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Disclaimer: this lecture note has not yet been reviewed by the main lecturer.
It is released as it is for the convenience of the students.

In this lecture we show that the Knapsack problem requires large Posi-
tivstellensatz calculus PC> degree to refute, where the Knapsack problem
states that a sum of n integer variables is equal to some number r. Formally,
we encode the Knapsack problem using the following equations:

f :
n

∑
i=1

xi − r = 0 where r ∈ R

fi : x2
i − xi = 0 for every i ∈ {1, . . . , n}

Constraints fi enforce that variables take 0-1 values. Hence, it follows that the
constraints are satisfiable if r is an integer between 0 and n, and unsatisfiable
if r is outside of that range or non-integral. The latter case of non-integral r is
the one we focus on in this lecture. The lecture is based on the paper by Grig-
oriev, which builds on a result by Impagliazzo, Pudlák, and Sgall 1. Formally, 1 DimaGrigoriev. Complexity of positivstel-

lensatz proofs for the knapsack. computa-
tional complexity, 10(2):139–154, 2001; and
Russell Impagliazzo, Pavel Pudlák, and Jiri
Sgall. Lower bounds for the polynomial cal-
culus and theGröbner basis algorithm. Com-
putational Complexity, 8(2):127–144, 1999

we show the following theorem.

Theorem 1. Let r be a real number such that k < r < n− k. Then we have
that if 0 ≤ k ≤

⌈ n
4
⌉
− 2, the degree of PC> refutation is lower bounded

by 2k + 2. If k >
⌈ n

4
⌉
− 2, then the PC> degree is at least d n

2 e+ 2.

Note that if r is integer, the lower bound is trivial as the constraints are
satisfiable and there are no refutations. In the case when r < 0 or r > n
there are simple constant degree refutations. In general the equational part
is sufficient to have n/2 degree upper bound for any value of r, by adapting
Theorem 4.2 in 2. 2 Russell Impagliazzo, Pavel Pudlák, and Jiri

Sgall. Lower bounds for the polynomial cal-
culus and theGröbner basis algorithm. Com-
putational Complexity, 8(2):127–144, 1999

As the initial constraints are just equations, we can concentrate on the part
of Positivstellensatz calculus which only deals with equations. That is, we
concentrate on the proof system that has the following inference rules

linear combination
p q
αp + βq

variable multiplication p
xi p

where p and q are previously derived polynomials or original constraints, and
α, β ∈ R. We can derive a polynomial p if

p = p′ + ∑
i

h2
i (1)

where p′ has been inferred using the inference rules and hi’s are arbitrary
polynomials. A refutation of initial constraints is the derivation of p = −1.

We will show that for the Knapsack problem this full generality is not
needed and that the one-shot version of Positivstellensatz calculus is enough.
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This is we can find polynomials g, gi such that p′ = f g+∑i figi with degree
the minimum over all derivations of p′ using the inference rules.

In the proof of Theorem 1 we proceed by simplifying the refutation and
then showing the lower bound for the simplified refutation. First, we can
assume that all polynomials are multilinearized and we denote the multilin-
earized version of the polynomial p by p. That is, we have

∏
i∈S

xαi
i = ∏

i∈S
xi where αi 6= 0 for every i in S (2)

This holds as the difference p− p is equal to ∑i figi for some gi, where fi are
defined as in the beginning of the lecture, and where deg( figi) ≤ deg(p).
Hence, we can make the translation without the increase in degree. We also
use the following lemma which is proved in 3 as Lemma 5.2. 3 Russell Impagliazzo, Pavel Pudlák, and Jiri

Sgall. Lower bounds for the polynomial cal-
culus and theGröbner basis algorithm. Com-
putational Complexity, 8(2):127–144, 1999

Lemma 2. For any homogeneous multilinear polynomial g with degree d <
n
2 , the degree of f · g is exactly d + 1, where f is the Knapsack equation.

The lemma states that f does not cancel out when wemultiply by a polyno-
mial of small enough degree. The proof follows by considering a ( n

d+1)× (n
d)

matrix M indexed by subsets of [n], where MI,J = 1 if J ⊆ I and 0 other-
wise. It can be shown that M is a full rank matrix4 when d < n

2 . Taking a 4 Daniel Henry Gottlieb. A certain class
of incidence matrices. Proceedings of
the American Mathematical Society,
17(6):1233–1237, Dec 1966

vector representing a degree d homogeneous polynomial g and multiplying it
with the matrix M we get the vector representation of the polynomial f g. As
the matrix is full rank, the polynomial f g needs to have a monomial of de-
gree d + 1 with a non-zero coefficient and, hence, the degree of f g is exactly
d + 1.

Using the previous lemma and observation, we get the following theorem
(Theorem 5.1 in 5). 5 Russell Impagliazzo, Pavel Pudlák, and Jiri

Sgall. Lower bounds for the polynomial cal-
culus and theGröbner basis algorithm. Com-
putational Complexity, 8(2):127–144, 1999

Theorem 3. If p is derivable in degree d n
2 e in the equational part of PC>

then we can write p as
p = f g + ∑

i
figi,

where

• g is multilinear, i.e., g = g,

• deg(p) = deg(g) + 1, and

• deg( figi) ≤ deg(p).

The proof is by induction over the derivation steps. This shows that for
the Knapsack problem the simpler way to deduce polynomials is as powerful
as the general system, which does not hold in general. Hence, we have the
following consequence of the theorem that we use in our lower bound proof.

Corollary 4. Any refutation of the Knapsack problem of degree d ≤ n
2 in

Positivstellensatz calculus PC> has the form

1 + ∑
j

h2
j = f g + ∑

i
figi,
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where the degree of h2
j is at most d.

The degree bound on h2
j follows by noting that the right hand side has

degree at most d and, hence, if h2
j had degree greater than d there would be

terms of too high degree that would not cancel out.
Now, we proceed with the usual argument where we define an operator B

from monomials to real numbers and show that B is always 0 when applied
to the right hand side in the Corollary 4 and for squares it is greater than or
equal to 0. Hence, applying the operator to the equation in the Corollary 4
would give us 1 ≤ 0 implying that we cannot refute Knapsack in degree less
than n

2 and proving Theorem 1.
Before we define the operator B, we first define numbers Bk as

Bk =
r
n

r− 1
n− 1

· · · r− k + 1
n− k + 1

, (3)

where in addition we define B0 = 1. Then, the result of the operator B on a
multilinear monomial is defined as

B

(
∏
i∈I

xi

)
= B|I|. (4)

We extend the operator to non-multilinear monomials and polynomials in
the usual way such that B(x2m) = B(xm) and the operator is linear. The
reason why we are only interested in the size of the monomial when applying
the operator is that the formula is symmetric. Hence, we can change the
derivation so that it has variables swapped around, which would change the
content but not the degree of any term. Now, we prove some properties of the
operator B.

Proposition 5. For the operator B defined above, the following hold

1. B( f g) = B( figi) = 0 and

2. B(1) = 1.

Proof. For B( figi) = 0 we just note that B does not take into account the
exact degree of variables occurring in monomials and that fi = x2

i − xi.
Hence,by definition B will evaluate to 0 on (x2

i − xi)gi. Also, B(1) = 1 by
definition.

Now, consider B( f X I) and we have that

B( f X I) = (n− |I|)B|I|+1 + (|I| − r)B|I| = 0, (5)

where the first equality follows by noting that for i ∈ I the operator is equal
to B

(
xiX I) = B(X I) = B|I| and there are |I| such indices i, and that for

remaining (n − |I|) indices for which i /∈ I we have B
(
xiX I) = B|I|+1.

Also, the free term −r gets multiplied by X I resulting in −rB|I| after the
application of the operator B. The second equality follows by just expanding
the definition of Bk. Hence, we have shown that B( f t) = 0 for all terms t
in g and by linearity B( f g) = 0.

The rest of this and the following lecture are dedicated to proving that when
applying B to a square we get a non-negative value. We define the quadratic
form Q on multilinear monomials X I and X J as Q

(
X I , X J) = B

(
X I∪J) and

extend it to polynomials in the usual way. Now, we can express formally the
requirement that B(h2

j ) ≥ 2, proving which will conclude our proof.
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Lemma 6. If `− 1 < r < n− `+ 1 then Q(p, p) ≥ 0 for any polynomial
p of degree at most `.

The proof of the lemma proceeds in the following three steps:

1. We decompose the space P≤` of polynomials of degree at most ` into
disjoint subspaces Si so that we have

P≤` = S1 ⊕ S2 ⊕ S3 ⊕ · · · ⊕ Si ⊕ · · · (6)

2. We show that the Q, maps each subspace Si into itself. That is, for v ∈ Si

we have Qv ∈ Si.

3. We show that Q is positive semidefinite in each of the subspaces Si.

Now we proceed to decompose the space of polynomials into a chain of
subspaces and define two chain operators. The factor spaces of these opera-
tors will satisfy the previous three points. We use Pt to denote the space of
homogeneous polynomials of degree t for t ≤ `. Now we define two types
of linear operators Ct : Pt → Pt+1 and Dt : Pt+1 → Pt. These two operators
can be viewed as a sort of inverses of one another, although they are not exact
inverses.

Let us first define the operator Ct : Pt → Pt+1. For a given homogeneous
polynomialU = ∑I UI X I in Pt, we define the coefficient of themonomial X J

in the polynomial Ct(U) as

[Ct(U)]J = ∑
I⊂J
|I|=t

UI . (7)

For example, if we are interested in the coefficient of x2x3x4 in Ct(U), this
means that we have J = {2, 3, 4} and, hence, we are summing up the coeffi-
cient of x2x3, x2x4, and x3x4 in the monomial U. Another example is if U
is a single monomial X I , then Ct(X I) = ∑i/∈I xiX I as every J ⊃ I will have
the same coefficient as X I .

The operator Dt : Pt+1 → Pt is defined in the following way. Let V =

∑|J|=t+1 VJ X J be some polynomial in Pt+1. Then the coefficient of X I in the
polynomial Dt(V) is defined as follows

[Dt(V)]I = ∑
J⊃I

|J|=t+1

VJ . (8)

For example, if V is a single monomial X J , the operator Dt transforms it
into Dt(X J) = ∑i∈J X J/xi where we are taking all possible subsets I of J
and assigning to X I in Dt(X J) the same coefficient as the one that is assigned
to X J in the original polynomial V. For two concrete examples, we have that

D2(x1x2x4) = x1x2 + x2x4 + x1x4 (9)

D0(x1 − x2) = 1− 1 = 0 (10)

The subspaces we are interested in are a sequence of subspaces Ai of ho-
mogeneous polynomials of degree i defined as follows:

A0 := P0 (11)

At+1 := Ker Dt for t ≥ 0. (12)
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That is, we have that a polynomial U is in At+1 if and only if for every set I
of size t, the sum ∑J⊃I UJ is equal to 0.

For a degree t polynomial U ∈ At we consider polynomials of the follow-
ing form

zm = Cm−1Cm−2 · · ·Ct(U) for t < m ≤ `, (13)

where zm is a homogeneous degree m polynomial. The coefficient of XM in
zm, for M ⊆ [n] and |M| = m, can be expressed as

[zm]M = (m− t)! ∑
I⊂M
|I|=t

UI . (14)

This is because there are (m− t) elements that occur in M but not in I and,
hence, we have (m − t)! different orders of removing elements from M to
reach I. Thus, we get the linear scaling factor of (m− t)!.

Polynomials zm are important because in the end we want to study the
polynomials we get by taking a degree t polynomial U ∈ At and multiplying
it by the the summation ∑i xi raised to some power. As this summation is a
part of the Knapsack constraint, finding a good representation of the resulting
polynomial is helpful in finishing the proof. We can show that the polynomial
we get after multilinearization is the following

(
n

∑
i=1

xi

)m−t

U = Cm−1Cm−2 · · ·Ct(U)+

+ αm−1Cm−2Cm−3 · · ·Ct(U) + · · ·+
+ αiCi · · ·Ct(U) + · · ·+ αt+1U, (15)

where αi are coefficients that depend only on m and t and not on the concrete
polynomial U. The proof is just by a simple expansion of the resulting poly-
nomial where we do not need to care about the concrete values of αi. Hence,
it follows that U can be expanded as the sum of different Ci operators applied
to U.
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