
Algorithms and Complexity
2015

Mästarprov1: Algorithms

Mästarprov 1 should be solved individually in written form and presented orally.
No collaboration is allowed.

Written solutions should be handed in latest on Monday, February 23rd
17.00, to Johan in written or printed form (personally or his mailbox). Be sure
to save a copy of your solutions. Mästarprov 1 is a mandatory and rated part of
the course. The test consists of four tasks. The test is roughly graded as follows:
Two task correctly solved give an E. Three tasks correctly solved give a C and all
tasks correctly solved give an A. You can read more about the grading criteria
and the final grade on the course web page. The report should be written in
English.

In all problems you should give an analysis of the time complexity of your
algorithm and you should be able to argue for its correctness.

1. You are given an undirected graph G with n nodes. The graph is repre-
sented with adjacency lists. Is the graph a tree or not? You want to decide it
algorithmically in time O(n).

Observe that this can easily be done in time O(|E|), but you are asked to do
better than this. Also observe that you know n from start but you don’t know
|E| explicitely. (Can be computed though.)

Describe an O(n)-algorithm that solves the problem.

2. Directed graphs can be used to give abstract representations of projects divi-
ded into interdependent sub-projects. We get a graph G with nodes p1, p2, ..., pn
representing sub-projects. A directed edge (pi, pj) means that pi must be done
before pj . We can assume that G is acyclic, i.e. there are no directed cycles in G
and that the ordering is topological so that (pi, pj) is an edge implies i < j. Let
us furthermore assume that there is a starting node p0 with no incoming edges
and that it is possible to start at po and perform all pi :s using paths from p0.
To each node pi we have assigned a time ti it will take to perform (just) pi. But
if we want to complete pi there is a set of other task we must perform first so
there will be a total time Ti it takes.

Use dynamic programming to find all values Ti.

1

3. Let us study a flow network N . We know that the Ford-Fulkerson algorithm
gives us a maximal flow from s to t. Let us assume that the flow has the value
A. We are not satisfied with this. In fact, we need a flow A+k where k > 0 and
we therefore have to increase some capacities for the edges. The FF algorithm
gives us a minimal cut (X,Y) with s in X and t in Y . (See textbook or lecture
notes.) If e is an edge with capacity c(e) going from X to Y , a simple idea is to
increase the capacity of e to c(e) + k. Will this work? Obviously, the capacity
of the cut will be increased to A + k. But there could be another minimal cut
without e and then the idea won’t work.

We now study this problem: Given a network N , is there a unique minimal cut
in N or not? Design an efficient algorithm that solves this problem.

4. We have n circles C1, C2, ..., Cn in the plane. The circles Ci are given with
with midpoint (xi, yi) and radius ri. We want to find the maximal size of an
overlap between the circles. To be more precise, we say that a point p = (x, y) is
inside the circle Ci if (x−xi)

2+(y−yi)
2 ≤ r2i . If p is inside exactly k circles we

say that p represents a k-overlap between circles. The problem is then to find
the largest value for k. (We don’t have to find a particular p representing the
overlap.)

Give an algorithm that solves this problem. It should have time-complexity
O(n log n). You can assume that the following problems can be solved in con-
stant time: To find the intersection points between two circles and to find the
intersection points between a line and a circle. (It can happen that the two
points degenerate to just one.)

2

