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Disclaimer: this lecture note has not yet been reviewed by the main lecturer.
It is released as it is for the convenience of the students.

In this lecture, we complete the proof initiated in Lecture 11. In particular,
we prove that if `− 1 < r < n− `+ 1 and ` ≤ bn/2c, then the quadratic form
Q defined in Lecture 11 is positive semi-definite over the space of polynomials
of degree at most `.

Let P≤` be the space of multilinearized polynomials over K in n variables of
degree at most ` andwith Pt ⊆ P≤` the space of homogeneous polynomials of
degree t. We have that each Pt is a vector space: given a polynomial p ∈ Pt

the I-th coordinate pI of that polynomial is just the coefficient of the term
∏i∈I xi as it appears in p.

We recall the definition of the quadratic form Q of monomials from the
previous lecture: let

Bk :=
r(r− 1) · · · (r− k + 1)
n(n− 1) · · · (n− k + 1)

,

then
Q(xI , xJ) = B(XI∪J) = B|I∪J|.

Theorem 1. If `− 1 < r < n− `+ 1 and ` ≤ bn/2c then Q � 0 over
P≤`1. 1 DimaGrigoriev. Complexity of positivstel-

lensatz proofs for the knapsack. computa-
tional complexity, 10(2):139–154, 2001The proof will be based on the following three steps corresponding to the

sections of this lecture:

• Decompose P≤` into a direct sum of spaces P(u);

• Show that Q as a linear operator over P≤` is invariant on each P(u);

• Q � 0 on each P(u).

Decomposition of the space P≤`

Consider the following two linear operators: Ct : Pt → Pt+1 and Dt :
Pt+1 → Pt. Let p = ∑I:|I|=t pI xI be a polynomial in Pt, where xI :=
∏i∈I xi.

Ct(p) := ∑
I:|I|=t

∑
i 6∈I

pI · xI∪{i}. (1)

Similarly we define Dt for polynomials q = ∑J:|J|=t+1 qJ xJ in Pt+1:

Dt(q) := ∑
J:|J|=t+1

∑
j∈J

qJ · xJ\{j}. (2)

Starting with some polynomial u ∈ Pt we want to lift it to some u(m) ∈
Pm for each m ≤ `:

u(m) :=


0 if m < t

u if m = t

Cm−1(u(m−1)) otherwise
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Notice that given u = ∑I uI xI ∈ Pt then the coefficient of u(y) corre-
sponding to a set Y of size y is

[u(y)]Y = ∑
I⊆Y

uI .

For u ∈ Pt let P(u) := Span
({

u(m)
}

m≤`

)
. We observe that we can

represent P(u) using another basis. This is not needed in this section but we
put it here just for matter of clarity. It will be needed in the next section.

Proposition 2. Let u ∈ Pt then

P(u) = Span
(

u,
{
(∑ xi − r)(∑ xi)mu

}
m∈[`−t−1]

)
,

where given a polynomial q with q we denote its multilinearized version.

Proof. It is sufficient to prove that for each m ∈ [` − t − 1] we have that
(∑i xi)m−tu ∈ Span(u(t), . . . , u(m)) and the coefficient of u(m) is not 0. In
order to do this we just notice that if m > t then

u(m) = ∑
I: |I|=t

∑
J⊆Ic

|J|=m−t

uI xI∪J .

Hence it is easy to see that the expansion of (∑i xi)m−tu can be expressed as a
linear combination of u(t), . . . , u(m). Then also (∑ xi − r)(∑ xi)mu has the
same property hence we can use those polynomials as a basis of P(u).

This section is devoted to prove the following theorem:

Theorem 3 (Decomposition of P≤`).

P≤` =
⊕̀
t=1

⊕
u∈Basis(Ker Dt−1)

P(u). (3)

Clearly we have a decomposition of P≤` as a direct sum P≤` =
⊕`

t=0 Pt

but we need a more fine grained decomposition inside each Pt. Then we will
rearrange the spaces in a way somehow transversal w.r.t. the decomposition
above.

Lemma 4. Let m < ` ≤ bn/2c then for each u ∈ Ker Dt−1

DmCm(u(m)) = (n−m− t)(m− t + 1)u(m).

Proposition 5. Let A0 := P0 and At := Ker Dt−1, for t > 0, then

Pt = At ⊕Ct−1(At−1)⊕Ct−1Ct−2(At−2)⊕ · · · ⊕Ct−1Ct−2 · · ·C0(A0).

Proof. By induction on t and using Lemma 4 we have that DtCt(Pt) = Pt.
This imply that Ker Dt ∩ Ct(Pt) = {0} and then by a dimension argument
we have that

dim Pt+1 = dim Ker Dt + dim ImDt = dim Ker Dt + dim Ct(Pt),

where the last equality follows from the fact that dim Ct(Pt) = dim ImDt =

dim Pt. Hence Pt+1 = Ker Dt⊕Ct(Pt) and this can be expanded obviously
in the form required by the proposition.
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We are almost done for the desired decomposition of P≤`:

P≤`
=

P0 = A0

⊕
P1 = A1 ⊕ C0(A0)

⊕
P2 = A2 ⊕ C1(A1)⊕ C1C0(A0)

⊕
...
⊕
P` = A` ⊕ C`−1(A`−1)⊕ . . .⊕ C`−1C`−2 · · ·C1C0(A0)

Hence we can group together by diagonals the objects referring to the
same At obtaining the desired decomposition:

P≤` =
⊕̀
t=0

⊕
u∈Basis(At)

P(u).

The linear operator associated to Q is invariant on P(u)

Proposition 6. Let Q(y,t) be the restriction of Q seen as a linear operator
from Pt to Py and u ∈ Pt and

µy,t :=
t

∑
j=0

(−1)j
(

t
j

)
By+j.

then
Q(y,t)(u) = µy,tu(y).

and Q maps P(u) in itself.

Proof. Before starting the proof we recall that, by definition, u(y) = 0 if
y < t. Let u ∈ At, u = ∑I: |I|=t uI xI and [Q(y,t)(u)]Y be the component of
Q(y,t)(u) corresponding to the set Y of size y, i.e. the coefficient of the term
xY of that image.

[Q(y,t)(u)]Y = ∑
I: |I|=t

B(xYxI)uI = ∑
X⊆Y

∑
Y∩I=X
|I|=t

B(xYxI)uI =

= ∑
X⊆Y

∑
Y∩I=X
|I|=t

By+t−|X|uI =

=
t

∑
j=0

By+j ∑
I: |I∩Y|=t−j

uI .

(4)

By the inclusion-exclusion principle we have then, if y < t Q(y,t)(u) = 0,
and in the other case

[Q(y,t)(u)]Y =
(4)· · · =

t

∑
j=0

By+j(−1)j
(

t
j

)
∑

I: I⊆Y
|I|=t

uI =

=
t

∑
j=0

By+j(−1)j
(

t
j

)
[u(y)]Y = µy,t[u(y)]Y.
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We have now to prove that Q maps P(u) in itself. In order to do this we
prove by induction on m that Q(u(m)) ∈ P(u). The base case is what we
just finished to prove. Moreover, as proved in Proposition 2 we have that
(∑i xi)m−tu ∈ Span(u(t), . . . , u(m)), from which follows immediately that

(∑
i

xi − r)(∑
i

xi)m−tu ∈ Span(u(t), . . . , u(m+1)),

with non-zero coefficient of u(m+1). Hence

Q((∑
i

xi − r)(∑
i

xi)m−tu) ∈ Span(Q(u(t)), . . . , Q(u(m+1))),

but Q((∑i xi − r)(∑i xi)m−tu) = 0 and by induction hypothesis we have
that Q(u(j)) ∈ P(u) for each j ≤ m, hence we have also that Q(u(m+1)) ∈
P(u).

Q is positive semidefinite

Lemma 7.

µy,t =
∏

y
j=1(r + 1− j)∏t−1

j=0(n− r− j)

n(n− 1) · · · (n− y− t + 1)
. (5)

Proof. Consider the following functional equation for some f : N×N →
Z  f (y, 0) = By

f (y, t + 1) = f (y, t)− f (y + 1, t)
(6)

There is only one possible solution of (7). We show that both sides of equation
(5) are solutions of (7), hence they are equal.

Let g(y, t) the RHS of equation (5). Clearly we have that g(y, 0) = By

and

g(y + 1, t) + g(y, t + 1) =

= g(y, t) · r− y
n− y− t

+ g(y, t) · n− r− t
n− y− t

= g(y, t).

Regarding µy,t clearly we have that µy,0 = By. To prove the other part of
equation (7) just observe that

µy,t+1 =
t+1

∑
j=0

(−1)j
(

t + 1
j

)
By+j =

(?)
=

t

∑
j=0

(−1)j
(

t
j

)
By+j +

t+1

∑
j=1

(−1)j
(

t
j− 1

)
By+j =

= µy,t +
t

∑
k=0

(−1)k+1
(

t
k

)
By+k+1 =

= µy,t − µy+1,t.

The equality (?) follows from the Newton identity (n
k) + ( n

k−1) = (n+1
k ).

Lemma 8. Let y ≥ t then µt,y = (n−2t
y−t )µy,t.

Proposition 9. Q has rank ≤ 1.
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Proof. We use thematrix associated to the quadratic form Q to define a linear
operator q. The rank of Q is exactly the dimension of the image of q and this is
invariant w.r.t. a change of basis. We use the basis of P(u) used in Proposition
2. As we already observed in the last lecture we have that B((∑i xi − r)p) =
0 for any polynomial p. Hence the image of q has dimension ≤ 1.

Theorem 10 (Q is positive-semidefinite). Let t ≤ ` and u ∈ Ker Dt−1, if
`− 1 < r < n− `+ 1 and ` ≤ bn/2c then Q � 0 over P(u). Hence, by
Theorem 3, Q � 0 over P≤`.

Proof. Let M be the matrix with (y, t)-entry µy,t. By the previous proposi-
tion and Proposition 6 we have that M has rank ≤ 1. Hence,

µt,tµy,y − µy,tµt,y = 0. (7)

By Lemma 8 µy,tµt,y ≥ 0 and hence by equation (7) then sgn(µt,t) =

sgn(µy,y). But by Lemma 5 we have that µt,t ≥ 0. And if we are in the
range of parameters considered in the hypothesis then µt,t > 0. Hence
Tr(M) = ∑`

i=t µi,i > 0. But this means, as rank(M) = 1 that the only
non-zero eigenvalue of M is positive. Hence Q � 0 over P(u).
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