
1

A Framework For Optimal Grasp Contact Planning

Kaiyu Hang;˚, Johannes A. Stork;˚, Nancy S. Pollard:, Danica Kragic˚

˚Robotics, Perception, and Learning Lab, KTH Royal Institute of Technology, Stockholm, Sweden.
:Robotics Institute, Carnegie Mellon University, Pittsburgh, USA

Abstract—We consider the problem of finding grasp contacts
that are optimal under a given grasp quality function on arbitrary
objects. Our approach formulates a framework for contact-level
grasping as a path finding problem in the space of super-contact
grasps. The initial super-contact grasp contains all grasps and in
each step along a path grasps are removed. For this, we intro-
duce and formally characterize search space structure and cost
functions under which minimal cost paths correspond to optimal
grasps. Our formulation avoids expensive exhaustive search and
reduces computational cost by several orders of magnitude. We
present admissible heuristic functions and exploit approximate
heuristic search to further reduce computational cost while
maintaining bounded sub-optimality for resulting grasps.

We exemplify our formulation with point-contact grasping
for which we define domain specific heuristics and demonstrate
optimality and bounded sub-optimality by comparing against
exhaustive and uniform cost search on example objects. Fur-
thermore, we explain how to restrict the search graph to satisfy
grasp constraints for modeling hand kinematics. We also analyze
our algorithm empirically in terms of created and visited search
states and resultant effective branching factor.

Index Terms—Grasping, Dexterous Manipulation, Multifin-
gered Hands, Contact Modeling.

I. INTRODUCTION

C
ONTACTS are the most fundamental building blocks of

grasps and determine stability and utility of a grasp.

Finding good grasp contacts is a key challenge in robotic

grasping [1] and fixture layout design for industrial automation

[2]. The main difficulty consists in deciding where on the

object’s surface contacts should be placed and which combi-

nations of contacts result in a reliable grasp. Grasp reliability

is commonly characterized by wrench space analysis [1, 3–5]

and grasp contacts are found by some form of optimization

[1, 6–8], heuristic [3, 9], or data-driven approach [10].

While analytical methods for optimal quality grasps exist for

primitive objects [11], optimal grasping on arbitrary objects

still requires enumerating all contact combinations exhaus-

tively [12]. However, even for less than half of the contacts

shown in Fig. 1, analyzing all three-finger grasps requires

thousands of minutes on current non-specialized hardware.

This effort increases exponentially with the number of fingers.

In this work, we offer an general formulation of the optimal

grasping problem that allows efficiently identifying optimal

and bounded-suboptimal grasps while avoiding computation

on each possible grasp. In practice our algorithm can reduce

computational cost by several orders of magnitude. Intuitively,

; These authors contributed equally to this work.
This work was partially supported by EU Flexbot, Knut and Alice Wallen-

berg IPSYS and NSF award IIS-1637853.

Complete

Super-contact
times m

Shrinking a

super-contact

s0 Initial State

st

Terminal State

(Grasp)

Figure 1. Our approach is based on reducing optimal grasping to finding a
minimal cost path. Starting with complete super-contacts that cover the whole
object, we step-by-step remove contacts until we reach m-contact grasps. Each
state is a combination of m super-contacts and each arc shrinks the included
super-contacts. The minimal cost path ends at the optimal grasp.

we start with the set of all possible grasps and step-by-step

remove grasps until reaching the optimal grasp. For this, we

represent a set of grasps by a combination of super-contacts

which contain several contacts at once. Provided that the grasp

quality function can be applied to super-contact grasps, we

show that this approach corresponds to a path finding problem.

As illustrated in Fig. 1, each state corresponds to a super-

contact grasp and each arc removes contacts from a super-

contact until terminal states are left with only one contact for

each finger. We set the cost of an arc to represent the loss

in grasp quality between connected states which means that

minimal cost paths terminate in grasps with maximal quality.

We contribute by (1) formally characterizing search graph

structure and grasp quality functions for reducing the optimal

grasping problem to a path finding problem. Further, we (2) in-

troduce a family of admissible heuristic functions for efficient

and approximative heuristic search. For exemplary evaluation

with point-contact grasping, we (3) prove that the popular

Ferrari-Canny quality Q1 [5] is compatible to our formulation,

and (4) define a family of domain specific successor functions

and heuristics. Finally, (5) we show incorporation of grasping-

related constraints, e.g., hand kinematics, into the construction

of the search graph. To the best of our knowledge, this is

the first work that provides an efficient complete and optimal

algorithm for finding optimal grasp contacts on arbitrary

objects that allows choosing an ε sub-optimality bound for

grasp quality.

2

II. RELATED WORK

The problem of finding grasp contacts on an object’s surface

is addressed by a host of diverse approaches as described

in overviews by Sahbani et al. [8], Bohg et al. [10], Roa

and Suárez [4], and most relevant to our work Bicchi and

Kumar [1]. While most algorithms listed in the works above

can result in high-quality grasps under favorable conditions,

none guarantees optimality or bounded sub-optimality with

reasonable computational effort. On the contrary, the most

popular grasping approaches are based on ex post analysis

of sampled contacts [3, 13, 14] and operate with simplified

object models [11, 15–18]. Our only assumptions are a finite

contact space and a quality function that allows sets of contacts

per finger. The common quality function that models wrench

resistance for frictional hard-finger contacts [3, 5] is compliant

with our formulation and we use it in our experiments.

We argue that identifying optimal grasp contacts is useful

not only for grasping, but also for benchmarking, analyzing

objects, designing fixtures, and for providing training data

for learning. Approaches that aim for optimal grasps often

improve grasps iteratively and exploiting contact neighbor-

hoods but fail to provide optimality guarantees [6, 17–19].

In contrast, we proceed in a top-down fashion refining super-

contacts which initially representing all grasps—similar to the

concept of Object Wrench Space [20].

In this, our search-based approach is conceptually related

to the branch-and-bound algorithm for optimal grasping of

Watanabe and Yoshikawa [12]. Both algorithms process a

discrete set of contacts and repeatedly eliminate low-quality

solutions. However, while Watanabe and Yoshikawa employ

problem relaxation and exploit bounds on subproblem solu-

tions to exclude suboptimal grasps from further considera-

tion, we define admissible heuristics. Instead of comparing

subproblem solutions for each candidate grasp, we construct

grasps by reducing each finger’s contact options step-by-step.

In experiments, we aim for maximally resilient force-closure

grasps while Watanabe and Yoshikawa want to satisfy an

external force set. Both algorithms are complete and identify

optimal grasps, but our algorithm allows trading efficiency for

bounded sub-optimality and we show satisfaction of additional

grasp constraints in form of hand kinematics.

III. OPTIMAL GRASPING AS PATH FINDING

We formulate contact-based grasping as a path finding

problem that can be solved using well-known heuristic search

algorithms. For this, we formally define the optimal grasping

problem over a set of contacts in Sec. III-A and present funda-

mentals and algorithms for optimal and bounded sub-optimal

heuristic search in Sec. III-B. In Sec. III-C we introduce the

concept of super-contact grasps which we use to reduce the

optimal grasping problem to a family of path finding problems.

By characterizing grasp quality functions and search graphs,

we prove that minimal cost paths correspond to optimal grasps.

The family of consistent or admissible heuristic functions that

we introduce in Sec. III-D provides the basis for bounded sub-

optimality results.

A. Optimal Grasping Problem and Grasp Quality

We consider grasping problems that are based on a finite set

of suitable contacts on the object’s surface C “ tc1, c2, . . . cku
and a grasp quality function q : 2C Ñ R, where 2C is the

power set of C. For the set C we can imagine point contacts

consisting of positions and surface normals for a hard finger

model with Coulomb friction [6] or surface contacts defined by

overlapping surface patches [21]. A m-contact grasp g consists

of a tuple of m contacts from C, denoted as

g “ pc1, c2, . . . cmq, (1)

where ci P C.

A grasp quality function determines how stable or reliable a

grasp is and assigns higher quality values to better grasps. For

our approach, we are only interested in grasp quality functions

that do not increase when contacts are removed.

Definition III.1: A grasp quality function q : 2C Ñ R is

monotone if grasp quality does not increase when the set of

contacts is reduced,

@g1 Ď g : qpg1q ď qpgq, (2)

where g,g1 P 2C .

In the following, we consider all grasps over C of size

m as possible solutions and compare them solely based on

their q. In this context, we are interested in the best possible

grasp which leads to the class of grasping problems that is

formalized below.

Definition III.2: An optimal grasping problem (OGP) is a

tuple 〈C, q,m〉 where C and q as introduced above and

m ą 1 is the number of sought contacts. A solution is a

grasp g˚ P Cm with maximum quality qpg˚q of all m-contact

grasps over C.

An OGP is a difficult combinatorial optimization problem

with a large and unstructured search space of |C|m states. For

this type of problem stochastic optimization [6] and branch-

and-bound [12] methods have been designed. The first type

cannot guarantee quality bounds while the second has to solve

relaxed problems for each possible grasp. In the following sec-

tion, we introduce our novel top-down method for addressing

OGPs which instead constructs optimal solutions by iteratively

constraining contact options for each finger.

B. Heuristic Search with Bounded Sub-Optimality

When formulating a path finding problem (PFP), we provide

a locally finite directed graph G “ pS,Eq with a set of nodes

or search states S “ ts1, s2, . . . snu and a set of edges or arcs

E “ tpsi, sjq | si, sj P S, sj P Γpsiqu. Arcs are defined by

a successor mapping into the power set of states, Γ: S Ñ
2S . While G specifies the problem domain, a PFP instance

additionally consists of an initial state s0 P S, a set of goal

or terminal states ST Ď S, and a cost or distance function

d : E Ñ R
`. A solution to a PFP consists in a path from the

initial state to a terminal state, written as π “ ps1, s2, . . . , snq,

where psi, si`1q P E for all steps. The cost of a (partial)

3

solution is computed along the path and referred to by the last

state, gpsnq “
řn´1

i“1
dpsi, si`1q.

Definition III.3: A path finding problem (PFP) is a tuple

〈G, d, s0, ST 〉 with elements as introduced above. An optimal

solution is a path π˚ “ ps0, . . . , stq where st P ST with

minimal integral cost.

To construct a solution, a search algorithm begins with the

initial state s0 and applies the successor mapping to explore the

graph until a terminal state s P ST is encountered. Heuristic

search algorithms attempt to improve average case efficiency

by estimating the remaining cost to a terminal state by a

heuristic function h : S Ñ R
`. The A˚

SEARCH algorithm

employs a combined cost function,

fpsq “ gpsq ` hpsq, (3)

and terminates with the optimal solution if the heuristic

function is a lower bound of the true minimal cost [22].

A˚
SEARCH is also optimally efficient compared to other

algorithms provided with the same heuristic function [23].

For optimality A˚
SEARCH must consider all equally op-

timal partial solutions. However, using bounded relaxation

we can increase efficiency at the expense of optimality if

we instead accept solutions with bounded sub-optimality. We

can turn A˚
SEARCH into such an approximate algorithm by

inflating the heuristic estimate (i.e. WA˚)[24–26],

fpsq “ gpsq ` p1 ` εqhpsq, (4)

and guarantee that the found solution does not exceed the

optimal cost by a factor larger than p1 ` εq for ε ą 0. This

relaxation quickly directs the search into a more promising

direction [26].

C. Path Finding Problems for Optimal Grasping

We reduce an optimal grasping problem 〈C, q,m〉 (see Def.

III.2) to a path finding problem 〈G, d, s0, ST 〉 (see Def. III.3)

by defining a search graph G with cost function d and show

that we can interpret the terminal state of a minimal cost path

π˚ as the sought optimal grasp g˚. For this, we introduce the

concepts of super-contacts and super-contact grasps.

Definition III.4: If C is a set of contacts, then c Ď C with

|c| ą 0 is a super-contact and C “ 2Cz∅ is the super-contact

set of C. A m-contact super-contact grasp

s “ pc1, c2, . . . , cmq (5)

consists of one super-contact ci P C for each of the m ą 1

contacts.

We define the state space S as all super-contact grasps based

on the contact set C. The initial state s0 has the maximal

super-contact at each position s0 “ Cm, while each of the

terminal states s P ST consist of minimal super-contacts ST “
tpc1, c2, . . . , cmq : ci P C, |ci| “ 1u. Consequently, a solution

path π “ ps0, . . . , stq leads from m maximal super-contacts

to a state st P ST that is equivalent to a grasp of m single

contacts g “ pc1, c2, . . . , cmq as introduced in Sec. III-A. In

this context, we use the notation s and s interchangeably.

s1

. . .

s2

. . .
s3

. . .
s4

. . .
s5

. . .

st P ST

tc1, . . . , c10u

tc1, . . . , c10u

tc1, . . . , c6u

tc1, . . . , c5u

tc6, . . . , c10u

tc1, . . . , c5u

tc6, . . . , c10u

tc6, . . . , c10u

tc1, . . . , c6u

tc6, . . . , c10u

tc6u

tc1u

Successors of s1 Target states

ps1
, s5

q P E

Figure 2. A reducing and preserving successor function Γ defines a search
graph based on super-contacts si. The grasp set Gps1q “ tc1, . . . , c10u2

is represented by all states si P Γps1q together where the grasp sets of
successor states of s1 are strictly smaller than Gps1q. Since the grasp pc6, c1q
is represented by two successors, G is not necessarily a tree. However, G can
be constructed as a tree if the partitions do not overlap. For this figure m “ 2.

Each super-contact grasp s “ pc1, c2, . . . , cmq represents

a set of grasps Gpsq where each contained grasp g “
pc1, c2, . . . , cmq P Gpsq draws one contact ci from each

super-contact ci. When defining our successor function Γ, we

preserve the grasp set Gpsq represented by a state while at

the same time reducing at least one super-contact ci along

each arc in E. This means that the collection of all successors

Γpsq represents the same grasp set as their single common

predecessor s but each single successors s1 represents strictly

less grasps.

Definition III.5: The successor function Γ reduces grasp sets

if for all states s P S and s1 P Γpsq,

Gps1q Ĺ Gpsq, (6)

and preserves the grasp sets Gpsq if for all states s P S and

s1 P Γpsq

@g P Gpsq Ds1 P Γpsq : g P Gps1q, (7)

where g is a grasp as introduced in Sec. III-A.

As Fig. 2 shows, a reducing and preserving Γ does also not

necessarily define G as a tree since two different parent states

with overlapping super-contacts allow for identical successor

states. Nevertheless, a reducing and preserving successor func-

tion Γ induces pairwise relationships for super-contacts ci and

c1
i of directly connected states ps, s1q P E,

@i : c1
i Ď ci and Di : c1

i Ĺ ci, (8)

where i P t1, 2, . . . ,mu. This allows us to define the cost

function d based on the grasp qualities qpsq and qps1q of the

connected states ps, s1q P E. We lift the grasp quality function

q to super-contacts,

qpsq “ qpc1 Y c2 Y ¨ ¨ ¨ Y cmq (9)

where s “ pc1, c2, . . . , cmq and we define the arc cost as

dps, s1q “ qpsq ´ qps1q. (10)

The expression in Eq. (10) is the loss in quality associated with

reducing super-contacts along the arc. Consequently, the best

successor state for s is the state with maximal grasp quality

from Γpsq if q is monotone as defined in Def. III.1.

4

Finally, given a minimal cost solution to the PFP π˚ “
ps0, . . . , stq with st P ST , we interpret the last state’s grasp

as the final result g˚. In the following, we show that this step

yields an optimal solution to the original OGP.

Lemma III.1: In the PFP 〈G, d, s0, ST 〉 as introduced in this

section, all grasps from the contact space g P Cm are possible

as final results.

Proof: All grasps from the contact space are contained in

the grasp set of the initial node Gps0q as well as in the set of

terminal states ST . Since the successor function is preserving,

each grasp g P Gps0q is represented by some state in each

depth-level of the search graph. Since the successor function

is reducing all nodes in ST are finally reached.

This result shows that a search algorithm as described in

Sec. III-B (e.g. A˚
SEARCH) can produce a solution path π˚

with minimal cost that could terminate at any m-contact grasp

over the contact set g P Cm. It remains to show that the

solution path π˚ provides the correct optimal grasp g˚.

Lemma III.2: Given a minimal cost solution π˚ “
ps0, . . . , stq, the grasp st is optimal.

Proof: If π˚ is the minimal cost path to a state in ST , then

gpstq is minimal. Therefore qps0q ´ qpstq is minimal because

all intermediate terms cancel. Since qps0q is fixed and equal

for all paths, qpstq must be maximal.

Since the solution space of our PFP is complete and any

minimal cost path represents an optimal grasp, we can state

our main result.

Theorem III.1: We can reduce the optimal grasping problem

〈C, q,m〉 to a path finding problem 〈G, d, s0, ST 〉 as intro-

duced in this section.

Proof: The result follows from Lemma III.1 and III.2 and

the fact that C is finite and therefore G is finite.

D. Path Finding Heuristics for Optimal Grasping

The search graph G “ pS,Eq introduced for the OGP in

Sec. III-C has a large state space, |S| " |Cm|, that contains all

possible super-contact grasps and we expect that many super-

contact grasps have similar grasp quality as large contact sets

provide for redundancy. This makes finding the minimal cost

path π˚ computationally expensive. However, often a sub-

optimal grasp is sufficient and more desirable if it can be

obtained at significantly lower computational cost and still

exceeds a quality threshold. Approximate heuristic search as

described in Sec. III-B allows for such a tradeoff.

For estimating the remaining cost to a terminal state, we

introduce a family of admissible heuristic functions h : S Ñ R

that are based on a reducing and preserving successor function

Γh. We define the heuristic estimate hpsq as the minimal qual-

ity difference between the state s and its children s1 P Γhpsq
with reduced super-contacts,

hpsq “ min
s1PΓhpsq

qpsq ´ qps1q “ qpsq ´ max
s1PΓhpsq

qps1q. (11)

In Sec. IV-A, we define a domain specific Γh that generates a

search tree, for which A˚
SEARCH with an admissible heuristic

is optimal (i.e. expands states at most once) and result with

the shortest path [25].

Theorem III.2: If Γh is reducing and preserving, then h from

Eq. (11) is (a) admissible, and (b) if Γ “ Γh, consistent.

Proof: For (a), we show that hpsq ď h˚psq, @s P S,

qpsq ´ max
s1PΓhpsq

qps1q ď qpsq ´ qpstq

max
s1PΓhpsq

qps1q ě qpstq, (12)

where h˚psq is the actual cost to the optimal leaf st P ST

below s. For (b) with Γ “ Γh, we show that hpsq ď dps, s1q`
hps1q, @s P S and @s1 P Γhpsq,

qpsq ´ max
s1PΓpsq

qps1q ď qpsq ´ qps1q ` qps1q ´ max
s2PΓps1q

qps2q

max
s1PΓpsq

qps1q ě max
s2PΓps1q

qps2q. (13)

Eq. (12) and Eq. (13) hold since q is monotone (Def. III.1)

and both Γ and Γh are reducing.

The heuristics from Eq. (11) can be used for both A˚

SEARCH and WA˚
SEARCH which—to our knowledge—for

the first time allows increasing efficiency for solving optimal

grasping problems by relaxing optimality with a guaranteed

sub-optimality bound.

E. Computational Complexity

If we use a successor function Γ with a bounded number

of successor states |Γpsq| ď b and the heuristic function h

from Eq. (11), A˚
SEARCH and Dijkstra’s search algorithm

share the worst case time complexity Op|S| logp|S|qq [27] for

solving a PFP for an OGP. This analysis assumes that the

search graph is a tree and both G and the arc costs dps, s1q
are known in advance. In practice graph expansion and arc

costs determination have additional computational cost which

we detail in the Sec. IV where we define variants of Γ and

Γh that induce search trees.

IV. PRACTICAL EXAMPLE: POINT CONTACTS

In this section, we apply results from Sec. III-C in a concrete

example considering point contact grasping [1, 3, 5, 6, 10,

20, 28]. Here, the contact set C consists of point contacts

ci “ ppi,niq with positions on the object’s surface pi P R
3

and surface normals ni P R
3 [1]. The goal is to find a

static hard-finger grasp that can withstand maximal external

influences as characterized by the Ferrari-Canny grasp quality

function Q1 : C Ñ R [5]. With the object’s center of mass as a

reference point for wrenches and approximating friction cones

by 8 vectors, we use Q1 to map force-closure grasps to positive

values. For reducing the OGP 〈C, q,m〉 with C “ tppi,niqui
and q “ Q1, we define reducing and preserving successor

functions Γru

b and Γfc

b according to a partitioning scheme

and show that Q1 is monotone in Sec. IV-A. We generate

optimal grasps satisfying grasp constraints in Sec. IV-C and in

Sec. IV-D we identify equivalent solutions to improve search

performance.

5

A. Search Space and Heuristics for Point Contact Grasping

Defining a successor function that allows the search al-

gorithm to quickly eliminate low quality grasps from grasp

sets Gpsq improves search performance significantly. For

comparison, we define one random-based and one domain

specific successor function. Both partition each super-contacts

ci into b ą 1 disjoint subsets Ppciq “ tc1i , c
2
i , . . . , c

b
iu and

assign different partition elements c
j
i to different successors,

Γbpsq “ tpcj1i , c
j2
i , . . . , c

jm
i q P Ppciq

mu. (14)

With such a successor function, G is a tree and each state

has bm successor states with disjoint grasp sets. The successor

function Γru

b partitions super-contacts randomly with most

uniformly sized partition elements c
j
i . This results in super-

contacts with size |ci| “ |C|
bl

in tree level l. The successor

function Γfc

b is domain specific and partitions super-contacts

by clustering their contacts in a position and normal based

feature space Ψ [21, 29] using t iterations of k-MEANS [30].

Therefore, Γfc

b groups contacts that result in grasps of similar

quality but does not ensure equal super-contact size which can

result in G becoming unbalanced.

Theorem IV.1: The successor function Γb (and therefore Γru

b

and Γfc

b) is reducing and preserving.

Proof: All super-contacts with |ci| ą 1 are split up,

ensuring that corresponding super-contacts in successor states

are strictly smaller. Partitionings Ppciq are exhaustive and all

combinations are maintained in successor states.

For using the heuristic defined in Sec. III-D, we set Γh to

Γru

b or Γfc

b for a fixed branching factor b ą 1 and show that

the grasp quality function Q1 is monotone.

Theorem IV.2: The Ferrari-Canny [5] grasp quality function

Q1 is monotone.

Proof: Since the convex hull operator is nondecreasing

[31], Q1 does not increase when contacts and their wrenches

are removed.

B. Computational Complexity with Point Contacts

The computational cost for expanding states in G is domi-

nated by computing the partitioning P . For Γru

b , time complex-

ity is Op|ci|q while for Γfc

b time complexity is Opt |ci|q for

each super-contacts ci. The computational cost of determining

the step cost dps, s1q is dominated by computing the convex

hull of polyhedral wenches cones having worst case time

complexity quadratic in number of wenches [32]. If we for

analysis assume that |C| “ bl and that Γb produces a balanced

search tree with l levels and branching factor b, then level i

of G has bim states which have m super-contacts of size bl´i.

The computational complexity of completely searching level

i for the worst case scenario is therefore Opbim pmbl´iq2q
with additional costs Opbmh bim pmbl´i{bhq2q for h excluding

expansion using expansion factor bh. However, the branching

factor b is of little relevance in practice since an informative

heuristic results in an effective branching factor b˚ ! b for

A˚
SEARCH as we show empirically in Sec. V.

C. Grasp Constraints and Valid State

We model constraints on grasps g as predicates P that

determine whether a grasp is valid, P pgq. If a super-contact’s

grasp set Gpsq cannot provide any grasp that satisfies the

constraint, we can prune the search tree below without risking

incompleteness which models grasp constraints via the state

space’s structure. For this, the successor function Γ is restricted

to valid states s1 as in

ΓæP psq “ ts1 P Γpsq | Dg P Gps1q : P pgqu. (15)

Such constraints can model robot kinematics, tasks, and envi-

ronments relevant to the gasp.

D. Search Space Symmetries

In the presence of symmetry, search algorithms evaluate

many equivalent states and progress towards terminal states

is slowed down. Several of our search states are identical or

nearly identical grasps since we consider m ordered contacts

and many objects are geometrically symmetric. In the first

case, swapping contact indexes, in the second case rotating

or translating the object results in grasps with similar quality

and relative contacts arrangement. For removing symmetries,

we define an (approximate) equivalence relation „ on search

states and search the quotient space S{„ instead of S. We

define „ by mapping states into a discretized domain specific

feature space Ψ “ 9YiΨi with volumes Ψi and set

s „ s1 ðñ DΨi : κpsq P Ψi and κps1q P Ψi (16)

where κ : S Ñ Ψ is the feature space embedding [29, 33].

Firstly, the feature space contains the relative distances and

normal differences for each of the m fingers’ mean contact

and is therefore invariant under translations and rotations. Sec-

ondly, it also contains the distance between the object’s center

of mass and the grasping center to account for moment arms

of contacts. The feature space is discretized by a fixed distance

threshold and class representative during state expansion. The

effects of this symmetry removal are analyzed in Sec. V-B.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate and compare the performance

of our approach from Sec. IV based on objects with complex

asymmetric or symmetric shapes as shown in Fig. 3. For

evaluation, we synthesize grasps with m “ 3 contacts on the

object surface and maximize the Ferrari-Canny grasp quality

Q1 [5]. The grasp quality Q1 of the initial state s0 is denoted

as the quality of Object Wrench Space QOWS [20]. We set the

inflation factor ε to the indicated values and employ different

successor functions for search tree expansion and heuristic, Γ

and Γh respectively. For tree expansion we set Γ “ Γfc
2 , and

vary Γh for evaluation. Symmetries are removed as defined

in Sec. IV. In Sec. V-A, we empirically verify optimality and

compare to baseline approaches. In Sec. V-B and Sec. V-C we

analyze heuristic search in terms of state space exploration and

number of search steps. Timing results are discussed in Sec.

V-D. In Sec. V-E we generate optimal grasps for a specific

robotic hand with kinematic grasp constraints.

6

m
“

3
m

“
4

m
“

5

m
“

6

Figure 3. Optimal grasps with m “ 3 contacts found by our approach using
A˚ SEARCH shown by arrows for the objects bunny, amphora, sphere, donut,
plane, and homer and with m “ 4, 5 and 6 for bunny and plane. The contact
set C is indicated in yellow. The results obtained are identical to ES.

Figure 4. Comparison between ES, HFTS, and our approach for m “ 3.
Histograms (blue) show the Q1 quality distributions for each object. Minimum
path cost indicates the quality drop from qps0q “ QOWS to the optimal
solution gpstq. Empirical standard deviation shows large quality variance for
HFTS. A˚ SEARCH identifies the optimal solution (red) and ε “ 0.4 bounds
(green) show ranges of bounded sub-optimality results.

A. Optimality and Baseline Comparison

We compare our approach with Γh “ Γfc
2 using both A˚

SEARCH and WA˚
SEARCH with ε “ 0.4 to one exact and

one approximate baseline: First, exhaustive search (ES), which

considers each of the
`

1000

3

˘

“ 166, 167, 000 m-contact grasp

over C and returns the optimal grasp. Second, hierarchical

fingertip space optimization (HFTS) [21], which iteratively

optimizes grasp in refined representations. To characterize

the difficulty of the OGP for each of the objects, we plot

histograms of grasp qualities in Fig. 4. The diagrams show

that the percentage of force-closure grasps on each object is

low while most force-closure grasps have low quality making

it difficult to identify high quality grasps.

HFTS identifies high quality grasps from the tail of the

distributions, but the variance in grasp quality is large. In

no case the optimal grasp is returned and for all objects

besides the simple sphere and donut a substantial margin is

left to the optimal grasp. A˚
SEARCH identifies the same

optimal grasps as ES (see Fig. 3 and 4) for m “ 3 which

confirms that our algorithm is complete and optimal. For

m ą 3 contacts, exhaustive search is prohibitively expensive,

examples of optimal m “ 4, 5, 6 contacts grasps found by our

algorithm for bunny and plane are shown in Fig. 3. Fig. 4 also

shows that ε “ 0.4 limits WA˚
SEARCH to high quality force-

closure solutions for all objects but plane where the ε-bound

includes low-quality force-closure grasps as indicated.

Search Space

Optimal Solution

Terminal States

Initial StateLevels

Figure 5. Circular plot of the search tree G showing created and visited search
states according to search depth for the box with 100 contacts. A˚ SEARCH

creates 512 and visits 70 states. Colored sections indicate visited states and
stems show created but unvisited states. The dark red lines show the optimal
solution path. Only a small fraction of the search space is explored. For 4
states, we show the m “ 3 super-contacts, which indicate the reason why the
corresponding branches did not lead to the optimal solution.

B. Heuristic Search

We qualitatively analyze the efficiency of A˚
SEARCH with

Γh “ Γfc
2 by recording the search tree for box in a circular plot.

In Fig. 5 we see that only a small fraction of the search tree G

is visited which indicates that the heuristic informs the search.

The pruned tree branches represent grasps with overlapping or

ill-placed contacts while the explored branches show spread

out contact positions. Fig. 6 shows statistics of created and

visited states per level for homer and amphora and allows a

more detailed analysis. Most states are both created and visited

in the middle levels but the visiting ration is highest for lower

levels indicating that the heuristic is more precise for smaller

super-contacts. The data also show that retaining symmetries

leads to factor 17 and 9 more created and factor 7 and 3 more

visited states for homer and amphora respectively.

Search efficiency can also be measured by number of search

iterations as seen in Fig. 7 where the number of iterations is

plotted against the current state’s combined cost fpsq given in

Eq. (3). First we see in Fig. 7 (a) that heuristic search with

domain specific expansion and heuristic using Γfc
2 requires

the least amount of iterations. In this case, the effective

branching factor b˚ which characterizes a balanced tree with

identical depth and number of explored states [25] is 1.9

as compared to 8 “ bm in the search tree. Using Γru
2 for

heuristic or expansion instead requires more iterations where

expansion is more sensitive leading to b˚ of 2.4 and 4.7.

Dijkstra’s search has b˚ “ 6.1 when expanding with Γru
2 . The

improvement from b˚ “ 2.4 for Dijkstra’s expansion with Γfc
2

to b˚ “ 1.9 for heuristic search is due to the domain specific

heuristic. Different domain specific heuristics are analyzed

in Fig. 7 (b) where we see again that Dijkstra’s is worse

than heuristic search with Γh “ Γfc

b while the largest value

b “ 4 corresponding to largest size reduction has the best

result. In both Fig. 7 (a) and 7 (b), some curves show drops

in combined cost, when Γ ‰ Γh i.e. the heuristic function

is locally inconsistent. Theorem III.2 shows that h is still

admissible and solutions are optimal.

7

Figure 6. Created and visited states for A˚ SEARCH with and without sym-
metry removal. Most states are considered on the middle levels in the search
tree. Effective branching factors are shown as b˚. Note that the total number

of possible states is approximately:
řlog2 |C|

i“0 pbmqi « 1, 227, 133, 513.

Search A˚:1 A˚:2 A˚:3 Dijkstra’s:1 Dijkstra’s:2

Γ / Γh Γ
fc

2
/ Γfc

2
Γ
fc

2
/ Γru

2
Γ
ru

2
/ Γfc

2
Γ
fc

2
/ N.A. Γ

ru

2
/ N.A.

b˚
1.9 2.4 4.7 2.4 6.1

(a) Random-based vs. Domain Specific

(b) Domain Specific

Figure 7. Efficiency analysis based on number of iterations for different
random-based and domain specific expansion and heuristic functions for
A˚ search and Dijkstra’s search from 100 executions. (a) Overview and
closeup plots of iterations against combined cost. Table: Legend and effective
branching factor. (b) Different heuristic functions.

C. Approximative Heuristic Search

For WA˚
SEARCH, we analyze the tradeoff between sub-

optimality and search steps using different values of ε for

bunny and plane using Γh “ Γfc
4 . The results in Fig. 8 show

that increasing values of ε lead to earlier termination but that

quality remains high when taking Fig. 4 as reference. Since

Figure 8. Combined cost plotted against iterations WA˚ SEARCH using Γh “
Γ
fc
4 . Larger inflation factors ε lead to less computation. Dashed lines show

solution qualities.

(ε) bunny amphora sphere donut plane homer

A˚
14.59 18.87 26.2 15.46 13.81 17.79

WA˚

(0.2) 9.99 14.31 17.07 8.98 11.47 17.21

(0.4) 7.42 7.83 20.39 9.05 6.8 13.05

(0.6) 8.08 10.42 17.22 8.01 9.21 9.98

(0.8) 7.28 16.19 17.29 7.64 6.98 13.50

(1.0) 4.29 4.51 8.85 4.69 4.39 10.43

(1.2) 4.61 7.33 16.26 5.43 5.53 8.92

(1.4) 4.81 6.26 11.44 6.35 2.94 7.63

ES On average 2386.96 ˘ 6.73

Figure 9. CPU time in minutes using our method (with A˚ and WA˚

SEARCH) compared to exhaustive search (ES). Results are collected by setting
different ε as indicated and Γh “ Γ

fc
2 . Execution in Python with Ubuntu

12.04 running on an Intel Core i7-3770 @ 3.40GHzˆ8. with 32GB RAM
and QHULL version 5.0 [32].

inflation can result in an inadmissible heuristic, the current

state’s combined cost may drop during search as seen clearly

for larger ε-values in Fig. 8.

D. Computational Cost

The main computational load of our algorithm is caused by

computing grasp quality for super-contact grasps which can

contain many contacts. In Fig. 9 we compare timing results

for finding optimal and bounded sub-optimal grasps using

our algorithm against the computational cost of evaluation all

grasps with ES. Comparing the first and last rows in Fig. 9

reveals that for optimal solutions, our approach is significantly

more efficient than ES. The data also show that approximate

search tends to be faster than A˚
SEARCH for larger ε. Due to

the cost of computing Q1, the algorithm does not perform for

real-time application but it is faster than exhaustive search by

several orders of magnitude. On average, our approach spends

87.3% of time on calculating convex hulls for grasp quality.

E. Hand Kinematics as Grasp Constraint

We constrain the successor function Γ as described in Sec.

IV-C for generating optimal grasps for a specific robotic hand.

The predicate P models fingertip reachability and is approxi-

mated by lookup in a pre-sampled feature space that contains

all kinematically feasible fingertip configurations [21, 33]. Fig.

10 shows the optimal grasps for the hand as modeled by P .

8

Figure 10. Constraints on grasps: Optimal kinematically feasible grasps by
Schunk-SDH hand for 3 fingertip contacts.

VI. CONCLUSION

We addressed the problem of finding optimal grasp contacts

on arbitrary objects with a novel complete and optimal algo-

rithm by formulating a path finding problem. The advantage

of our formulation is that it—for the first time—allows for

efficient optimal and bounded sub-optimality solutions. This

is important not only for grasping, but also for benchmarking

other grasping approaches, for analyzing and characterizing

objects, designing fixtures, and generating grasp databases

for learning-based grasping. The formulation rendered optimal

grasps as minimal cost paths and the search space consisted

of super-contact grasps which represented sets of grasps. In

each step along a path, the state’s grasp set was reduced by

removing contacts. We characterized grasp quality functions

and state successor functions for reducing optimal grasping

to a path finding problem and thereby defined a general

framework for optimal grasping.

For the example of point-contact grasping, we presented

a concrete search space constructed by a domain specific

successor function and showed how a common grasp quality

function can be used in our framework. Furthermore, we

showed that a state validation mechanism can be employed

to incorporate hand kinematic feasibility constraints, which

ensures the produced optimal grasp contacts can be realized

by a given robotic hand. In experiments, our approach required

substantially less computational effort than exhaustive search

to results with optimal grasps. Our evaluation was based on

number of visited and created nodes and the development

of the search fringe. The smallest effective branching factor

was obtained with our domain specific heuristic function.

Evaluation with approximate search showed significant cost

reduction while maintaining high grasp quality.

REFERENCES

[1] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review,” in
Proc. IEEE Int. Conf. Robotics and Automation, 2000.

[2] Y.-H. Liu, M.-L. Lam, and D. Ding, “A complete and efficient algorithm
for searching 3-d form-closure grasps in the discrete domain,” IEEE

Transactions on Robotics, vol. 20, no. 5, pp. 805–816, 2004.
[3] C. Borst, M. Fischer, and G. Hirzinger, “Grasping the dice by dicing

the grasp,” in Intelligent Robots and Systems, 2003.(IROS 2003). Pro-

ceedings. 2003 IEEE/RSJ International Conference on, vol. 4. IEEE,
2003, pp. 3692–3697.

[4] M. Roa and R. Suárez, “Grasp quality measures: review and perfor-
mance,” Autonomous Robots, vol. 38, no. 1, pp. 65–88, 2015.

[5] C. Ferrari and J. Canny, “Planning optimal grasps,” in Robotics and

Automation, 1992. Proceedgs., 1992 IEEE International Conference on.
IEEE, 1992, pp. 2290–2295.

[6] K. Hang, J. A. Stork, F. T. Pokorny, and D. Kragic, “Combinatorial
optimization for hierarchical contact-level grasping,” in Robotics and

Automation (ICRA), 2014 IEEE International Conference on. IEEE,
2014, pp. 381–388.

[7] M. T. Ciocarlie and P. K. Allen, “Hand posture subspaces for dexterous
robotic grasping,” The International Journal of Robotics Research,
vol. 28, no. 7, pp. 851–867, 2009.

[8] A. Sahbani, S. El-Khoury, and P. Bidaud, “An overview of 3d object
grasp synthesis algorithms,” Robotics and Autonomous Systems, 2012.

[9] S. El Khoury, M. Li, and A. Billard, “Bridging the gap: One shot grasp
synthesis approach,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and

Systems, Oct 2012, pp. 2027–2034.
[10] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp

synthesis – a survey,” IEEE Transactions on Robotics, vol. 30, no. 2,
pp. 289–309, 2014.

[11] B. Mirtich and J. Canny, “Easily computable optimum grasps in 2-d
and 3-d,” in Robotics and Automation, 1994. Proceedings., 1994 IEEE

International Conference on. IEEE, 1994, pp. 739–747.
[12] T. Watanabe and T. Yoshikawa, “Grasping optimization using a required

external force set,” IEEE Transactions on Automation Science and

Engineering, vol. 4, no. 1, pp. 52–66, 2007.
[13] R. Diankov and J. Kuffner, “Openrave: A planning architecture for

autonomous robotics,” Robotics Institute, Pittsburgh, PA, Tech. Rep.

CMU-RI-TR-08-34, vol. 79, 2008.
[14] A. T. Miller and P. K. Allen, “Graspit! a versatile simulator for robotic

grasping,” Robotics & Automation Magazine, IEEE, vol. 11, no. 4, pp.
110–122, 2004.

[15] R. Pelossof, A. Miller, P. Allen, and T. Jebara, “An svm learning
approach to robotic grasping,” in Robotics and Automation, 2004.

Proceedings. ICRA’04. 2004 IEEE International Conference on, vol. 4.
IEEE, 2004, pp. 3512–3518.

[16] J. Ponce and B. Faverjon, “On computing three-finger force-closure
grasps of polygonal objects,” IEEE Transactions on Robotics and

Automation, vol. 11, no. 6, pp. 868–881, 1995.
[17] S. Liu and S. Carpin, “Global grasp planning using triangular meshes,”

in Proc. IEEE Int. Conf. Robotics and Automation, 2015.
[18] J. Cornella and R. Suárez, “Efficient determination of four-point form-

closure optimal constraints of polygonal objects,” IEEE Transactions on

Automation Science and Engineering, vol. 6, no. 1, pp. 121–130, 2009.
[19] M. A. Roa and R. Suárez, “Finding locally optimum force-closure

grasps,” Robotics and Computer-Integrated Manufacturing, vol. 25,
no. 3, pp. 536–544, 2009.

[20] N. S. Pollard, “Parallel methods for synthesizing whole-hand grasps
from generalized prototypes,” MIT Artificial Intelligence Laboratory

Technical Report AI-TR 1464, 1994.
[21] K. Hang, J. A. Stork, and D. Kragic, “Hierarchical fingertip space for

multi-fingered precision grasping,” in Intelligent Robots and Systems

(IROS 2014), 2014 IEEE/RSJ International Conference on. IEEE, 2014,
pp. 1641–1648.

[22] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems

Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
[23] R. Dechter and J. Pearl, “Generalized best-first search strategies and

the optimality of a,” Journal of the ACM (JACM), vol. 32, no. 3, pp.
505–536, 1985.

[24] I. Pohl, “Heuristic search viewed as path finding in a graph,” Artificial

Intelligence, vol. 1, no. 3-4, pp. 193–204, 1970.
[25] J. Pearl, “Heuristics: intelligent search strategies for computer problem

solving,” 1984.
[26] R. Ebendt and R. Drechsler, “Weighted a search–unifying view and

application,” Artificial Intelligence, vol. 173, no. 14, pp. 1310–1342,
2009.

[27] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses
in improved network optimization algorithms,” Journal of the ACM

(JACM), vol. 34, no. 3, pp. 596–615, 1987.
[28] V.-D. Nguyen, “Constructing force-closure grasps,” The International

Journal of Robotics Research, vol. 7, no. 3, pp. 3–16, 1988.
[29] J. A. Stork, “Representation and learning for robotic grasping, caging,

and planning,” Ph.D. dissertation, School of Computer Science and
Communication, KTH Royal Institute of Technology, Stockholm, Swe-
den, June 2016.

[30] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society. Series

C (Applied Statistics), vol. 28, no. 1, pp. 100–108, 1979.
[31] F. P. Preparata and M. Shamos, Computational geometry: an introduc-

tion. Springer Science & Business Media, 2012.
[32] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algo-

rithm for convex hulls,” ACM Transactions on Mathematical Software

(TOMS), vol. 22, no. 4, pp. 469–483, 1996.
[33] K. Hang, J. A. Haustein, M. Li, A. Billard, C. Smith, and D. Kragic,

“On the evolution of fingertip grasping manifolds,” in Proc. IEEE Int.

Conf. Robotics and Automation. IEEE, 2016.

