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Combinatorial Optimization for Hierarchical Contact-level Grasping

Kaiyu Hang, Johannes A. Stork, Florian T. Pokorny and Danica Kragic

Abstract— We address the problem of generating force-
closed point contact grasps on complex surfaces and model
it as a combinatorial optimization problem. Using a multilevel
refinement metaheuristic, we maximize the quality of a grasp
subject to a reachability constraint by recursively forming a
hierarchy of increasingly coarser optimization problems. A
grasp is initialized at the top of the hierarchy and then locally
refined until convergence at each level. Our approach efficiently
addresses the high dimensional problem of synthesizing stable
point contact grasps while resulting in stable grasps from
arbitrary initial configurations. Compared to a sampling-based
approach, our method yields grasps with higher grasp quality.
Empirical results are presented for a set of different objects.
We investigate the number of levels in the hierarchy, the
computational complexity, and the performance relative to a
random sampling baseline approach.

I. INTRODUCTION

The synthesis of feasible and stable grasps on an object
remains an important problem in robotics which involves
sensory perception and representation [1]–[3], the encoding
of task constraints [4], and high dimensional configuration
spaces [5]. The planning and execution of stable grasps
with point contacts on complex object shapes is a particular
aspect of this larger problem for which no efficient complete
solutions have been found yet. In this work, we propose
an efficient method that generates and locally optimizes
stable force-closed grasps. Our method can be seen as
complementary to state-of-the art heuristic approaches such
as [3], [6]–[12].

Most robot object interactions, static or dynamic in nature,
require that an object is firmly held. The force and contact
position based grasp description [13], [14] is currently the
most mature approach available to formalize this concept. In
this work, we consider point contact dependent aspects of
the grasp synthesis problem and mostly neglect other issues
such as physical constraints and kinematic limitations. We
furthermore utilize a simplified concept of reachability which
our system integrates with a notion of grasp quality. We
frame the search for force-closed grasps on 3D mesh objects
as a combinatorial optimization problem and employ an
iterative abstraction and refinement approach. Following the
generic multilevel refinement paradigm, our approach creates
a hierarchy of approximations to the grasp search problem on
the original object. For this purpose, we recursively simplify
the original mesh representation, resulting in a set of object
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Fig. 1. System outline: Our approach applies the multilevel refinement
paradigm to point contact grasps generation. We recursively simplify a mesh
representation (1) and find locally optimal grasps at each level (3), starting at
the topmost level (2). Solutions are transferred to the level below by finding
similar faces (4). The process is sketched for one contact point only.

models of varying resolution. We then consider the midpoint
of each triangle face as a possible contact position. At each
level of the hierarchy, an initial grasp is iteratively refined
by local search and finally extended to the level below by
finding a similar face in the higher resolution mesh. This
process is exemplified in Fig. 1. The main contributions of
this work can be summarized as follows:
• We introduce an approach operating directly on an input

mesh, without the need for further high-level features
[11], [15].

• Our approach can process complicated object geometry
as well as complex and high resolution meshes con-
sisting of thousands of faces to produce high quality
grasps.

• We do not require that the input data has the same
resolution at all parts of the object—a potential we leave
for future exploration.

• The multilevel approach iteratively simplifies the objec-
tive function resulting in fast convergence. Furthermore,
the local search at each level effectively reduces the total
number of evaluated candidate solutions to a practical
amount.

II. RELATED WORK

The synthesis of stable grasps on shapes of high complex-
ity and with exact contact positions is a challenging problem.
Research has addressed grasp synthesis in various ways
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which can be summarized into two main groups: Firstly, by
developing compact and expressive object representations to
deal with the underlying complexity of the problem space
[3], [11], [15], [16], and secondly, by devising methods for
analyzing and evaluating grasp quality [13], [17], [18] - in
each case possibly taking into account constraints related to
the task or embodiment. In this section, we discuss the two
areas in relation to our contributions.

A. Object Representations for Grasp Synthesis

Object representations for grasp synthesis are often formed
by extracting either global or local features from an object
description. Using local features such as surface geometry
properties, it is possible to evaluate grasp stability [17] and
sensitivity [19], or to compute independent contact regions
[20]. By exploring global features of the target object in
the form of skeletal or topological descriptors, one can
furthermore synthesize grasps by sampling grasp parameters
such as pre-shapes, positions and approach directions of a
robot hand. The reported results using these methods show
relatively good success rates for obtaining feasible grasps
[11], [21]. However, many of these approaches need to
execute a grasp policy [6], [7] in simulation to subsequently
conduct a force-analysis of the resulting grasp configuration.
Therefore they can be regarded as a form of heuristic to
generate point contact grasps.

Many proposed object representations extract skeletal fea-
tures from 3D data [11], [15]. The Reeb Graph [11] and Me-
dial Axis [21], were successfully used for generating initial
positions, approach directions and pre-shapes for whole hand
grasps [10], [11]. Similarly, the work of [22] detects holes on
objects as a basis for executing caging grasps. Approximating
objects’ shape using basic primitives has been recognized
as another object representation [3], [12], where approach
vectors and pre-shapes are generated by sampling on shape
primitives. By parameterizing objects using superquadrics
[6], [8], [9] and superellipsoids [23], grasp parameters are
sampled on the approximated objects.

Our approach relates to the above methods relying on local
features since it is based on grasp quality evaluation and re-
quires information about the surface and its normals. It is also
related to methods using global features since recursively
coarsening the mesh model results in an increasingly rougher
object description, maintaining only global characteristics. In
contrast to global feature methods, our approach optimizes
grasp contacts directly without the detour of describing the
grasp by grasp parameters. As a consequence, we do not
require the execution of a grasp policy [6], [7] in simulation
to get access to a candidate solution. Additionally, as we
provide exact grasping contact positions which are required
in some applications such as finger gaiting [24], [25], our
method can act as a plug-in in such applications to complete
the grasp synthesis step in a pipeline.

B. Grasp Contact Synthesis

Sampling-based grasp synthesis methods, as discussed
above, are nonconstructive in the sense that they assess

grasp stability based on contacts resulting from the execution
of a grasp policy, but they do not explicitly relate the
synthesis to the quality measure and solve the grasp synthesis
problem indirectly. In [17], it was shown that randomized
grasp generation is fast and suitable for some simple test
objects. However, this is not directly applicable for objects of
complex shapes as we shall show later in this paper. As also
have shown in [19], sampling based methods furthermore
suffer in the case of low friction coefficients, where stable
grasps become increasingly sparse.

In the work of [26], a local gradient based grasp quality
optimization was performed and grasps were also transferred
between objects by a continuous shape/grasp deformation
and optimization process. However, this approach required a
particular smooth surface parametrization. In our work, the
grasp configuration space is instead discretized according
to a hierarchically coarsened mesh representation of the
object surface. This enables an optimization of contact based
grasps by a discrete local search and following a multilevel
combinatorial optimization approach.

III. PRELIMINARIES

We start by presenting a combinatorial optimization prob-
lem formalism and continue with a discussion of grasp
stability and reachability metrics.

A. Combinatorial Optimization and Multilevel Refinement

Presented with a combinatorial optimization problem,
where an optimum over a discrete set of candidate solutions
needs to be determined, it is often infeasible to carry out an
exhaustive search to determine the global optimum. In this
case, the problem can be relaxed to finding a good solution
in reasonable time by applying a search heuristic. The
multilevel refinement paradigm is a metaheuristic that can
be applied to difficult combinatorial optimization problems
and describes a recursive abstraction and refinement pattern.
It has been used to address a variety of problems in graph
theory and numerical algebra as described in the overview
work [27]–[29].

As a metaheuristic, the multilevel refinement paradigm
describes a general search strategy: a problem instance is
recursively approximated to form a hierarchy of increasingly
approximated problem instances. Starting at the top level, a
solution is found for the current instance and then extended
to the level below. Provided with an initial candidate solution
on the top level, the procedure finally results in a solution
to the original problem defined in the lowest level.

Formally, we denote the initial problem instance by P0, its
set of candidate solutions by X0, and the objective function
for all levels by θ. We write P0, P1, . . . for the problem
hierarchy, where each instance Pl is created recursively by a
coarsening of its parent Pl−1. At level l, the initial solution
C0
l is refined to Cl, where on the top level C0

l is provided
by an initialization algorithm and for all other levels by
extending Cl+1 ∈ Xl+1 from the child problem. A detailed
description of the approach is reported in [29] and our
implementation is described in Alg. 1.



Algorithm 1 Description of the multilevel refinement
paradigm metaheuristic for combinatorial optimization.
Input: Problem instance P0

Output: Solution C0

l← 0
while coarsening do

Pl+1 = coarsen (Pl)
l← l + 1

end while
C0

l = initialize (Pl)

Cl = refine
(
C0

l , Pl

)
while l > 0 do

l← l − 1
C0

l = extend (Cl+1, Pl)

Cl = refine
(
C0

l , Pl

)
end while

While the use of sophisticated techniques for refinement
have been demonstrated [30]–[33], the refinement algorithm
is often selected from a family of local search heuristics.
There, only a small region around the current solution is
explored for improvement. This notion is formalized by the
neighborhood set N(x) ⊆ Xl of a candidate solution x ∈ Xl
which defines the locally searched space.

For application, the paradigm requires problem specific
definitions of algorithms for refinement, problem coarsening,
initialization, and solution extension. We describe the objec-
tive function, candidate solution space and the algorithms for
our grasp synthesis problem in Sec. IV.

B. Grasp Stability Metric

Many approaches to robotic grasping of rigid objects are
based on force analysis and in particular on the concept of
force-closure [13], [14]. To identify stable grasp configura-
tions, the forces exerted by the robot end effector and friction
between the robot hand and the object surface are considered.
We choose to evaluate the force-closure property of a grasp
with the L1 grasp quality measure Qµ reported in [17] and
which is based on the Coulomb friction model.

To this end, a grasp g is formalized by m point contacts
p1, p2, . . . , pm ∈ R3 and their inward-pointing unit surface
normals n1, n2, . . . , nm ∈ R3. The grasp quality Qµ is then
a function of all contact positions and normals, the center
of mass of the object z ∈ R3, and the friction coefficient
µ ∈ R+. A grasp is force-closed if Qµ is larger than zero.
In the following, the relation between a grasp g and z, ni, pi
will be implicit in cases where this does not cause confusion.

C. Reachability Measure

It is possible that a given set of contacts on an object
resemble a force-closed grasp, but that the robot hand is
incapable of realizing this grasp. The reasons for this are
several: kinematic infeasibility of the hand pose, object or
self-collisions, or the required number of contact points
cannot be achieved due to lack of independent joints. These
issues are in part addressed in recent work [34].

In the simplest case, the individual point contacts are
just too distant from each other even when kinematics and

collisions are neglected. We adopt this simplified distance-
based concept of reachability to approximate the robot hand’s
workspace. Formally, we define reachability R (g) of a point
contact grasp g, given by its contact positions as described
in Sec. III-B, as

R (g) =
1

m

m∑
i=1

‖pi − ψ‖ (1)

where ψ is the centroid of all contact points p1, p2, . . . , pm of
the grasp g and ‖·‖ is the Euclidean distance. We consider a
grasp as reachable if R (g) ≤ r for a predefined reachability
upper bound r ∈ R+. Intuitively, the pairwise distances are
limited by 2r.

IV. METHODOLOGY

In this section, we describe our approach to search for
grasp contacts. In Sec. IV-A, we formalize the grasp search
problem on a surface mesh using the terminology of combi-
natorial optimization introduced in Sec. III. Subsequently we
explain our realization of the multilevel paradigm algorithm.

A. Problem Formalization

To search for a stable force-closed point contact grasp on
a rigid object, we represent the object’s surface by a mesh
of oriented triangle faces F = {f1, f2, . . . , fk}. A triangle
mesh is the simplest piece-wise linear approximation of the
original surface, assuming that the vertices originated from
the original surface. Instead of considering the space of all
possible contact positions on all the faces, we only consider
face midpoints ∆ = {δ1, δ2, . . . , δk} as possible contacts.
The normal for contact point δi is the face normal ni. To
simplify the notation, we will refer to faces fi and midpoints
δi indiscriminately and let each of the symbols fi, δi, or ni
refer to any subset of {fi, δi, ni} where the context is clear.

The previously introduced discretization induces a com-
binatorial search space F =

∏m
k=1 F where each of the m

contacts has to be assigned one face or midpoint. To com-
plete the combinatorial optimization problem, we define an
objective function θ : F → R to evaluate candidate solution
by employing the grasp quality measure Qµ described in
Sec.III-B and the reachability measure R defined in Eq. (1):

θ (g) =

Qµ (g)−
(

eα(R(g)−r) − 1
)
, R (g) > r

Qµ (g) , else
(2)

where α ∈ R+ is a penalty factor. If the contacts are reach-
able, θ only describes grasp stability. Unreachable grasps
with (R(g) − r) > 0 are increasingly dominated by the
negative right hand term. The further apart the contacts are
positioned in space, the lower is the value of θ(g).

Some properties of the search space F and the objective
function θ can be inspected in Fig. 2 for three contact grasps.
Faces are colored by the objective function while iterating
one contact over all faces and keeping the other contacts
fixed. Even if only a single contact would be optimized at
a time, the search space exhibits multiple local maxima at
different places (red) rendering global joint optimization a



Fig. 2. Sketch of the objective function values with large reachability
bound if two contacts are kept fixed. Red color marks high quality. For
each contact there are multiple local maxima rendering the global joint
optimization problem difficult. However, the objective function changes
gradually, allowing for improvement by local search.

difficult problem. However, the objective function changes
gradually from face to face which allows for exploitation
with local search and multilevel refinement.

Applying the terms introduced in Sec. III-A, the search
space of the initial problem instance P0 is identified with
the Cartesian product of the original mesh faces X0 = F .
Writing Fl and Fl, we will use subscript to refer to different
levels. A problem instance Pl is coarsened to Pl+1 by
reducing the number of faces in Fl using a mesh simplifying
procedure described in Sec. IV-B. We stop coarsening the
mesh before it degenerates and then apply a random ini-
tialization of contacts. For the refinement step, we apply a
greedy hill climbing procedure explained in Sec. IV-C using
the Cartesian product of the ηth-order neighbor faces of a
contact to form the search neighborhood. A level l candidate
solution Cl =

(
fik
)m
k=1
∈ Fl is extended to level l − 1 by

matching fli ∈ Cl to a similar face in Fl−1, as explained in
Sec. IV-D.

B. Mesh Simplification

For the coarsening procedure, we automatically produce
simpler and approximated versions of mesh models Fl using
the surface simplification algorithm of [35]. The algorithm
was suggested for multi-resolution modeling and iteratively
produces high quality approximations of polygonal models at
a decreasing level of detail. Each simplification step joins one
pair of vertices which is selected according to a per-vertex
surface error metric. In the contraction, all incident edges
are connected to the remaining vertex, degenerated edges
and faces are removed, and the vertex is placed to minimize
a quadric surface error metric. This procedure ensures high
fidelity to the original model in every simplification step.

Since the algorithm removes only one vertex per iteration,
a sequence of models with only gradually decreasing level of
detail is produced in place. We apply a percentage reduction
of the number of faces as termination condition for each
recursive coarsening step. Thereby, we decide the number of
levels u ∈ N and final number of faces o ∈ N beforehand:

|F0| γu = o and |Fl| γ = |Fl+1| (3)

In this way, we obtain a sequence of models having the same
ratio of 1− γ less vertices with respect to the previous one.
An example of such a sequence of mesh models is depicted
in Fig. 1.

C. Hill Climbing

For the refinement procedure, we turn to local search and
employ hill climbing until convergence. Given an initial
candidate solution C0

l =
(
fik
)m
k=1

∈ Fl, we define the
neighborhood of C0

l as the Cartesian product of the ηth-order
neighboring faces for each fi ∈ C0

l . Formally, we write

N(C0
l ) =

m∏
k=1

Nη(fk1), (4)

where Nη(fi) denotes the set of triangles in the mesh Fl
which can be reached from fi by η or less steps, and
including fi itself. An example of neighbor faces at different
step distances are shown in the left of figure Fig. 3.

In each hill climbing iteration, we select the best grasp
from N(Cl) until no improvement is achieved. This proce-
dure is formalized in Alg. 2. We maintain a look-up table
for already calculated grasps to reduce time complexity. In
experiments, we have found that it is particularly beneficial
to increase η from 1 to 2 when the current grasp is unstable.
This technique is later referred to as an adaptive approach.

Algorithm 2 Description of the refinement procedure using
hill climbing until convergence.
Input: Initial grasp C0

l =
(
fik

)m
k=1
∈ Fl

Output: Solution Cl

i← 0
repeat

N = N(Ci
l )

i← i+ 1
Ci

l = argmax
c∈N

(
θ (c)

)
until Ci

l = Ci−1
l

Cl ← Ci
l

Fig. 3. Left: The neighboring faces in 0, 1, and 2 steps distance in red,
green, and blue color respectively. The Cartesian product of each contact’s
neighbor faces up to η steps distance forms the neighborhood of a grasp.
Right: Matching a face of a low resolution mesh (red) to a high resolution
mesh (blue) using 6D coordinates comparison.

D. Face Matching

The extension procedure in our approach translates a grasp
Cl =

(
fik
)m
k=1

from the mesh Fl to the mesh Fl−1. Since the
objective function heavily depends on the contact positions
and contact normals, we match every face fi ∈ Cl with a face
in Fl−1 that has similar midpoint and normal. For this, we
introduce a distance function between pairs of faces. First,
we translate and scale each mesh Fl such that the centroid
is in the origin and each vertex is at most at distance 1 from
the origin. This leads to normalized midpoint positions δ̄i.
A face fi ∈ Fl is matched with a face f ∈ Fl−1 according
to the following

f = argmin
fk∈Fl−1

(∥∥(δ̄i, ni)− (δ̄k, nk)
∥∥) , (5)



where (δ̄i, ni) ∈ R6. Equation (5) can be efficiently imple-
mented using a k-d tree data structure [36]. Fig. 3 shows
how a face on a coarser mesh (red) is matched to a face
(blue) on a finer mesh on the right side.

V. EXPERIMENTS

In this section, we present empirical evidence for the
viability of our approach. For all experiments, the Coulomb
friction coefficient is set to µ = 1 and the penalty factor in
the objective function is α = 4. The models bunny, plane,
dinopet, and homer are found in [37], [38] and have 52.000,
17.354, 8996, and 10.202 faces respectively. Each model was
centered and scaled so that the maximum distance between
any vertex and the origin is 1. Unless stated otherwise, the
top level always has 100 faces, we use 4 coarsening levels
resulting in 5 levels in total, and the number of contacts is
m = 3. Figures 5, 7, 9, and 11 show standard box-plots
indicating median, 25th and 75th percentiles and individual
outliers.

A. Varying the Number of Levels

First, we investigate how the number of recursive coars-
ening steps influences the quality and reachability of the
resulting grasp. For each model, we consider 0 to 4, and
6, 8, and 10 coarsening steps with 100 faces at the top level.
We generate 100 random initial grasps on the coarsest mesh
and execute our approach for each of these 8 settings. The
reachability bound is always set to r = 0.5 and only the
1st-order neighborhood is considered.

The ratio of reachable grasps is described in Fig. 4. A
maximum is generally reached for level 6 or 8, but in each
setup at least 73% of the grasps were reachable. For the
models bunny, plane, and homer, the percentage of reachable
grasps was over 90% for more than 2 coarsening levels.
Since the initialization was done randomly and our approach
performs greedy optimization, it was not always possible to
move the contacts close enough to satisfy the reachability
constraint, particularly for the highly concave object dinopet.

Fig. 4. The percentage of reachable grasps for different numbers of levels.
Each time, 100 executions with random initialization were considered.

The distribution of grasp quality Qµ for reachable grasps
can be inspected in Fig. 5. We observe a general trend
showing that grasp quality is increased and variance reduced
as the number of levels is increased. However, one recursive
coarsening step already improves results considerably over
mere hill climbing on the original mesh at level 0.

Bunny Plane

Dinopet Homer

Fig. 5. Grasp quality distribution for the reachable grasps from 100
runs with random initialization. Generally, grasp quality improves with the
number of levels used.

B. Empirical Complexity

Since the experiment in the previous section shows that
more levels in general lead to better expected grasp quality,
we have to investigate how the average and worst case
complexity relate to the number of levels. For this, we
consider how many hill climbing steps the approach requires
at each level and how many grasps need to be compared in
each of these steps. The presented data is taken from the
above experiment and for the bunny object.

The average and maximal number of steps per level in
relation to the number of coarsening steps is depicted in
Fig. 6. When we initialized the algorithm with 4 or more
levels, the maximal number of steps per level were similar
and initialization with 0–3 levels required substantially more
steps. For 2 or more initialization levels, the average number
of steps per level stabilized between 2.5 and 3.1, and 3.4
steps were required in the final level. However, the number
of grasp quality evaluations per hill climbing step depends
on the cardinality of the set of neighbor faces. A statistic
for the 1st-order neighbors on the bunny model for different
coarsening levels is shown in Fig. 7. In our experiment, the
average number of 1st-order neighbors did not change for
different levels and so the complexity of each hill climbing
step is not influenced by the number of levels.

Max. #Steps Avg. #Steps
Level 0 1 2 3 4 6 8 10 0 1 2 3 4 6 8 10

In
iti

al
Le

ve
l

10 5 5 4 5 7 5 5 6 2.6 2.6 2.5 2.5 2.7 2.1 2.4 3.4
8 6 6 5 6 6 4 6 3.0 2.8 2.2 3.1 2.9 2.6 3.4
6 4 4 5 6 5 6 2.6 2.7 2.6 2.5 2.5 3.4
4 6 5 7 5 6 3.0 3.0 3.0 2.6 3.4
3 7 10 8 6 3.0 3.4 2.8 3.4
2 6 7 6 3.3 3.1 3.4
1 16 6 4.7 3.4
0 38 10.6

Fig. 6. Maximum and average number of hill climbing steps sorted by
initial level and for the experiment in Sec. V-A for the bunny model.



Fig. 7. Statistics of the number of 1st order neighbor faces for the bunny
model for different coarsening levels. The average number of faces is stable
and so the complexity of one hill climbing step does not depend on the
number of levels.

C. Complexity of Objects

Intuitively, grasp synthesis is easier on simpler objects.
We investigate this claim in Fig. 8, where grasp quality
distributions for objects of varying complexity are displayed.
The setup of this experiment is the same as in Sec. V-A
except that the reachability bound was set to r = 1.0 and
only 4 coarsening levels were used. In our experiment, the
grasp quality variance increases with the complexity of the
object, since the number of local optima increases with the
complexity of the object.

Fig. 8. Grasp quality distribution for objects of varying complexity.

D. Neighborhood Orders

In the previous experiment, we saw that the level number
does not dramatically influence the average amount of 1st-
order neighboring faces which governs the complexity of
a hill climbing step as described in Eq. (4). According to
Sec. IV-C it is possible to consider a larger neighborhood for
local search or even to adapt the order of the neighborhood
dynamically. We now investigate the influence of the size
of the neighborhood on the final grasp quality and on
the number of grasp quality evaluations. We generate 100
random initial grasps for the plane model and compare the
results for different sizes of neighborhoods. The reachability
bound is set to a small value r = 0.133 and we compare
1st-order 2nd-order, 3rd-order, and 4th-order neighborhoods,
as well the adaptive approach mentioned in Sec. IV-C that
increases η from 1 to 2 if the current grasp is not force-
closed.

The results presented in Fig. 9 show that the low reacha-
bility bound leads to many unstable grasps for the 1st-order
approach. Variance in grasp quality reduces if more than
the 1st-order neighborhood is considered. This means that
only considering 1st-order neighborhoods makes the method
more sensitive to local maxima. Using larger neighborhoods
comes at a cost in form of an increased number of grasp
quality evaluations. However, the number of grasp quality

Fig. 9. Comparison of the final grasp quality and number of grasp quality
evaluations when the hill climbing procedure considered only 1st-order,
adaptively 1st or 2nd-order (Adpt.), 2nd-order, 3rd-order, or 4th-order
neighborhoods.

evaluations is not dramatically increased, since – when a
larger neighborhood is considered – the algorithm tends to
converge much quicker and requires less optimization steps
at each level.

E. Comparison to Random Sampling

From the previous experiment, we know that our approach
requires less than 40.000 grasp quality evaluations on aver-
age on the objects considered. We now compare the results
of our adaptive method using random initialization to a
batch sampling approach where the best of 50.000 reachable
randomly sampled grasps from F0 is selected in each batch.
We set a small reachability bound r = 0.133 and executed
100 runs each for both methods on the model plane.

Fig. 10. Histogram of maximal grasp quality from randomly sampled
reachable face midpoints on the original mesh (green) and grasp quality
when our method with random initialization, adaptive neighborhood size
and 4 coarsening steps (blue) is used on the plane model.

Grasp quality results are presented in Fig. 10 where it can
be clearly seen that the best grasps of each batch were on
average worse than the resulting grasps from our approach.
The low overall value of grasp quality is to be attributed
to the small reachability bound which reduces the quality
measure. While our approach stayed below one minute total
execution time, the sampling-based approach consumed 85s
in our implementation.

F. Heuristic Initialization

In all previous experiments, we used a random initializa-
tion for our approach. However, our approach is designed to
improve grasp quality and therefore can be complementary
to any heuristic that generates initial grasp contacts. In this
experiment, we compare the performance of our approach
to a simplified automatic fingertip closing grasp policy and
initialize both using the same heuristic.



Fig. 12. A couple of examples from the evaluation runs: Provided random initialization, our approach is capable to synthesize point contact grasps that
comply to the different reachability constraints. The dotted lines indicate the path each contact took in 3D space during the iterated refinement and hill
climbing steps. In many cases, the contact positions had to be heavily adjusted to fulfill reachability. The reachability bounds used in the example were
(from left to right): r = 0.033, 0.066, 0.2 and 0.33.

Fig. 11. Comparison between automatic closing of fingertips and our
approach when both are initialized with a heuristic. The used mesh models
are bunny (A), plane (B), dinopet (D), and homer (D). Fingertip closing is
indicated by (1) and our approach is marked with (2).

The initialization heuristic used, considers the same set of
vectors

(
δ̄i, ni

)
∈ R6 as described in Sec. IV-D. We cluster

the data {
(
δ̄i, ni

)
| fi ∈ F4} into 6 sets S1, S3, . . . , S6

using k-means and consider each combinations of clusters
{Si, Sj , Sl}. From each combination, we retain the best qual-
ity grasp, resulting in 20 different grasps. These grasps serve
directly as initialization for our approach. Our automatic
closing considers the contact position and normals as grasp
parameters. For each contact, a virtual fingertip is placed on
an approach line outside of the object. Now using the original
mesh model F0, all fingertips are moved along the approach
line until collision, where contact positions and normals are
recorded. The reachability bound r = 0.33 was used for this
experiment.

The results depicted in Fig. 11 suggest that automatic fin-
gertip closing generally produces grasps with lower quality.
On the right-hand side of Fig. 11, we show the difference
in grasp quality for the same initial grasp. In the majority
of the cases, the difference was positive, indicating that our

approach performed better for almost every initialization.

G. Reachability Bound and Number of Contacts

Finally, we present qualitative results that support our
choice of reachability measure explained in Sec. III-C. For a
reachability bound of 0.033, 0.066, 0.2, and 0.33, we execute
our adaptive approach for several mesh models. The results
are depicted in Fig. 12 where it can be seen that despite
random initialization, our approach is capable to synthesize
point contact grasps that comply to different reachability
constraints. The dotted lines indicate the path each contact
took in 3D space during the iterated refinement and hill
climbing steps. In many cases the contact positions had to be
heavily adjusted to fulfill reachability. By setting reachability
bound to r = 0.33, we also show that our approach is able
to synthesize point contact grasps with varying numbers of
contacts. As is to be expected, Fig. 13 shows that grasp
quality is improved the more contacts are available.

Fig. 13. Grasp quality distribution for synthesized grasps on the plane
model with 3 and 4 contacts.



VI. CONCLUSIONS

We proposed a method for synthesizing grasps based on
point contact search using search space discretization. Grasp
synthesis is formulated as a combinatorial optimization prob-
lem. Based on a multilevel refinement, we have considered a
hierarchy of recursively coarsened mesh models and locally
improved grasps at each level. For this, we have optimized
grasp quality subject to a reachability measure at each level
and matched grasps to the next lower level, to finally achieve
a grasp on the original object model.

Our approach is applicable to complex input meshes,
having thousands of faces and highly concave shape. Thus,
it provides the first tractable method for search of grasp
contacts on such input data. Our empirical evaluation shows
that the method produces feasible, high quality grasps from
random and heuristic initializations. It outperformed random
sampling relying on a large number of generated grasps and
automatic hand closing technique. Analyzing the influence
of object model properties and method parameters such as
the number of coarsening levels and the size of the local
search space, we have shown that our approach is viable. In
the future, we plan to additionally consider hand kinematics
in the optimization function and we intend to study the
influence of input data uncertainty on our approach.
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