
Sum of squares and integer programming relaxations Lecture 1 — 27 January, 2014

1. Linear relaxations of integer programs.
Lecturer: Massimo Lauria

We can express combinatorial problems using integer programs and, since we
can’t solve them, we consider relaxed programs in which integer constraints
are relaxed to linear ones. Then we round fractional solutions to integer. We
consider hierarchies of linear programs and discuss the quality of the corre-
sponding solutions.

This lecture is a sort of scaled down demo of the rest of the course. Here
we see that we can express decisions and optimization problems by the means
of integer programs. This translation works forNP-hard problems, thus there
cannot be efficient algorithms to solve integer programs unless P = NP,
which is considered by many to be very unlikely1. 1 Most of the hardness results we will see

during the course won’t rely on any unproved
assumption.

In any case there is no known efficient algorithm that solves integer pro-
grams; a viable strategy is to relax the integer programs to something easier
to manage: for example liner programs.

The most naive way to do that is to transform the integral constraints into
fractional linear constraints, e.g. x ∈ {0, 1} into 0 ≤ x ≤ 1, and leave the
other constraints alone2. 2 We can assume that all such constraints are

affine, namely they have one of the three
forms

∑
i

aixi ≤ b ∑
i

aixi ≥ b ∑
i

aixi = b

for ai and b in R

Once we relax the integer program we have a lot of new fractional solu-
tions that were not allowed before. Consider, for example, the program that
characterizes the maximum independent sets of graph K3, i.e., the triangle.

maximize x1 + x2 + x3

subject to x1 + x2 ≤ 1

x2 + x3 ≤ 1 (1)

x1 + x3 ≤ 1

x1 ∈ {0, 1}, x2 ∈ {0, 1}, x3 ∈ {0, 1}.

Its integer optimum is 1, but if we relax the constraints and allow 0 ≤
xi ≤ 1, then the linear program has a fractional optimum of 3

2 , by setting all
variables to 1

2 .
During most of the course we will study systematic techniques to improve

the relaxation: we add variables and inequalities in order to cut away feasible
fractional solutions without changing the set of integer solutions. The quality
and the complexity of such techniques is controlled by a parameter called
rank: the larger the rank, the fewer fractional solutions remain.

Linear programming

The most studied optimization formalism is linear programming, which is
illustrated by books as 3: we want to optimize (either minimize of maximize) 3 Jiří Matoušek and Bernd Gärtner. Un-

derstanding and using linear programming.
Springer, Berlin New York, 2007

a linear function ∑i cixi over the set of variables {xi}n
i=1, which are con-

strained to satisfy a set of linear inequalities and linear equations. Without
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loss of generality we can assume a linear program to have one of the following
forms4. 4 While we will discuss the left form more

often. The right one is also very common
and is called the standard form. The stan-
dard form is particularly useful in implemen-
tations of the simplex algorithm.

maximize cTx

subject to Ax ≤ b

maximize cTx

subject to Ax = b (2)

x ≥ 0

In order to optimize a linear program it we need to check if the program
is feasible, i.e. if there is a value of x that satisfies the linear constraints. In-
deed we can use linear programs to describe either decision or optimization
problems.

The striking feature of linear programming is the possibility to witness
the unsatisfiability of a set of linear inequalities. This feature is formalized
by Farkas’ Lemma: as it happens often with fundamental results, there are
several ways to state Farkas’ Lemma.

Lemma 1 (Farkas’ Lemma for linear programming). A set of linear inequal-
ities Ax ≤ b is unsatisfiable if and only if there exists a positive vector y ≥ 0
such that yT A = 0 and yTb = −1.

Two inequalities aT x ≤ b and cT x ≤ d
entail any positive combination as a logical
consequence. Thus we can design a proof
system LP for sets of linear inequalities with
the following inference rule,

aT x ≤ b cT x ≤ d
(αa + γc)x ≤ (αb + γd)x

with α ≥ 0, γ ≥ 0. Farkas’ Lemma claims
that such proof system can deduce the con-
tradiction 0 ≤ −1 from any unsatisfiable set
of linear inequalities.

If the linear program represents an optimization problem we can even take
positive combinations to prove bounds on the function to be optimized. We
start with the primal program that asks to maximize cTx under constraints
Ax ≤ b and x ≥ 0 (notice that we highlighted the non negativity constraints).
Now consider a non negative vector yT such that yT A ≥ cT . For every
feasible solution x of the primal program it holds that

cTx ≤ yT Ax ≤ yTb. (weak duality)

Thus the solution y ≥ 0 witnesses the upper bound bTy to the maximum
achievable in the primal program. How tight is such upper bound? We can
answer that by looking at dual program (D). Notice also that the dual of (D)
is (P).

maximize cTx

subject to Ax ≤ b (P)

x ≥ 0

minimize bTy

subject to ATy ≥ c (D)

y ≥ 0

Farkas’ Lemma gives a complete solution of the decision case, but Farkas’
Lemma also implies the duality theorem, which basically claims that there are
solutions of the dual program that witness tight bounds for the primal program
(and vice versa).

Theorem 2 claims that proof system LP can
prove all valid linear inequalities. In proof
theoretic jargon: Farkas’ Lemma is the com-
pleteness of LP, while Theorem 2 is the im-
plicational completeness of LP.Theorem 2 (Duality theorem). Consider the linear programs (P) and (D),

exactly one of the following holds
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• neither (P) nor (D) have a feasible solution;

• program (P) has solutions with arbitrarily large values, and program (D)
is unsatisfiable;

• program (D) has solutions with arbitrarily small values, and program (P)
is unsatisfiable;

• both (P) and (D) have optimal solutions. Let x∗ and y∗ such solutions,
then

cTx∗ = bTy∗.

Complexity of Linear programming

Deciding the satisfiability of a set of linear inequalities is clearly in NP.
Farkas’ Lemma and Duality Theorem show that deciding its unsatisfiabil-
ity is also in NP, thus the problem is in NP ∩ coNP. But actually there are
well known efficient algorithms for this problem. All of them are based the
geometric interpretation of the system of linear inequalities as a convex poly-
hedron.

• The simplex method is the first algorithm for linear programming and has
been invented by Dantzig (1947). It does not run in polynomial time, but it
is quite fast in practice. The idea is to walk on the edges of the polyhedron
induced by the linear program, in order to reach the vertex with optimal
value.

• The first polynomial time algorithm for linear programming is based on
the ellipsoid method (Khachyian, 1979). The simplex method is much
faster in practice, but of course the ellipsoid method has great theoretical
value, and runs under more general conditions. For example it allows to
optimize over super polynomial size linear programs in polynomial time,
assuming the program has an efficient separator5. The algorithm assumes 5 A separator is an oracle that, given a point

x outside the set of feasible solutions F, out-
puts an hyperplane separating x from F.

that the set of feasible solutions is in a 0-centered ball of large enough ra-
dius, and that it completely contains some ball of range ε. The algorithm
checks whether the center of the ball is feasible. If it is not then the sep-
arator oracle suggests which half of the ball to save and which to forget.
A new ellipsoid of smaller volume “encircles” the useful half. The idea
is to encircle the set of feasible solutions with smaller and smaller ellip-
soids, until either the center of the last ellipsoid is a feasible solution or
the ellipsoid is so small that cannot contain a ball of range ε.

• Since the ellipsoid method is so inefficient in practice, the simplex method
is usually preferred. The advent of interior point methods changed the sce-
nario, providing a family of polynomial time algorithms which are fast in
practice. The first member of this family is due to Karmakar (1984): his al-
gorithm is based on the idea of exploring the space of solutions by walking
through the interior of the polytope. The original algorithm was not faster
than the simplex method but nowadays there are competitive implemen-
tations and variants. We must observe that interior point methods were
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already employed in the context of non-linear programming way before
Karmakar algorithm.

Integer programs and Linear relaxations

Most problems in computer science require solutions that are discrete, integer
or {0, 1}. It is not possible express such constraints as linear inequalities, so
we need a new formalism called integer programming. An integer program
may have the form

maximize cTx

subject to Ax ≤ b

xi ∈ {0, 1} or xi ∈ Z.

It is pretty clear that integer programs are in NP, and that they are expres-
sive enough to encode NP-complete problems, thus integer programming is
NP-complete. With a linear relaxation we trade expressibility for efficiency:
we drop all non-linear constraints and we substitute them with fractional ones
(e.g., xi ∈ Z becomes xi ∈ R and xi ∈ {0, 1} becomes 0 ≤ xi ≤ 1).

Example 3 (Maximum weighted bipartite matching). Consider the bipartite
graph G = (L, R, E), where L and R are two disjoint sets of vertices and
E ⊆ L× R, and consider a weight function w : E −→ R. The Maximum
weighted bipartite matching problem looks for the matching of largest weight
in the bipartite graph, and we can represent it with an integer program

maximize ∑
e∈E

w(e)xe

subject to ∑
e3v

xe = 1 for each v ∈ L ∪ R

xe ∈ {0, 1}.

This is one of the few cases for which the integer program and its linear re-
laxation have the same optimum value.

The reason for the tightness of the linear relaxation of Example 3 is in the
following property of the matrix of constraints.

The criterion of total unimodularity given in
Definition 4 is not efficiently verifiable. In-
stead there are other sufficient criteria which
can be verified in polynomial time.

Definition 4. A matrix M is called totally unimodular if every square sub-
matrix of M has determinant in {−1, 0, 1}.

Theorem 5. Consider the polyhedron P = {x|Ax = b, x ≥ 0}. If A is
totally unimodular and b is integer then the vertices of P are all integers.

The previous theorem implies that an integer program with total unimod-
ular matrix of constraints can be efficiently solved by solving its linear relax-
ation.
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Integrality gaps and Rounding

In the case of Example 3 we saw that the integer program and its linear re-
laxation have the same optimum, but this is not the case in general. Actually
the gap between the integer and the fractional optimum can be very large.6 6 Consider the problem of computing the

maximum independent set of a graph G =
(V, E). In this case we want to maximize
the objective function ∑v∈V xv under the as-
sumption that xu + xv ≤ 1 for every pair
{u, v} ∈ E for variables xv ∈ {0, 1}. If we
consider the complete graph then the maxi-
mum independent set has size at most 1, but
the linear relaxation has a solution of value
|V|/2, which is the vector ( 1

2 , 1
2 , . . . , 1

2 ).

For an optimization problem we may considerOPT, the integer optimum,
and FRAC, which is the optimum of the relaxation. A strategy to solve integer
program is to relax it in some way, and to round its fractional solution in
order to get an integer feasible solution. The rounding technique is strongly
dependent on the particular optimization problem and it is out of the scope of
this lecture. LetROUND denotes such solution, then for (say) amaximization
problem we have

FRAC ≥ OPT ≥ ROUND (3)

Definition 6. Given an integer program and its relaxation, the ratio

OPT

FRAC
(4)

is the integrality gap of the relaxation.

Very often the analysis of an approximation algorithm for a maximization
problem is achieved by determining the ratio between the fractional optimum
and its rounded value, ROUND

FRAC . The latter is bounded from above by the
integrality gap7. 7 For a minimization problem we get

FRAC ≤ OPT ≤ ROUND, so the
integrality gap actually lower bounds
ROUND
FRAC .Improving the linear relaxations

We discussed the gap between an integer program and its linear relaxation,
which is a key concept in the analysis of approximation algorithms. To get a
tighter relaxation we can add additional inequalities to the initial program.
Such inequalities must be valid for integer solutions but may still shave off
some of the fractional solutions.

Given an arbitrary linear program let P be the convex hull of its feasible
solutions, and PI the convex hull of its integer solutions. Of course PI ⊆
P . The idea is to find a way to efficiently identify a convex set E such that
PI ⊆ E ⊆ PI . If the gap between the optimal solutions in E and the ones in
PI is strictly smaller than the integrality gap of the original linear program,
then we have a better handle to solve the combinatorial problem. Even better
if E = PI : in this case there is an efficient way to find an optimal solution
for the problem. If P 6= NP there is not general way to obtain PI by adding
just a polynomial number of linear inequalities.

Cutting planes: Gomory8 introduces a way to cut fractional solutions by 8 Ralpha E. Gomory. Outline of an algorithm
for integer solutions to linear programs. Bul-
letin of the American Mathematical Society,
64(5):275–278, 1958

noticing that if aTx ≤ b is a valid inequality and a is an integer vector, then

aTx ≤ bbc (5)

is valid over integer solutions (but it is not over fractional ones). This method
has been employed effectively in integer programming software.
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Extended formulation: here the idea is to add new variables and add linear
constraints on them in such a way that the projection of the extended polytope
PE on the original variables is closer or even equal to PI .

Such extended formulation is “problem dependent” and there are very nice
connections between the number of inequalities needed to capture PI and
communication complexity. Fiorini et.al.9 proved that there is no polynomial 9 Samuel Fiorini, S. Massar, S. Pokutta, H.R.

Tiwary, and R. deWolf. Linear vs. semidefi-
nite extended formulations: exponential sep-
aration and strong lower bounds. In Pro-
ceedings of the 44th symposium on Theory
of Computing, pages 95–106. ACM, 2012

size extended formulation for the canonical integer programming representa-
tion of the traveller salesman problem.

In this course we deal with systematic ways to improve the relaxation of
the integer programs. In this lecture we are going to see some techniques
specific to linear programming.

Lovász-Schrijver hierarchy

Let us just focus on feasibility problems (i.e., no function to be optimized).
The point is to get close to a representation of PI in order to determine
whether it is empty or not. Notice that if we could efficiently decide fea-
sibility under quadratic inequalities we could easily solve integer programs
over boolean variables, since xi ∈ {0, 1} is equivalent to x2

i − xi = 0.
The Lovász-Schrijver 10 linear relaxation is based on the idea of using 10 L. Lovász and A. Schrijver. Cones of ma-

trices and set-functions and 0–1 optimiza-
tion. SIAM Journal on Optimization, 1:166,
1991

quadratic inequalities to determine new linear inequalities which are valid
for the integer solutions but not for the fractional ones. Once the new linear
inequalities are in place, the quadratic inequalities are forgotten. The result-
ing linear program is tighter than the initial one and we can optimized it or
determine its feasibility.

The simplest way to describe Lovász-Schrijver integer programming re-
laxation is to interpret it as a proof system. Start with a linear relaxation
Ax ≥ b and 0 ≤ x ≤ 1, and call P the set of its solutions11. 11 We focus on integer programs with

boolean solutions here, thus the presence of
inequalities 0 ≤ x ≤ 1 in the relaxation is
assumed. Thus we can also assume that we
deal with polytopes here.

Every inequality ∑j ai,jxj − bi ≤ 0 is an axiom of the proof system, to-
gether with axioms −xi ≤ 0, xi − 1 ≤ 0 and xi − x2

i ≤ 0. The system
allows to multiply a linear inequality by a variable or by the complement of
a variable

∑j cjxj − d ≤ 0

∑j cj(xjxi)− dxi ≤ 0

∑j cjxj − d ≤ 0

∑j cjxj(1− xi)− d(1− xi) ≤ 0
, (6)

and to infer positive combinations of known inequalities

c + ∑j cjxj + ∑{i,j} c{i,j}xixj ≤ 0 d + ∑j djxj + ∑{i,j} d{i,j}xixj ≤ 0
assuming α, β ≥ 0.

α(c + ∑j cjxj + ∑{i,j} c{i,j}xixj) + β(d + ∑j djxj + ∑{i,j} d{i,j}xixj) ≤ 0
(7)

Quadratic inequalities can be used to derive new linear inequalities, which
in turn can be multiplied again. We will keep track on how many multiplica-
tion steps are needed to derive a particular inequality. This is the rank of an
inequality in Lovász-Schrijver.
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Definition 7 (Rank of Lovász-Schrijver). Consider a derivation of an in-
equality in Lovász-Schrijver. The rank of the derivation of an axiom is 0; the
rank of a multiplication step is one plus the rank of the premise; the rank of a
positive sum is the maximum among the rank of the premises. The rank of an
inequality is the smallest among the ranks of all possible derivations of that
inequality. The rank of a point is the smallest among the rank of all linear
inequalities that are falsified by that point. The rank of the empty polytope is
the rank of the inequality 1 ≤ 0.

The set of solutions of all linear inequalities of rank 0 is denoted as P0,
and it is equal toP . The polytope characterized by the points compatible with
all linear inequalities of rank t is denoted as Pt. It is important to stress that
while derivations can to use quadratic inequalities, the polytopes are defined
in terms of the linear ones. It holds that

P = P0 ⊇ P1 ⊇ · · · ⊇ Pn−1 ⊇ Pn = PI . (8)

where the last equation is proved in12. 12 L. Lovász and A. Schrijver. Cones of ma-
trices and set-functions and 0–1 optimiza-
tion. SIAM Journal on Optimization, 1:166,
1991Theorem 8 (Lovász-Schrijver, 1991). The polyhedron Pn is equal to the

convex hull of the integer feasible solutions of P .

The most common definition of Lovász-Schrijver relaxation is geometric,
and it is also the original definition. Given the a polytope P ⊆ Rn, we
consider a matrix variable X ∈ R(n+1)×(n+1) with row and column indices
going from 0 to n. Matrix X must satisfy the following inequalities: xi0 =

x0i = xii for all i ∈ [n]; xij = xji for every i, j ∈ [n]; if ∑j ajxj − b ≤ 0
then X must satisfy

∑
j

ajxij − bxi0 ≤ 0

for every i ∈ {0} ∪ [n]. Let’s callM the set of points satisfying these in-
equalities.

This matrix satisfies every rank 1 inequality derivable in Lovász-Schrijver
from P : if the quadratic terms xixj is mapped to xij, if xi is mapped to x0i

and each degree zero term is multiplied by x00, thenM satisfies every line
of these rank 1 derivations. We define13 N(P) as the projection over the 13 this is often called the Lovász-Schrijver

operator.variable x00, x01, . . . , x0n, with x00 = 1. So it is clear that N(P) = P1 and
that N(Pt) = Pt+1. Set Nt(P) is the t-th iteration of the operaton N over
P .

Lovász-Schrijver is a Lift and project method to improve on the linear
relaxation. The reason for this name is clear: first the linear program is aug-
mented to≈ n2 variables, and then is projected again to the original variables.
Moving to the larger space allows to get tighter inequalities in the original
space.
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Theorem 9. 14 Let be P a polytope described by nO(1) inequalities. It is 14 L. Lovász and A. Schrijver. Cones of ma-
trices and set-functions and 0–1 optimiza-
tion. SIAM Journal on Optimization, 1:166,
1991

possible to optimize any linear function over Pt in time nO(t).

Proof Sketch. In order to optimize over a linear program using the ellipsoid
algorithm it is sufficient to have a weak separator oracle. In the paper they
show a polynomial time reduction from a weak separator oracle for N(P) to
a weak separator oracle for P .

Sherali-Adams hierarchy

Here we start with a set of polynomial inequalities in variables x1 . . . xn over
{0, 1}.

p1 ≥ 0, p2 ≥ 0, . . . , pm ≥ 0. (9)

A Sherali-Adams proof of a polynomial inequality p ≥ 0 over the same
variables is an equation of the form

∑
1≤l≤m

pl gl + ∑
i
(x2

i − xi)hi + g0 = p (10)

where each
gl = αl ∏

i∈Al

xi ∏
j∈Bl

(1− xj) (11)

with αl ≥ 0 and Al ∩ Bl = ∅; and each hi is an arbitrary polynomial.
The rank of a Sherali-Adams proof is equal the themaximumdegree among

the polynomials
g0 gl pl hi(x2

i − xi). (12)

A refutation of a set of polynomials is a Sherali-Adams proof of −1 ≥ 0.
There are other definitions of rank in literature. For example15 define the 15 Monique Laurent. A comparison of the

sherali-adams, lovász-schrijver and lasserre
relaxations for 0-1 programming. Mathe-
matics of Operations Research, 28:470–496,
2001

Sherali-Adams rank as the degree of the polynomials gl . In that way you
get that Sherali-Adams rank simulates Lovász-Schrijver rank if the initial in-
equalities have degree 1.

While Sherali-Adams is a natural proof system for non-linear inequalities,
the linear case is the one we are interested to.

If {pl ≥ 0}m
l=1 are linear inequalities, then they define a bounded polytope

since we are always under the assumption that 0 ≤ xi ≤ 1. Let’s call this
polytope P . Then we can define St(P) as the polytope obtained by all linear
inequalities obtained through a proof of rank at most t. It is clear from the
definition that Nt(P) ⊇ St+1(P) ⊇ PI , and that

P = S0(P) ⊇ S1(P) ⊇ Sn+1(P) = PI . (13)

Sherali-Adams can be seen as a Lift-and-Project relaxation as well. Con-
sider Y ∈ Rs where s = ( n

≤t), where every coordinate of Y is naturally
indexed by a subset of [n] of size at most t.

Map every monomial m over variables x1, . . . , xn into the variable YI(m)

where I(m) is the set of indices of the variables in m. For example

x2
2x3x5 7→ Y{2,3,5}
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This map translate any polynomial inequality of degree at most t into a
linear inequality of over Rs. Consider all inequalities of degree at most t of
the form gpl ≥ 0 where pl is an initial inequality; g = α ∏i∈A xi ∏j∈B(1−
xj); α ≥ 0 and A ∩ B = ∅, and take the linear inequalities obtained by
translating monomials into Y variables.

Take E to be the set of all vectors Y that satisfy all such linear inequali-
ties. The polytope E satisfies all linear inequalities over the original variables
which are derivable in Sherali-Adams proofs of rank at most t, after project-
ing over (y∅, y1, . . . , yn).

Efficiency of SA: if the linear system has nO(1) initial inequalities then
the polytope St(P) can be described by nO(t) linear inequalities over the YS

variables, with |S| ≤ t. Since this is a linear system, both optimization and
feasibility can be computed in time nO(t).

An example of Sherali-Adams relaxation

Consider the maximum independent set integer program for a graph G =

(V, E).

maximize ∑
v∈V

xv

subject to xu + xv − 1 ≤ 0 for {u, v} ∈ E (14)

0 ≤ xu ≤ 1.

The Sherali-Adams relaxation of rank t is

maximize ∑
v∈V

Y{v}

subject to ∑
T′⊆T

(−1)|T
′ | ·

[
YS∪T′∪{u} + YS∪T′∪{v} −YS∪T′

]
≤ 0

for {u, v} ∈ E,|S ∪ T ∪ {u}| ≤ t, |S ∪ T ∪ {v}| ≤ t

0 ≤ ∑
T′⊆T

(−1)|T
′ |YS∪T′∪{u} ≤ ∑

T′⊆T
(−1)|T

′ |YS∪T′

for {u, v} ∈ E, |S ∪ T ∪ {u}| ≤ t, |S ∪ T ∪ {v}| ≤ t .
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