Algorithms and Complexity
2015
Maistarprov 2: Complexity

Maéstarprov 2 should be solved individually in written form and presented orally.
No collaboration is allowed.

Written solutions should be handed in latest on Tuesday, April 28th
17.00, to Johan in written or printed form (personally or his mailbox). Be sure
to save a copy of your solutions. Méstarprov 1 is a mandatory and rated part of
the course. The test consists of four tasks. The test is roughly graded as follows:
Two task correctly solved give an E. Three tasks correctly solved give a C and
all tasks correctly solved give an A. The report should be written in English.

1. Super connectors

We have a computer network. We fix a number C' and say that a computer
is a super connector if it has at least C' connections. (Connections are edges in
the network.) A group S of super connectors is a set of super connectors all
connected to each other. We can formulate a decision problem like this: Given
a network in form of a graph G and integers C, K, is there a group of size K
of super connectors in G? Show that this problem is NP-Complete by reducing
the known problem CLIQUE to this problem.

2. A restricted version of CNF-SAT

In CNF-SAT we have a formula ¢ on CNF-form. The clauses can be ar-
bitrarily long (i.e. the don’t have to be of length 3). We know that this is an
NP-Complete problem. We might believe that part of the problem is that a
variable can occur many times in a formula. Let us formulate a problem called
CNF3. In this problem we have a formula with each variable occuring at most
3 times. The problem is then to decide if a formula on this form is satisfiable or
not. It turns out that even this problem is NP-Complete. Your task is to show
this by giving a method for translating any CNF-formula ¢ to a CNF3-formula
¢’ such that ¢ is satisfiable if and only if ¢’ is satisfiable.

Here are some hints:

1. You will have to introduce some new variables in ¢.

2. Two variables z,y are equivalent if (x V §) A (Z V y) is true.



3. Rectangle puzzle

In this problem we will study a very simple type of puzzle. Imagine that we
have a rectangular grid of squares of size 1 x 1. In this grid we have a rectangle
of size a X b where a and b are positive integers. The rectangle is oriented to fit
the grid and therefore consists of ab squares. We also have n small rectangles
(pieces of the puzzle) of sizes hy X by, ho X ba, ..., hy, X b,. We want to place all
these pieces into the big rectangle so that they are aligned with the grid and
do not overlap. If h; # b; there are two possible orientations of rectangle ¢ and
so on. Is it possible to fit in all the pieces, i.e., lay the puzzle? Note that the
pieces do not have to cover all of the big rectangle. We can formulate this as
the problem RECTANGLE PUZZLE:

Input: Positive integers a,b. A set of n pairs {(h1,b1), (h2,b2), ..., (hn,bn)}, all
with positive integer values.

Goal: Given a rectangle with corners (0,0), (0,b), (a,0), (a,b) in the coordinate
plane, is it possible to place n small rectangles of sizes h;, b; into the rectangle
so that the corners of the rectangles are placed in integer positions and do not
overlap? (The small rectangles can be rotated 90°.)

Decide if this problem can be solved efficiently or not.
4. Finding vertex covers

In this problem we will use the technique of reducing construction problems
to optimization problems.(Compare with examples from lecture notes and ex-
ercise problems.) What we will do is to assume that we have an algorithm F
such that it, given a graph G, computes the size of a minimal vertex cover of G.
Write an algorithm F’ such that F” uses calls to F' and finds an optimal vertex
cover. If the time-complexity of F' is T'(n) where n is the size of the input, then
the time-complexity of G should be O(p(n)T(n)) where p is a polynomial of low
degree.



