
Sum of squares and integer programming relaxations Lecture 10 — 4 March, 2014

10. Graph Isomorphism and the Lasserre Hierarchy
Lecturer: Massimo Lauria

http://www.csc.kth.se/~lauria/sos14/

We complete the technical part of the proof that refuting Graph Isomorphism
requires linear degree in the Positivstellensatz proof system even for graphs that
are far from isomorphic.

Recap

Recall that in the last lecture we started proving that refuting Graph Isomor-
phism is hard for SOS proof systems.

Theorem 1. 1 For infinitely many n, there exist graphs G, H with |V(G)| = 1

|V(H)| = n and |E(G) = E(H) = O(n)| that are not 10−18-isomorphic
and such that any PC> refutation of G ∼= H requires degree Ω(n).

Our plan was to reduce random 3-XOR to Graph Isomorphism, and it
only remained to show one missing piece, namely that the graphs GAx=b

and GAx=0 resulting from our construction are far from isomorphic.

Lemma 2. Fix a constant c ≥ 108. Then w.h.p. GAx=b and GAx=0 are not
(1 − 1/95c2)-isomorphic.

We spend the rest of the lecture proving this lemma.

Auxiliary results

First we need to introduce some definitions and properties. The concept of
almost-asymmetry is a generalization of asymmetry. Recall that an object is
asymmetric if its group of automorphisms is trivial.

Definition 3. A (hyper)graph G is (β, γ)-asymmetric if any (1− γ)-automorphism
has at least a (1 − β) fraction of fixed points.

Observe that, in particular, a (0, 0)-asymmetric graph is the same as an
asymmetric graph and that every graph is (β, 1)-asymmetric.

In other words, this definition means that if an almost-automorphism per-
mutes many vertices then it has large error, or that the graph may have local
but not global symmetries.

Theorem 4. Let H be a random 3-uniform hypergraph with n variables and
cn edges for some constant c ≥ 104. Fix a constant e−c/6 < β < 1. Then
w.h.p. H is (β, β/240)-asymmetric.

Observe that the parameter loss in Theorem 4 is only constant.
Now we bound the average degree of large sets of random graphs.

Definition 5. A (hyper)graph G is (ε, D)-degree-bounded if every set of
ε|V(G)| vertices has average degree less than D.

Definition 5 is equivalent to imposing that every fraction of at least ε

vertices has average degree less than D. Observe that for ε = 1 the defini-
tion is equivalent to average degree, and that for ε = 1/n the definition is
equivalent to (maximum) degree.

Scribe: Marc Vinyals 1

http://www.csc.kth.se/~lauria/sos14/

Lecture 10 — 4 March, 2014 Sum of squares and integer programming relaxations

Lemma 6. If a (hyper)graph G is (ε, D)-degree-bounded then every set of
βn vertices is incident to at most (β + ε)Dn edges.

Proof. Add εn vertices to the original set.

We can extract the underlying 3-uniform hypergraph from a 3-XOR by
identifying vertices with variables and constraints by sets of variables, disre-
garding any information about signs. In particular, Ax = b and Ax = 0
have the same underlying hypergraph, and the distribution of hypergraphs
over random 3-XOR is very close to the distribution of random 3-uniform
hypergraphs of the appropriate parameters.

Lemma 7. Let Ax = b be a random (n, cn)-3-XOR for some constant
c ≥ 3. Then w.h.p. the hypergraph of A is (1/c, 100c)-degree-bounded.

The following is an instantiation of a theorem we discussed in the lecture
proving lower bounds for random 3-SAT with concrete parameters.

Lemma 8. Let Ax = b be a random (n, cn)-3-XOR for some constant
c > 105. Then at most a 0.51 fraction of constraints can be satisfied simul-
taneously.

We have all the ingredients needed to state our main technical lemma,
which we will prove in the next section.

Lemma 9. Let Ax = b be a random (n, cn)-3-XOR such that its underlying
hypergraph H satisfies that:

• H is (ε, 100c)-degree-bounded,

• H is (β, γ)-asymmetric,

with 200ε ≤ γ, and let δ = min{1/200, γ/48, ε/95c}. If there is a
(1− δ)-isomorphism between GAx=b and GAx=0, then it is possible to sat-
isfy a 0.9 − 100(ε + β) fraction of constraints of Ax = b simultaneously.

We now set the appropriate parameters to Lemma 9 and complete the
proof.

Proof of Lemma 2. Let Ax = b be a random (n, cn)-3-XOR and let H
be its underlying hypergraph. We choose the parameters ε = 1/c, γ =

200ε = 200/c, and β = 240γ = 48000/c. By Theorem 4, H is (β, γ)-
asymmetric w.h.p.. By Lemma 7, H is (ε, 100c)-degree-bounded w.h.p..
Let δ = ε/95c = 1/95c2. Assume for the sake of contradiction that there
is a (1 − δ)-isomorphism between GAx=b and GAx=0. Then by Lemma 9
we can satisfy a fraction 0.9 − 100(1/c + 48000/c) ≥ 0.8 of the con-
straints of Ax = b simultaneously. But this contradicts Lemma 8, therefore
such almost-isomorphism does not exist.

Proof of technical lemma

We next sketch the proof of Lemma 9, giving the intuition behind the claims
but not making the calculations to establish them.

2 Scribe: Marc Vinyals

Sum of squares and integer programming relaxations Lecture 10 — 4 March, 2014

Let us assume that there is a (1 − δ)-isomorhpism π between GAx=b

and GAx=0. We will show that this isomorphismmust be close to the almost-
isomorphism induced by some assignment τ using the construction we saw
in the last lecture and that the assignment τ satisfies a large fraction of con-
straints.

First we show that the almost-isomorphism π respects the structure in
constraints versus variables of the graph. Let A be the set of constraint in-
dices j ∈ [cn] such that the four vertices of C j are mapped to the four vertices
of some other constraint C0

j′ . Intuitively, 4-cliques are mapped to 4-cliques
or commit an error, so most constraints are mapped to constraints.

Claim 10. |A| ≥ (1 − 19δ)m.

Let B be the set of variable indices i ∈ [n] such that the two vertices
of xi are mapped to the two vertices of some other variable xi ′ . Since most
constraint nodes are already mapped to, most variable nodes are mapped to
variable nodes and most pairs with an edge are mapped to pairs with an edge
to avoid errors, thus most variables are mapped to variables.

Claim 11. |B| ≥ (1 − 95cδ)n.

We now study how variables are mapped among themselves. Let σ :
[n] −→ [n] be the automorphism of variables induced by π in the following
way. If i ∈ B and π(xi → 0) = xi ′ → b, then σ(i) = i ′ . Extend
it arbitrarily to [n] \ B. Again, in order to avoid errors, if (i1 , i2 , i3) are
a constraint then the edges joining constraints and variables are mapped to
edges, which means that (σi1 , σi2 , σi3) is also a constraint.

Claim 12. σ is a (1 − 100ε − 24δ)-automorphism of H, the underlying
hypergraph of Ax = b.

But we assumed that H is asymmetric, so by Definition 3 most of the
domain of σ are fixed points. There is one degree of freedom left for each
variable, though: whether we mapped the two nodes identically of we flipped
them. We define an assignment using this information.

τ(xi) =

b if σ(i) = i and π(xi → 0) = xi → b

arbitrary otherwise
(1)

The following claim finishes the proof of Lemma 9.

Claim 13. Aτ = b is correct in at least a 0.9− 100(ε + β) fraction of the
entries.

Proof sketch of Claim 13. We already argued that most variables are fixed
points. It follows that most constraint nodes connected to fixed variables are
either fixed or map to a constraint node in the same clique. In any case, most
constraints are fixed points too.

This implies that π respects most constraints in the following sense: as-
sume that Cj is a constraint over the variables x1, x2, x3 and that they are
fixed with respect to π. Let (b1, b2, b3) be a constraint node of Cj in GAx=b,
therefore adjacent to the vertex nodes x1 → b1, x2 → b2, x3 → b3. Since

Scribe: Marc Vinyals 3

Lecture 10 — 4 March, 2014 Sum of squares and integer programming relaxations

we assume that π fixes the involved variables and constraints, it maps the
variable nodes xi → bi to xi → b′i , and the constraint node to (b

′
1, b′2, b′3).

By construction of GAx=0, b′1 + b′2 + b′3 = 0, and by construction of τ,
τ(xi) = (bi + b′i). Finally, τ(x1) + τ(x2) + τ(x3) = b1 + b′1 + b2 + b′2 +
b3 + b′3 = b1 + b2 + b3 so τ satisfies the constraint Cj.

References

4 Scribe: Marc Vinyals

	Recap
	Auxiliary results
	Proof of technical lemma

