefors [1986]:

dtransf (p) = min
u∈U
||p− u||, p ∈ U (6)

dcham(u) = dtransf (v), v ∈ V (7)

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

9019

(a) Image (b) Edge detection (c) Dist. Transform

Fig. 4. Image, edge detection and distance transform of a
circle

(a) 0◦ − 90◦ (b) 45◦−135◦ (c) 90◦−180◦ (d) 135◦−225◦

Fig. 5. Edge detection divided into 4 overlapping ranges

Once we compute dtransf , we can compute dcham(v) mul-
tiple times for different images rather fast (O(n) with the
number of edge points). Therefore, we can compute the
distance transform dtransf of the real image and then check
how similar are the virtual images in linear time with the
number of edge points of each virtual image. The simplest
form of this feature has a problem; any edge, no matter
its shape or orientation, will have a low distance value if
positioned in a zone with high density of edges. This can
be alleviated by matching edges only if they have similar
orientation. For that purpose we use the horizontal and
vertical edge images Uh,Uv to divide the edge image U into
8 channels of different overlapping orientation ranges (see
Figure 5 for an example with four channels). This method
is similar to the 3D distance transform described in Liu
et al. [2010], but in our case we want to discriminate, rather
than use some weighted metric for edges with different
orientations, so we calculate the distance transform over
overlapping channels, effectively rejecting edges with a
different orientation.

∀u ∈ Uc : b
arctan(uv

uh
)N

2π
c = c,N = 8 (8)

dtransf (p) = min
u∈Uc

||p− u||, p ∈ Uc (9)

dcham(u) = dtransf (v), v ∈ Vc, u ∈ Uc (10)

This means that edges with different orientations do not
affect the distance transform of each other, and therefore
they do not get “attracted” by those edges.

Interior edges are more sensitive to illumination changes,
shadows, reflections and model imperfections than exte-
rior edges. That is why we decided to extract only the
silhouette of the virtual model and try to localize that
silhouette in the real image. This avoided the interior
edges of the model getting trapped in local minima on
the real image, resulting in a more robust matching. It
also makes the computation of the chamfer distance faster.
However, it can be argued that it makes the virtual model
representation ambiguous due to the lack of details in
the interior of the silhouette. During our tests this did
not represent a problem since the initial position is close

enough to the real pose in order to disambiguate between
similar silhouettes.

3.3 Visual servoing

Once the features have been extracted, we can use a clas-
sical visual servoing approach to calculate the correction
to the pose, Hutchinson et al. [1996]. Vision-based control
systems can use two different approaches: Position-based
control uses image data to extract a series of 3D features,
and control is performed in the 3D Cartesian space. On
the other hand, in image-based control, the image features
are directly used to control the robot motion. In our case,
since the features we are using are distances between edges
in an image, for which we have no depth information, we
will be using an image-based approach.

The basic idea behind visual servoing is to create an error
vector which is the difference between the desired and
measured values for a series of features, and then map
this error directly to robot motion.

Let s(t) be a vector of feature values which are measured in
the image. In our case, it is constructed, at each iteration,
with the distances between the edges in the real and
synthetic images:

s(t) = [d1, d2, . . . , dn]
T

(11)

then ṡ(t) will be the rate of change of these distances.

The movement of the manipulator (in this case, the
virtual manipulator) can be described by a translational

velocity T (t) = [Tx(t), Ty(t), Tz(t)]
T

and a rotational

velocity Ω(t) = [ωx(t), ωy(t), ωz(t)]
T

. Together, they form
a velocity screw:

ṙ(t) = [Tx, Ty, Tz, ωx, ωy, ωz]
T

(12)

We can then define the image jacobian or interaction at a
certain instant as J so that:

ṡ = Jṙ (13)

J =

[
∂s

∂r

]
=



∂d1
∂Tx

∂d1
∂Ty

∂d1
∂Tz

∂d1
∂ωx

∂d1
∂ωy

∂d1
∂ωz

∂d2
∂Tx

∂d2
∂Ty

∂d2
∂Tz

∂d2
∂ωx

∂d2
∂ωy

∂d2
∂ωz

...
...

...
...

...
...

∂dn
∂Tx

∂dn
∂Ty

∂dn
∂Tz

∂dn
∂ωx

∂dn
∂ωy

∂dn
∂ωz


(14)

which relates the motion of the (virtual) manipulator to
the variation in the features. The method used to calculate
the jacobian is described in detail below.

However, we need to compute ṙ(t) given ṡ(t) in order to
correct our pose estimation.

When J is square and nonsingular, it is invertible, and
then ṙ = J−1ṡ. This is not generally the case, so we have
to compute a least squares solution, which is given by

ṙ = J+ṡ (15)

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

9020

where J+ is the pseudoinverse of J , which can be calcu-
lated as:

J+ = (JTJ)−1JT . (16)

The goal for our task is to have all the edges in our
synthetic image match edges in the real image, so the
target value for each of the features is 0. Then, we can
define the error function as the following, which leads us
to the simple proportional control law where K is the gain
parameter:

e(s) = 0− ṡ (17)

ṙ = −KJ+s (18)

3.4 Estimation of the jacobian

To estimate the jacobian, we need to calculate the partial
derivatives of the feature values with respect to each of
the motion components. When features are the position of
points or lines, it is possible to find an analytical solution
for the derivatives.

In this case, however, the features are the distances from
the edges of the synthetic image to the closest edge in the
real image, so we approximate the derivative by calculating
how a small change in the relevant direction affects the
value of the feature.

As said before, we obtained a depth map while rendering
the model. This depth map allow us to obtain the 3D point
corresponding to each of the edges. If D(u) is the distance
to an edge for a projected point u we can calculate the
derivative for a model point U with respect to Tx as:

D
(
PM(U + εx)

)
−D

(
PMU

)
ε

(19)

where ε is an arbitrary small number and x is a unitary
vector in the x direction. A similar process is applied to
each of the motion components.

4. EXPERIMENTAL EVALUATION

k
in

em
at

ic
s

V
V

S

Fig. 6. Alignment procedure; the kinematics give a first
estimation of the manipulator pose, and it is refined
by VVS

The goal of the experimental evaluation is to test the per-
formance of the system according to a number of aspects
such as the applicability of virtual visual servoing, con-
vergence speed, robustness of the system wrt a cluttered
background, etc.

The first step in our experimental evaluation was to test
the system in a simulated setup using synthetic images
only. The synthetic images were created from the same
CAD model we use for the virtual images in the real
system. This ensures that the visual input to the VVS
framework matches the model perfectly. In this way, we
test the performance of the VVS framework, disregarding
problems like visual differences between real and virtual
manipulator and image noise.

Since the ground truth in the case of a simulated setup
is available, we perturbed the final pose with errors inn
both translation and orientation. This corresponds to the
errors from forward kinematics. As long as these errors
were kept small, the method converged, and the maximum
estimation error was 0.4 mm for the position in the
direction which is perpendicular to the optical axis. In the
direction that corresponds to the depth in the image and
thus has less impact to the appearance of the image, the
errow was 4 mm. Finally the error in rotation was 0.5◦.
We used these experiments to fine-tune the parameters of
the system working with real camera images.

The evaluation on real camera images adds difficulties
such as model imperfections, noise in the edge detection,
edges variability depending on illumination changes, etc.
We used the hand mounted on a KUKA industrial arm, as
shown in Figure 7. This allowed us to have a good initial
estimation of the pose, that we could then refine with our
method. We used a camera that could provide 640x480
images at 15 fps.

It was at this point that we introduced the separation of
the distance transform in several channels depending on
the orientation of the edges. This was not necessary for
the simulated setup, but the real images contained many
edges not corresponding to the contour of the manipulator,
which ‘attracted’ the edges of the synthetic image. This
was alleviated by introducing the orientation channels,
so that edges were only ‘attracted’ by edges with similar
orientation.

Fig. 7. Our setup with a KUKA 6DOF industrial arm with
the Schunk Dexterous Hand and a humanoid robot
head.

Due to the absence of markers in the hand, we could
not provide ground truth data for our real experiments,
and therefore the evaluation has been done in qualitative
terms. In these qualitative tests we read the initial pose
from the kinematic chain and camera-robot calibration,
and used it as the starting point for the system. The sys-
tem converges in general, but sometimes to local minima.
When the convergence was successful, we also used the sys-
tem for tracking. We did this by using the pose estimated

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

9021

Fig. 8. Evolution of the error in the image space and corrections in translation and rotation.

for the previous frame as initial pose, and then moving the
robot at different speeds. The system performed well for
small movements of the hand.

The result for one of the runs of the system is shown
in Fig. 6. As we can see, the initial pose obtained from
calibration is quite off, and the system still manages to
converge. The final result, however, is not perfect, and
there are some edges which are not exactly matched. This
is due, in part, to imprecisions in the joint configuration
of the hand, which is read from the motors, and then
used when rendering the virtual images. The evolution and
correction of the error is shown in Fig. 8.

5. FUTURE WORK

We proposed a system for markerless pose estimation
and tracking of a robot manipulator. By tracking the
manipulator, we can obtain an accurate estimate of its
pose and we do not need to worry about the visibility
constraints as in case of markers. Tracking the manipulator
allows us to avoid collisions of the end-effector in a more
precise way compared to tracking a marker. We also
propose the use of distance transform in the control loop,
which makes the performance independent of the feature
search window.

The system shows good performance in a realistic robotic
setup considering a state-of-the-art robot hand. We have
discussed how a wrong forward kinematics can affect the
performance of the system. Our idea to add the joint
values to the parameters to be estimated in the control
loop and deal with the problem of wron initialization and
tracking. Another future line of work is to adapt this
method to use it with stereo imagery. By using pairs of
images coming from two calibrated cameras, it will be
possible to increase the robustness, by matching the edges
to the images obtained in both cameras. Also, by taking
into account the depth map which can be obtained from
such a setup, it will be possible to match only edges that
are at similar depths, in a way that is similar to how
orientation is handled in the current method.

REFERENCES

G. Borgefors. Distance transformations in digital images.
Computer Vision, Graphics and Image Processing, 34:
344–371, 1986.

M. A. Butt and P. Maragos. Optimum design of chamfer
distance transforms. IEEE Transactions on Image
Processing, 7(10):1477–1484, 1998.

A. I. Comport, D. Kragic, E. Marchand, and
F. Chaumette. Robust real-time visual tracking:
Comparison, theoretical analysis and performance
evaluation. pages 2841 – 2846, apr. 2005.

A. I. Comport, É. Marchand, M. Pressigout, and
F. Chaumette. Real-time markerless tracking for aug-
mented reality: The virtual visual servoing framework.
IEEE Trans. Vis. Comput. Graph, 12(4):615–628, 2006.

T. Drummond and R. Cipolla. Real-time visual tracking of
complex structures. IEEE Trans. PAMI, 24(7):932–946,
2002.

C. Harris and M. Stephens. A combined corner and edge
detector. In Alvey Vision Conf, pages 189–192, 1988.

S. Hutchinson, G.D. Hager, and P.I. Corke. A tutorial
on visual servo control. IEEE Transactions on Robotics
and Automation, 12(5):651–670, 1996.

H. Kato and M. Billinghurst. Developing AR applications
with ARToolkit. In ISMAR, page 305, 2004.

D. Kragic and H. I. Christensen. Cue integration for
visual servoing. IEEE Transactions on Robotics and
Automation, 17(1):18–27, February 2001.

D. Kragic and V. Kyrki. Initialization and system model-
ing in 3-d pose tracking. In ICPR, pages 643–646, Hong
Kong, 2006.

V. Kyrki and D. Kragic. Integration of model-based and
model-free cues for visual object tracking in 3d. In
ICRA, pages 1566–1572, 2005.

V. Lepetit, J. Pilet, and P. Fua. Point matching as a
classification problem for fast and robust object pose
estimation. In CVPR, pages II: 244–250, 2004.

M. Liu, O. Tuzel, A. Veeraraghavan, R. Chellappa,
A. Agrawal, and H. Okuda. Pose estimation in heavy
clutter using a multi-flash camera. In ICRA, pages
2028–2035. IEEE, 2010.

D. G. Lowe. Object recognition from local scale-invariant
features. In ICCV, pages 1150–1157, 1999.

M. Popovic, D. Kraft, L Bodenhagen, E. Baseski,
N. Pugeault, D. Kragic, T. Asfour, and N. Krüger. A
strategy for grasping unknown objects based on co-
planarity and colour information. Robotics and Au-
tonomous Systems, 58(5):551–565, 2010.

J. Romero, H. Kjellström, and D. Kragic. Hands in action:
real-time 3D reconstruction of hands in interaction with
objects. In ICRA, pages 458–463. IEEE, 2010.

J. J. Sorribes, M. Prats, and A. Morales. Visual tracking
of a jaw gripper based on articulated 3D models for
grasping. In ICRA, pages 2302–2307. IEEE, 2010.

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

9022

