
A Software Development Process for a Team of One

by Philippe Kruchten
Rational Fellow

For some, the phrase "software engineering process"
evokes an image of a huge set of dusty binders full of
policies, directives, and forms, all saturated with
administrative jargon. But, these are materials that
would probably be used only by very large companies
that deliver software at a snail's pace to government
agencies and Fortune 500 companies -- software
developed by armies of programmers aligned in giant
cubicle farms and herded by "pointy-haired
managers," like the one in the famous Dilbert cartoons
by Scott Adams.

In reality, however, a software engineering process
does not need to be such a monster. It can be as lightweight or heavyweight as the
job at hand and the size of the development organization requires. Whether the
project is a 200-developer mastodon or a short, solo gig, a good process can be
tailored to fit the job.

The purpose of a software engineering process is not to make developers' lives
miserable, or to squash creativity under massive amounts of paperwork. Its only real
purpose is to ensure that a software development organization can predictably
engineer and deliver high-quality software that meets all of the needs and
requirements of its users -- on schedule and within budget.

To understand the essence of a software engineering process, let's look at a very
simple software project developed by a team of one.

A Solo Software Project

Although Nick, a software engineer with twelve years of development experience,
prefers to work alone, he deliberately and conscientiously follows a well-defined
process. Here is a diary he kept of a one-week project that he recently completed for
Gary, an old friend of his.

The Seminal Idea (Saturday Night)

Tonight I met my friend Gary in our favorite watering hole. He's the software
development manager in a small company. As part of an effort to improve their
process efficiency and predictability, they recently went through Personal Software

jprince
Copyright Rational Software 2002

jprince
http://www.therationaledge.com/content/feb_02/f_processForOne_pk.html

Process training.1 But he has a problem: A key element of the approach is that
individual developers keep track of the time they spend on each type of activity, such
as requirements capture, design, testing, and administration. Each of his developers
uses a different tracking strategy, and at the end of the week, it is quite a nightmare
to gather and consolidate all the data. An assistant has to go around gathering all the
random Post-It notes, e-mails, and voice mails that team members use to estimate
how they spent their time. This is discouraging, because for a software organization
accurate measurements of the effort expended on various activities are key for
monitoring productivity, identifying potential areas for process improvement, and,
above all, planning future projects effectively.

I suggested that Gary try automating the tedious job of tracking activity effort.
Developers could have little timers on their screens that they could activate,
associate with an activity name, suspend when they stop for lunch or some other
interruption, resume when they return, and close when the task is completed. The
data would be stored somewhere safe, and then retrieved and consolidated in a
spreadsheet at the end of the week. "Great idea!" said Gary. "Nick, can you crank
that out for me? It would save me a lot of hassle, and therefore a lot of money. I'll
pay you whatever you want. Well, sort of. How much do you want to develop this?" I
told Gary that I needed to think twice about it. I had no engagement for the following
week, so maybe I could crank out something in a few hours. But I quickly revised
that: "Hmmmm, better make it a couple of days. Come to my office Monday morning
around 11 a.m., and I'll have a proposal for you."

The Proposal (Monday Morning)

I thought about the timer project a few times over the rest of the weekend, and by
the time I woke up this morning, I had a "mental concept" of it, as well as one or two
possible implementation ideas. But this was a serious business proposition, so I
needed a serious business case. What would I build, and how many resources would I
need to throw at it? Mostly, this would require my time and maybe some software
acquisitions. And finally, how much would I ask Gary to pay me? So I arrived here at
my office early this morning, cleaned my desk, and laid out four sheets of paper.
Then, at the top of each one, I wrote one of the following headings:

● Vision

● Plan

● Risks

● Business Case

The Vision

I start with the Vision. I need to describe, for Gary and myself, what exactly we want
to achieve: the fundamental need he is trying to address, what the tool will look like,
and how it will be used.

Here's my first stab at it:

Personal Timer Tool: VISION

Problem
For Gary's organization, the inability to gather consistent data about time spent on
various software development activities hampers the ability to monitor a project's
progress against estimates, invoice customers properly, pay contractors, and,
ultimately, accurately estimate work for future projects.

Vision Statement
A Personal Timer Tool (PTT) that measures time spent, and collects and stores this
data for later sorting and extraction, would (unlike Post-It notes and wild guesses)
allow Gary's organization to easily make systematic, consistent assessments of
where effort is spent, track actual time spent versus estimates for a project, and
do a better job of estimating future development workloads.

Main Parties Involved

● individual developers

● administrative assistant

● project managers

Use Cases

● measure time for an activity

● extract weekly time sheet

● consolidate data for a project

● set up tool and database for a project

In the Plan, I'll rough out a schedule for the next few days, mainly identifying major
milestones -- the points at which I'll have to make a decision, either on my own, or,
more likely, together with Gary.

At lunch today, I'll need to reach an agreement with Gary to go ahead, to get some
commitment from him to at least start paying me for the job. I'll have to have him
agree on the Vision, the Plan, and my estimate. For myself, I need a private Business
Case that Gary won't see, detailing how much I need to spend on the project. If I can
accomplish all this -- getting agreement on an overall vision, a plan, and a price, and
ensuring that I won't lose money, then I'll achieve my first milestone, the Lifecycle
Objective (LCO) Milestone, and bring the Inception phase to a close.

To make the pill easier for Gary to swallow, and also to cover myself in case I run
into some unforeseen difficulty, I'll suggest that he commit only to paying me for
producing a rough prototype, which I'll show him Tuesday evening. Only then, if he
likes what he sees (and if I'm confident I can finish the project by Friday), will I ask
him to commit to the total amount.

The Plan

It's only 9:30 a.m., so I can work next on the Plan. No need for heavy artillery
planning software to do a GANNT chart, but I want a rough plan that will decompose
my time into major phases.

After sketching it out on that piece of paper, I decide to transfer it to my pocket
agenda. This is what my first phase plan looks like:

Monday Tuesday Wednesday Thursday Friday Saturday

INCEPTION
Vision
Plan
Business Case
Risks

Prototype
Mitigate risks

CONSTRUCTION
Design
Code
Test

Design
Code
Test

LCO: OK from G. LCA: OK from
G. IOC: show the first

beta version

ELABORATION
Prototype

Use cases
Tests

Design
Code
Test

TRANSITION
Improvements?

 Delivery

Inception. I've been working on these activities since early morning and hope to
wrap them up just after lunch with Gary. If I get his commitment to pay for a
demonstration prototype, then this phase will represent a day of work on the project.
If he won't commit, then we'll quit there and remain good friends.

Elaboration. I think I could conclude this phase by Tuesday lunch. I'll build a rough
prototype that will allow me to "elaborate" on the requirements, the solution, and the
plan, and to explore some of my ideas. Then, I'll ask Gary again to validate
everything with me over lunch. The prototype will give us several things:

● Something more concrete to show Gary so I can get more feedback from him
on the requirements (you know, the "I'll Know It When I See It" syndrome).
After all, so far all he'll have had to go on is a discussion in front of a glass of
pale ale and some rough plans.

● More important for me, I can validate that I really have all the bits and pieces
needed to do the job on my hard drive, and that I do not underestimate the
amount of effort. While shaving this morning I thought I had an idea for an
architecture and the various parts I would use, but now I am less sure. Can I
use this little database I used on a previous project, and will I be able to
interface it with a Java applet? Where did I put the user guide for the API? Will
that run on their OS?

● More information to do a much better plan and a more detailed schedule.

● A starting point for building the real thing, with a chance to scrap everything I
did wrong.

● An opportunity to refresh my database definition skills, as well as my Java
style.

I think of this crucial Tuesday lunch as the Lifecycle Architecture (LCA) Milestone. At
that point, both Gary and I will have the option to bail out, significantly recast the
project, or go ahead with confidence.

Construction. I figure that if Gary gives me his go-ahead, helped along by a fine
Beaujolais, then on Wednesday morning I'll start early to build the real thing, all neat
and clean, and thoroughly test it. Then I'll ask Gary to come at around 2 p.m. on
Thursday and bring one of his programmers to try it out, on his laptop. That will give

me the afternoon to fix whatever they don't like.

This Thursday session I think of as the Initial Operational Capability (IOC) Milestone,
because it will be the first time real that actual end users try the software.

Transition. This will be the last run, and I hope it will last just a couple of hours. It'll
conclude with a release -- I'll probably e-mail the software to them -- accompanied
by my sweet invoice, all by close of business Thursday.

The Risk List

I've already mentioned that I have a few doubts and worries. Rather than putting my
head in the sand, I'll jot them down on that piece of paper headed "Risks." I'll include
anything I can think of that might make this little project fail, get delayed, or go over
budget. And I'll use a pencil, because a Risk List always requires reorganization and
sorting out again and again.

Here's what's on my list:

Personal Timer Tool: Risks

● License for the development tools I need has expired.

● Database is too expensive.

● Mechanism for internode communication is not supported in Gary's
organization.

● Some of Gary's programmer machines not connected to the Net.

The Business Case

It's now 10:30 a.m., and I have all the information I need to build my initial Business
Case, so I can begin filling in that last piece of paper. I've already estimated that the
project will take four days of my time. I might need to upgrade both my Java
compiler and the database software, so I'll mark those things TBD (To Be
Determined). I figure that with my usual loading factor and a bit of padding for any
bug fixes that might come later, it should be a reasonable deal.

If Gary is reluctant, I could even build a convincing business case from his
perspective. If he were to save a half hour per week per developer, plus two hours of
data entry and consolidation time for his administrative assistant, he would get his
money's worth in less than six months. (I'm even thinking about how I could sell this
little program to others through a profit-sharing scheme with Gary, but I'll focus on
this some other day. Time is short).

The Architecture

Since Gary had not shown up yet, I go a step further. On a fifth sheet of paper
labeled Architecture, I do a quick pencil diagram of the major components of the
timer software: Java applet, browser, database, and data extractor. It looks like this:

Then, I add a couple of other components, using the Unified Modeling Language
(UML). Since the diagram looks cute, and since Gary is himself somewhat software
literate, I'll show it to him, too.

The Commitment (Monday Lunch)

To make a long story short, Gary likes it. He pays for lunch. I've brought my five
sheets of paper (and my pocket agenda), and we scribble while waiting for the main
course.

The bad news is that I did not completely understand the requirements. Gary wants
all of his developers to accumulate data in a single database, over their local area
network; he doesn't want to have each of them accumulate data in his or her own
database, because it's not that easy to merge the data. Also, they don't always work
from the same machine, especially when they do testing. We make a few other touch-
ups and clarifications to the requirements, but that network feature has me worried.
It has consequences for my architecture and requires much more setting up and
testing. Plus, we have to identify an administrator to maintain the database.

So, more or less on the fly, I adjust the documents that I prepared this morning.

The Vision, Take Two

I fix the Vision, adding that network feature. I also add a couple of ideas for future
development that we discussed when I touched on the idea of making a business of
this. Although I won't implement them in this round, they might constrain some
design choices.

The Plan, Take Two

I decide not to take too many chances. To mitigate the big architectural risk, I shift
the LCA milestone (end of Elaboration) to dinner on Tuesday. I plan to do
Construction over two days, with two iterations. For the first iteration, on Wednesday
I'll make sure the "single person" version works fine and test it, and on Thursday I'll
develop the client-server feature over the network and test it. This will shift
Transition to Friday, for a final product delivery Friday evening. Gary also wants me
to come to his office Friday morning to install the beta version and try it in situ.

Monday Tuesday Wednesday Thursday Friday Saturday

INCEPTION
Vision
Plan
Business Case
Risks

Prototype
Mitigate
risks

CONSTRUCTION
Single Person
Design
Code
Test

CONSTRUCTION
Client-Server
Design
Code
Test

TRANSITION
Improvements?

IOC: show the
first beta
version

LCO: OK from
G.

ELABORATION
Prototype

LCA: OK
from G.
Use cases
Tests

Design
Code
Test

Design
Code
Test

Delivery

The Risk List, Take Two

Now there are five new risks to add:

Personal Timer Tool: Risks, v2

● Synchronization of updates to the database.

● Consistency of activities, projects, and users across multiple machines.

● Access rights policy for administrator and regular users.

● Same user connected from two different machines: Can it occur? What are
the consequences?

● Dialog with one user dies for some reason and locks out all other users.

My biggest risk? If things go wrong, I'm jeopardizing the hiking trip I've planned for
this weekend.

The Business Case, Take Two

Now we're talking about a full week of work, so I raise my estimate. Gary will have a
return on his investment in only eight-and-a-half months, but he thinks a reasonable
commitment is to pay me two-fifths of the project fee if I get to the LCA milestone by
Tuesday night. He promises to send me a purchase order for the Elaboration phase
as soon as he is back in his office.

Digging In (Later Monday)

Back in my office, I start looking at more details for the two major use cases:

● Timing an Activity

● Getting a Tally of the Data

I expand them a bit on two other sheets of paper and build a sequence diagram on
my whiteboard.

I'm also starting to have an idea of how I'll design the code in the applet, using three
classes. I draw a sketch of what the timer will look like on the screen:

And as I go, I think of more and more questions and issues: Is the activities list
predefined and static? (Probably not.) Can each developer create a new list, or only
access an existing list? Gary is unavailable, and I can only get hold of his voice mail,
so I write down my questions for tomorrow.

By evening, I've built an applet that looks like this on the screen:

I've also succeeded in writing some data for an activity on a text file, with all the
testing I could think of (in true XP style). Not too bad for a single day of work.

Pressing On (Tuesday)

This is a real "cold shower, hot shower" day. Every time I cross one risk off my list, I
have to add two more. I've made quite a few discoveries today. For lunch I stay in
and order a pizza because I can't interface with the database. The thing crashed
because my version of the software is too old. Also, I didn't read the API specification
carefully enough. I lost an hour with tech support, then downloading the right
version, then studying the documents.

I haven't made much progress, and I'm starting to think the whole thing was a bad
idea. There are so many things that can go wrong, even with such a ridiculously
small app!

I have built a UML model, though. Just a single class diagram and two collaboration
diagrams. While I was at it, I also built a component diagram based on my
architecture sheet, which I can discard now. I pin all my remaining sheets on the
wall.

Since my Risk List was starting to look like a mess, I put it on my PC in an Excel file.

I am not changing the Vision, but it is now surrounded by seventeen Post-It notes, all
with questions and issues. I start adding constraints, such as:

● The code shall run on Windows NT or Unix.

● The database runs under Windows NT 4.0 or above.

When Gary arrives for dinner with his colleague, Eric, I am putting the latest touches
on a not-too-unreasonable prototype. All the data is canned, there is only one user
("Gary") and one activity ("Think"), and I was able to do an on-the-fly "suspend and
resume" as an extension to the Timing an Activity use case. The database runs on
my desktop with the applet on my laptop, through the Net. My Risk List is now down
to a few simple ones.

We spend about five minutes playing with the prototype, until Eric crashes it. He's
shocked, but I explain that robustness and completeness were not the objectives.
Then we discuss the look and feel of the applet and reorganize the fields a bit. We
look at my list of questions. Eric is very concerned about losing data if someone has
to reboot a machine while a counter is running. I promise to look into it, although I
was hoping he would say to forget it. Maybe I shouldn't have brought up the issue.

I end up adding a couple of new risks to my Risk List and half a dozen more
requirements to my Vision document, but that is not too bad. I decide to leave the
Plan as is. To the Vision I add more use cases for "system administration":

● Clean Up Database

● Add a User

● Clean Up Activity List

The good news is that Gary is happy with what he saw, and he says to move ahead
with the whole project. He does not object to the constraints.

More Progress, More Changes (Wednesday)

I have found a solution to Eric's problem. Yes!

As I work, I put all my code and tests in a configuration management tool, because
I'm afraid I'll make a mistake and lose track of my changes. The plan is simple: Take
a complete snapshot of each iteration.

Also, from the use cases I make a more complete list of tests to run.

I now work on a dialog for extracting the data, sorting it, and presenting it in a way
that can be digested by Excel to make nice graphs.

Around 11:30 a.m. Eric calls. He forgot one requirement: A person may be working
on more than one activity and need to have several counters active at the same time.

Ouch. Change the Vision. This one may be difficult, so I add it to the Risk List.

Nearing Completion (Thursday)

Testing. Do the network thing. Problems.

I renegotiate requirements with Gary, trading the new one Eric dropped on me
yesterday for another one that was on my list. I have to do activity+project, because
most of Gary's people do work on several projects at a time.

Based on the use cases, I start building a little Web-based User's Guide in HTML.

I have so many little things to fix that I need to get better organized. I make a list so
I can sort them out. I merge the change requests from Gary and Eric and also add
several ideas for improvement.

More testing. First I try capacity testing. No problem. Then I try some concurrency:
updating the database from two machines at once. Not good. Synchronization needs
some serious rethinking. Error: same user from two machines on same
activity+project; there is one entry missing.

Late at night I find the problem. Now, almost everything works.

Beta and Ship (Friday)

In the morning, I go to Gary's company with my first beta version. We install it on
several machines, I set up the database and brief his people, and they start playing
with it. I run from one to another with my clipboard, writing out suggestions for
improvements.

I add to my bug list two major problems and twelve minor ones (mostly matters of
taste).

At lunchtime I'm back in my office. I fix all the critical problems and ignore three
minor ones. I find another four issues myself, mostly through systematic testing.
Finally, the next release is ready. It is numbered 0.9 in my configuration
management system. It looks like I will have to go through 0.91, 0.92. I start to
despair.

Late at night, I take a break to write some Release Notes and prepare a little installer
tool. By 1:00 a.m. I am done. I burn a CD-ROM and scream, "Ship! V1.0!!"

I open a pale ale (there's no champagne in the fridge).

The End. Well, for this round anyhow.

Nick's Process

What can we learn about process from Nick's story? Let's take a closer look at what
he says and does.

Nick is very aware of risks, both technical (technologies, languages, interfaces, and

performance) and business (schedule, expenditure, and missed expectations). He
uses an iterative process to mitigate these risks, rapidly trying out ideas to validate
them, to get feedback from his customer, and to avoid painting himself into a corner.
He also sets up a plan with a few well-defined milestones, although the project is
only one week long.

Nick has a simple business case for embarking on this project, with reasonable
estimates for both his expenditures and the potential revenue. He revises this
business case when he discovers that the basic requirements have changed.

Nick develops a design, beginning with an overall architecture, which he tries out
very early. He also does more detailed design in areas for which the right way to go
may not be obvious.

Nick tries to make sure he fully understands Gary's needs and vice versa. He tries to
ensure that Gary knows exactly what he will get. Rather than jumping right into what
he thinks Gary needs, Nick dedicates some time to writing down requirements,
features, and constraints. Then, he validates this with Gary several times to make
sure they share the same vision of the product.

Nick tries to spend his time on the highest-priority tasks, and he sees that no issue is
left aside or ignored for too long. Whenever he finds a problem with the product
through a failed test, or whenever Gary comes back with a new request or a better
idea, Nick captures this in the form of a change request, and he keeps managing
and reprioritizing the change requests to drive his hourly schedule.

Besides the code of the product, early on Nick develops a set of test cases that
match many of the requirements, and thanks to the iterative process he uses, many
of these tests are matured, refined, and improved over time, as he develops the
product.

To avoid losing some code by accident (for example, through a disk crash) or under
pressure through his own mistake, Nick uses a simple strategy to manage the
software, keep a history of versions of his files, and make snapshots of the version
sets he tests. He tracks the evolutions and changes that he makes relative to these
versions, so he can backtrack to a known configuration if he makes a mistake.

Finally, Nick writes simple user documentation, with a section that describes the
release, how to install it, and its known limitations, one with the release notes, and
one describing how to use the product, that is, a users' guide.

This is the essence of the very lightweight engineering process Nick uses. It is a "low
ceremony" process that focuses only on a small number of artifacts or workproducts.
It does not involve a huge amount of paperwork, since many of the artifacts are
stored in various development tools: the configuration management tool, the design
tool, office tools, and so on. These few development artifacts produce value not only
during the initial product development, but also later on, for additional releases. If
Gary were to come back in three months asking Nick to develop a version 2, these
artifacts would provide Nick with invaluable information to help him do a better job
this time. They'll offer him important cost estimates, partial design or code to reuse,
and a few lessons learned -- mistakes he can avoid repeating.

Believe it or not, the simple process Nick followed includes every important step in
the Rational Unified Process®(RUP®), and you can easily duplicate it -- without
poring over a lot of complicated instructions. Who said that the RUP could only be
applied to mammoth projects with hundreds of developers? Here is an example that
uses the RUP very effectively for a team of one. Nick refers to this affectionately as

his "Personal Unified Process" -- PUP for short.

References

Kent Beck, Extreme Programming Explained: Embrace Change. Addison-Wesley,
2000.

Rational Unified Process, Rational Software, 2002.

Leslee Probasco, "The Ten Essentials of RUP." The Rational Edge, December 2000,
http://www.therationaledge.com/content/dec_00/f_rup.html

Philippe Kruchten, "What Is the Rational Unified Process?" The Rational Edge, January
2001, http://www.therationaledge.com/content/jan_01/f_rup_pk.html

Philippe Kruchten, The Rational Unified Process: An Introduction, 2nd ed. Addison-
Wesley, 2000.

Humphrey Watts, Introduction to the Personal Software Process, Addison-Wesley,
1997.

Notes

1 Humphrey Watts, Introduction to the Personal Software Process. Addison-Wesley,
1997.

For more information on the products or services discussed in this article,
please click here and follow the instructions provided. Thank you!

Copyright Rational Software 2002 | Privacy/Legal Information

