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work with regular graphs, that is graphs where all vertices have the same
number of edges incident to them. The central notion for this lecture is the
following notion of expansion of a set of vertices in a graph G.

Definition 1. For a regular graph G = (V, E) and a set of vertices S ⊆ V,
the expansion Φ(S) of S is defined as

Φ(S) = Pr
{x,y}∈E

(y /∈ S | x ∈ S) .

The volume µ(S) of a set S ⊆ V is defined as µ(S) = Pr{x,y}∈E(x ∈ S).

Aswe are working with regular graphs, the volume is also equal to µ(S) =
Prx∈V(x ∈ S). If we take the whole setV the expansion we get is Φ(V) = 0,
because all vertices are in V while none are outside of V. Also, if we look at a
single vertex v ∈ V, then we define the expansion Φ({v}) = 1 as every edge
connects two distinct vertices. Furthermore we have Φ(φ) = 1, in which φ

denotes the empty set.
We also identify the d-regular graph G with its adjacency matrix, where

rows and columns correspond to vertices in the graph and Gx,y = 1/d if {x, y}
is an edge in G and 0 otherwise. For two real-valued functions f , h : V → R,
we define the scalar product 〈 f , h〉 to be the expectation of f (x)h(x) taken
over vertices x ∈ V, that is 〈 f , h〉 = Ex∈V f (x)h(x). Note that this def-
inition is a linear factor off from the standard definition we would get from
viewing f and h as two vectors indexed by x ∈ V. In order to preserve known
relations we also define the p-norm ‖ f ‖p =

(
Ex∈V f (x)p)1/p. We drop the

subscript when p = 2, that is ‖ f ‖ = ‖ f ‖2.
For two function f , h : V → R, we are interested in the following bilinear

form 〈 f , Gh〉. Note that we can write the form as follows:

〈 f , Gh〉 = E
{x,y}∈E

f (x)h(y), (1)

because [Gh]x = E{x,y}∈E h(y) as by definition of the matrix G we sum
up all h(y) that correspond to neighbors y of vertex x and then divide by d,
which is the number of neighbors of x. Combining this observation with the
definition of the scalar product we get the equation in (1).

Using bilinear forms we can write the expansion of a vertex set S as

Φ(S) =
〈1S, G(1− 1S)〉
‖1S‖2 , (2)

where 1 is a vector consisting of only 1’s, while 1S has 1 at positions v ∈ S
and 0 elsewhere. This follows from noting that Pr{x,y}∈E(x ∈ S ∧ y ∈
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S′) = E{x,y}∈E 1S(x)1S′(y) for any two sets of vertices S, S′ ⊆ V, and the
expectation is just the scalar product 〈1S, G1S′〉. Also µ(S) = ‖1S‖2. The
previous equation can also be written as

Φ(S) = 1− 〈1S, G1S〉
‖1S‖2 . (3)

Definition 2. Consider a regular graph G = (V, E). We say that G is a
δ-small set expander if for every set of vertices S ⊆ V such that µ(S) ≤ δ it
holds that Φ(S) ≥ 0.9.

A family of graphs {GN} is a small-set-expanders if there exists a δ0 > 0
such that every graph in the family is a δ0-small set expander.

Note that this definition of expansion differs from the “standard” one in
that the “standard” definition sets δ to 1/2. As we can take a much smaller δ

we can require larger expansion.
Themotivation for this work is the Small Set ExpansionHypothesis, which

states that it isNP-hard to distinguish between the case when a given graph is
a small set expander and the case when the graph has a small set with very bad
expansion (close to 0). The importance of this hypothesis is that it implies the
Unique Games Conjecture, which is an important conjecture in the hardness
of approximation.

In particular, when we consider Sum-Of-Squares proof system, the Small
Set Expansion Hypothesis predicts that there exists a family of small set ex-
panders that requires a degree nΩ(1) to prove that the graph is not a small set
expander. As a small number of large eigenvalues implies the existence of
small degree Sum-Of-Squares proof, it means that we want to find a family
of small set expanders that has nΩ(1) eigenvalues close to 1.

In this lecture we discuss the result that shows that there exists a family of
expanders that almost has the wanted property of having a many eigenvalues
close to 1. However, the result fails at providing the degree lower bound
for the Sum-Of-Squares proof system as the constructed expanders still have
small degree proofs.

We define Rε(G) to be the number of eigenvalues of the graph G that are
at least 1− ε. For example, if we take the graph G to be a disjoint union of
1/δ0 “standard” expanders on δ0N vertices, then G is a small set expander as
every subgraph is an expander. Also, we have that Rε(G) = 1/δ0, because
eigenvalues that contribute come only from the partitions S that select each
disjoint unit. But this does not work for us as Rε = O(1) and does not grow
with the size of the graph. In the rest of the lecture we discuss how to get
such graphs.

We need the following result, which can be viewed as sort of inverse
Cauchy-Schwarz inequality.

Theorem 3 (Hypercontractivity). For a function f on the hypercube {0, 1}R,
of degree k (when f is written as a multilinear polynomial over reals), it holds
that

E
{0,1}R

f 4 ≤ 9k

(
E
{0,1}R

f 2

)2

.

The family of graphs which will have the desired properties is the family of
so-called Cayley graphs whose vertices are elements of some subspace ofFR

2 ,
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and edges are defined by the difference relation between vertices. Formally,
we have the following definition.

Definition 4 (Cayley graph). For some subspace D of Fn
2 and a subset T ⊆

FR
2 , the Cayley graph Cay(D, T ) is a graph such thatD is the set of vertices

and there is an edge between x and y in D if (x− y) ∈ T .

First we show a simpler result that a particular type of Cayley graphs are
good expanders with log n large eigenvalues, and then we discuss how to
strengthen this result so that the number of large eigenvalues is close to nΩ(1).
We show the following theorem.

Theorem 5. Let T be some subset of FR
2 . If

1. Et∈T |t| ≤ εR and

2. for every S ⊆ [R] such that |S| > k, it holds λS ≤ 0.01,

then the Cayley graphCay(FR
2 , T ) has R4ε(Cay(FR

2 , T )) ≥ R/2 andΦ(S) ≥
0.99− 2kµ(S)1/4 for every subset of vertices S.

The useful thing to note here is that the character functions χS(x) =

(−1)∑i∈S xi , for every subset S ⊆ [R], are eigenvectors of the Cayley graph
G = Cay(FR

2 , T ). An equivalent representation of χS(x) is as a degree |S|
polynomial χS(x) = ∏i∈S(1− 2xi). To see that χS are eigenvectors of G
we take the previous observation that [Gh]x = E{x,y}∈E h(y) and apply it to
the character noting that neighbors of x in the Cayley graph are (x + t) for
t ∈ T :

(GχS)x = E
t∈T

χS(x + t) (4)

= E
t∈T

χS(x)χS(t) (5)

= χS(x) E
t∈T

(−1)∑i∈S ti . (6)

The second equality follows from the property of the character function, and
we can see that Et∈T (−1)∑i∈S ti does not depend on x, but only on S. Hence,
we denote it by λS and we have GχS = λSχS.

Lemma 6. If Et∈T |t| ≤ εR, then R4ε ≥ R/2.

Proof. By the previous observation λ{i} is equal to

λ{i} = E
t∈T

(−1)ti = 1− 2 Pr
t∈T

(ti = 1), (7)

where the last equality follows from the observation that (−1)ti = 1 −
2 Pr(ti = 1) and summing up over all T and dividing by |T | gives the prob-
ability Prt∈T (ti = 1). As we assume that Et∈T |t| ≤ εR, we have that for at
least R/2 coordinates i the probability Prt∈T (ti = 1) is at most 2ε. Hence,
at least R/2 eigenvalues λ{i} have their value lower bounded by 1− 4ε and
we proved the lemma.

With the previous lemma we have shown the part of the Theorem 5 that
states that we havemany eigenvalues close to 1. Nowwewill show the second
part that such graphs have the requirement on the Φ(S).
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Lemma 7. If for every S ⊆ [R] such that |S| > k, it holds λS ≤ 0.01, then
Φ(S) ≥ 0.99− 2kµ(S)1/4 for all S.

Proof. We take the projection operator P that projects a vector into subspace
U defined as U = Span

{
χS | λS ≥ 0.01

}
. By the contrapositive of the

assumption of the lemma, we have that for every χS that generates U it holds
that |S| ≤ k. Hence, we have that U is a subspace of degree k polynomials.

Write the projector P as the matrix and then it holds that

0.01I + P � G, (8)

where I is the identity matrix. This is because χS are eigenvectors of G.
Hence, if we look at P and G as written in basis defined by χS, we have that
G would be the diagonal matrix with λS on its diagonal and P is a diagonal
matrix with 1 at positions corresponding to λS ≥ 0.01 and 0 elsewhere.
Hence, 0.01I + P is a diagonal matrix with all values on diagonal greater
than the values on the diagonal of matrix G, because when λS ≥ 0.01 the
diagonal of P is set to 1 and otherwise the identity matrix sets it to 0.01.

From the previous equation and properties of positive semidefinite matri-
ces we get that 〈 f , G f 〉 ≤ 〈 f , (0.01 + P) f 〉. Hence, for any vector 1S we
have

〈1S, G1S〉 ≤ 0.01‖1S‖2 + 〈1S, P1S〉. (9)

Note that ‖1S‖2 = µ(S), so we proceed by bounding 〈1S, P1S〉 in terms of
‖1S‖2. We use Hölder’s inequality to bound this scalar product:

〈 f , g〉 ≤ ‖ f ‖p‖q‖q, (10)

where 1/p + 1/q = 1, p, q ≥ 1. Applying this inequality to 〈1S, P1S〉 and
setting p = 4/3 and q = 4, we get

〈1S, P1S〉 ≤ ‖1S‖4/3‖P1S‖4. (11)

As 1S is 0-1 valued, we have that ‖1S‖4/3 = µ(S)3/4. By hypercontractivity
we have that for ‖P1S‖4 there is a constant k such that ‖P1S‖4 ≤ 2k‖P1S‖2.
For 2-norm it holds that when projecting we have the following inequality
‖Px‖ ≤ ‖x‖ and, hence, it holds that ‖P1S‖4 ≤ 2kµ(S)1/2. Thus, we have

〈1S, P1S〉 ≤ µ(S)3/42kµ(S)1/2 ≤ 2kµ(S)1/2µ(S). (12)

Putting (12) into (9), we get that

〈1S, G1S〉 ≤
(

0.01 + 2kµ(S)1/4
)

µ(S), (13)

and as Φ(S) = 1− 〈1S ,G1S〉
‖1S‖2 , we have that Φ(S) ≥ 0.99− 2kµ(S)1/4 for

any set S.

Taking the Cayley graph with points defined by all vectors in FR
2 does not

give us the result, as we have shown that there are only R large eigenvalues,
while the whole space has 2R points. So, we cannot beat the bound of log n
large eigenvalues. But, if we require just that Rε = Ω(log n), then we can
take T to be all vectors that have weight ε, which turns out to satisfy the
conditions of the theorem.

To actually get close to polynomial bounds we will use a subspace D of
FR

2 that is much smaller than the whole space FR
2 . We can show the following

theorem.

4 Scribe: Mladen Mikša



Sum of squares and integer programming relaxations Lecture 13 — 31 March, 2014

Theorem 8. Let T be some subset of FR
2 andD be the linear space spanned

by T . Let C = D⊥ be the dual of D (set of vectors orthogonal to D). If

1. Et∈T |t| ≤ εR,

2. for every α ∈ FR
2 such that the distance dist(α, C) between α and C is

greater than k, it holds Et∈T (−1)〈α,t〉 ≤ 0.01, and

3. k ≤ (dist(C)− 1)/4,

then the Cayley graphCay(D, T ) has R4ε(Cay(D, T )) ≥ R/2 andΦ(S) ≥
0.99− 2kµ(S)1/4 for every subset of vertices S.

The first two conditions are analogous to the two conditions in Theorem
5. In the proof there are not much more changes and the goal is just to do the
same calculations as in Theorem 5. The two things that change are that some
characters might become the same in this subspace, that is χS(x) = χS′(x)
for all x ∈ D and where S 6= S′. But this is not a big problem and we still get
the same number R/2 of large eigenvalues. The second problem is that we
need the hypercontractivity to hold on this restricted space D. Here the third
condition restricting the smallest distance between elements of C helps, and
we can show that vectors are sufficiently far apart making hypercontractivity
true on D.

ChoosingD to be the appropriate Reed-Muller code and T to be the set of
its minimal codewords, we get that the Cayley graphs Cay(D, T ) are small
set expanders with almost nΩ(1) eigenvalues close to 1. Formally, we have
the following corollary.

Corollary 9. There exists a family of graphs {Gn}n such that every Gn is
a small set expander and Rε = 2(log n)1/ log(1/ε) , where n is the number of
vertices in the graph.

Hence, we have shown that there is a family of small set expanders with
a lot of eigenvalues close to 1. Unfortunately, these expanders do not give
the degree lower bound for the Sum-Of-Squares proof system, as they can be
refuted in constant degree. In order to make this formal, the system we are
refuting is

∑
v∈V

xv = δ|V|

∑
{u,v}∈V

xuxv ≥ 0.1δ|E|

x2
v − xv = 0

We interpret the variables to denote that v ∈ S if xv = 1, and v /∈ S if
xv = 0. The first condition then states that we are looking at set S of size
δ|V|, that is µ(S) = δ. The second condition states that such a set S has
at least 0.1µ(S) fraction of the edges in it and, hence, at most 0.9µ(S)|E|
edges are crossing its border giving us Φ(S) ≤ 0.9. The third condition is
just the standard one that encodes that either we have vertex v in S or not.
Thus, the constraints encode that there exists a set with measure µ(S) = δ

and expansion Φ(S) ≤ 0.9.
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In refuting this claim on our small set expanders, the main point is that we
can run our proof that the constructed Cayley graphs are good expanders in
small degree Sum-Of-Squares proof, that is we can prove Lemma 7.

The main problem in using the Sum-Of-Squares to prove that the graph is
a small set expander is in proving the hypercontractivity inequality using the
Sum-Of-Squares. That is, the problem is to prove that

E
{0,1}R

(P1S)
4 ≤ 9k

(
E
{0,1}R

12
S

)2

.

But, in our case both the left-hand and the right-hand side will be degree 4
polynomials, so proving that their difference is greater than or equal to 0 in
the Sum-Of-Squares proof system involves only degree 4 reasoning. Plugging
this into the rest of the proof we can get a constant degree Sum-Of-Squares
refutation of the fact that our graph is not an expander.
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