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14. Short codes and sum of squares II.
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Disclaimer: this lecture note has neither been reviewed by the main lecturer,
nor peer-review by any other student. It is released as it is for the convenience
of the students.

This lecture continue on the topic of short codes and SOS. Two examples
are discussed. The first is the example of Hypercube, and the second is the
Reed-Muller codes. The lecture is also based on the same paper1 from Leture 1 Boaz Barak, Parikshit Gopalan, Johan Hås-

tad, Raghu Meka, Prasad Raghavendra, and
David Steurer. Making the long code shorter.
In Proceedings of the 53rd Annual Sympo-
sium on Foundations of Computer Science
(FOCS ’12), pages 370–379, 2012

13.

Example on Hypercube

We want to look at a graph which is a small set expander and that has many
eigenvalues that are ≥ 1− ε. Consider a graph G with V = {0, 1}R and
connect vertices {x, y} if d(x, y) = εn. For a Cayley graph: V = {0, 1}R,
such that there is an edge between x and x + t if t ∈ T ⊆ FR

2 . It is always
true that the eigenvalues

λα = E
t∈T

[χα(t)],

where χα(t) are the corresponding characters. So, for G where the number
of vertices is 2n, we have

λα = (1− 2ε)|α|.

This is a large number if |α| is small, and in particular when |α| = 1. We
want to check how many eigenvalues ≥ 1− ε. We need

(1− 2δ)|α| ≥ 1− ε,

which is true if |α| · 2δ ≤ ε, which implies that for all |α| ≤ ε
2δ , the eigenvaluesλα

will be large. We note that if we have smaller δ, we get larger number of large
eigenvalues.

Is the hypercube a small set expander? We shall look at the bilinear form

〈1S, G1S〉

from the last lecture, which we want to bound. The Fourier expansion of 1S

is given by
1S(x) = ∑

α

1̂αχα(x)

We can split this sum according to the size of eigenvalues so that

1S = f small + f large

in which the f small corresponds to the large eigenvalues, k ≤ |α|, and the
f large corresponds to the small eigenvalues, k > |α|. Noting that

G1S(x) = ∑
α

λα1̂αχα(x)
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we can have the following bound

〈1S, G f large〉 ≤ (1− 2δ)kµ(S)

To have a similar bound on the smaller part, we need to look at hypercon-
tractivity. Consider ‖ f ‖p = E[| f |p]

1
p as a function of p2, where 1 ≤ p ≤ ∞.

One observation, by jensen’s inequality, is that the p-norm is an increasing
function of p. Moreover if f is of degree k, then all p-norms are within ck,p

constant of each other.
The p-norm of the indicator function over S is given by

‖1S‖p = E[1
p
S]

1
p = E[1S]

1
p

and since E[1S] = µ(S),

‖1S‖p = µ(S)
1
p .

Therefore, if the set size µ(S) is small, the p-norm ‖1S‖p grows significantly
with p. In particular we have

‖ f ‖4
4 ≤ qk‖ f ‖4

2.

Now using Hölder inequality, we can have a bound on the bilinear form
applied to the smaller part

〈1S, G f small〉 ≤ ‖G f small‖4 ‖1S‖ 4
3
.

since f has low degree, and 2-norm, 4-norm are about the same. Because
‖G f small‖4 ≤ 2k‖G f small‖2, we see that

〈1S, G f small〉 ≤ 2kµ(S)1/4µ(S).

Using the two bounds that we found, we can bound 〈1S, G1S〉. First, we
can pick k = −log( ε

2 )/2δ so that 〈1S, G f small〉 ≤ ε
2 µ(S). Then, having

µ(S) ≤ (2k)4( ε
2 )

4, means that we have also that 〈1S, G f large〉 ≤ ε
2 µ(S).

Therefore we have,
〈1S, G1s〉 ≤ εµ(S).

Reed-Muller Codes

Now we turn our attention to Reed-Muller codes constructions. Consider the
space Pn

d of multivariate polynomials with n variables and of degree d. Then
we construct the code on all evaluations of points in that space (p(x))x∈{0,1}n

such that deg(p) ≤ d. Let R = 2n, and consider V = Pn
d . There will be

an edge between a given point p and p + Πd
i=1Li(x), where Li is an affine

function defined as
Li(x) = ai

0 +
n

∑
j=1

ai
jxj.

We note here that for any p with degree d 6= 0, we have |{x|p(x) 6= 0}| ≥
2n/2d. This can be shown using induction and noting that xi ∈ 0, 1.

The dual space of Reed-Muller codes is all functions Q(x) such that ∀p ∈
Pn

d it hold that ∑x∈{0,1}n p(x)Q(x) is even. It is a known fact that this is
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exactly Pn
n−(d+1). A useful observation to see this is to note that ∑x p(x) is

odd if and only if p is of degree n of F2.
We proceed similarly as the hypercube example. The characters are now

the same as before, however the points in our space now are multivariate
polynomials on the hypercube. So we define

χα(p) = (−1)∑x α(x)p(x).

It then holds that χα ≡ χ′α if α = α′ + Q for all Q ∈ Pn
n−(d+1).

The argument for this case follows exactly the same lines as that in the first
section. Consider a set S ⊂ Pd

n , and define the indicator function of the set
on the space 1s : Pd

n → {0, 1}. As in the first section we split the Fourier
expansion of the indicator function into two parts

1S = f small + f large.

the eigenvalues here are

λα = E
Πi Li

[χα(Πr
i=1Li)],

where we choose here the smallest representative for χα. For example, let the
size of α, that is the number of points for which α = 1, be 1 and call that
point x0, then

λα = E[(−1)Πd
i=1Li(x0)] = 1− 2−(d−1)

This will give us large eigenvalues.
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