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Instances with large integrality gap for the Arora-Rao-Vazirani SDP relax-
ations of Sparsest Cut are approximable for constant degree sum of square
relaxations. Such instances do not have small cuts and this can be proved in
a sum of square proof of constant degree, using a degree 4 proof of the KKL
theorem.

Given a graph G = (V, E) on N vertices, the Sparsest Cut problem
asks to find a cut (S, S̄) for ∅ 6= S ⊂ V such that E(S,S̄)

|S||S̄| is minimum. Arora et
al. (2009)1 present an O(

√
log N)-approximation algorithm for the sparsest 1 Sanjeev Arora, Satish Rao, and Umesh

Vazirani. Expander flows, geometric embed-
dings and graph partitioning. Journal of the
ACM (JACM), 56(2):5, 2009

cut. The algorithm is based on a SDP relaxation of the problem, augmented
with additional inequalities that enforce a metric structure to the semidefinite
solutions. It turns out that the additional inequalities have sum of square
proofs of constant degree, so the whole algorithm is essentially the integer
rounding of the solution of a Lasserre relaxation of constant rank.

Closely related is the Balanced Separator problem in which we ask
for the smallest cut such that both parts have roughly the same size. An ap-
proximation algorithm for Sparsest Cut gives an approximation algorithm
for Balanced Separator with just a constant factor loss in the approxi-
mation.

A natural question is whether this approximation factor is optimum or
whether the analysis of the algorithm can be improved. Devanur et al. (2006)2 2 Nikhil R Devanur, Subhash A Khot, Rishi

Saket, and Nisheeth K Vishnoi. Integral-
ity gaps for sparsest cut and minimum linear
arrangement problems. In Proceedings of
the thirty-eighth annual ACM symposium on
Theory of computing, pages 537–546. ACM,
2006

describe a family of graphs for Balanced Separator such that the SDP
relaxation plus triangle inequalities on these graphs has an integrality gap of
Ω(log log N). This disproves the original conjecture of Arora et al. (2009)
that the actual gap was constant.

As discussed before, to prove such integrality gap it is sufficient to find an
instance G (or rather a family of instances) with N vertices such that

1. The SDP relaxation of Balanced Separator has value O( 1
log N );

2. the integer solution has size at least Ω
(

log log N
log N

)
.

It is a legitimate question to ask whether the gap of constant rank Lasserre
relaxations is tighter. A first step in this direction is to understand howLasserre
relaxations behave on the instances from Devanur et al. (2006).3 3 We call them “DKSV instances”.

O’Donnel and Zhou (2013)4 show that the lower bound argument for the 4 R. O’Donnell and Y. Zhou. Approxima-
bility and proof complexity. In Proceedings
of the 24th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 13), pages
1537–1556, 2013

balanced separators of the DKSV instances is formalizable in sum of square
proofs of degree 4. As a consequence degree-4 sum of square relaxations for
the DKSV instances do have O(1) integrality gap.

Theorem 1 (O’Donnel, Zhou). The degree-4 sum of square relaxation for
Balanced Separator on DKSV instances has value Ω

(
log log N

log N

)
.
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Concepts from the analysis of boolean functions

Building a graph without small balanced cuts is easy (e.g., just take an ex-
pander) but here we need one for which the corresponding SDP has small
value. Fix n > 0 and set N = 2n, the DKSV graph is based on the hyper-
cube of dimension n. The hypercube indeed has cuts (along each dimension)
with exactly a 2

n = 2
log N fraction of the edges. To modify this construction

for their purpose, the approach of Devanur et al. (2006) is to consider a group
of actions on the vertices of the graph and then identify all vertices in same
orbit. The actual construction is not the topic of the lecture. The main
point of this lecture is that the proof that the graph has no small balanced
separators can be formalized as a low degree sum of square proof that deals
with analytic properties of boolean functions. Indeed a separator in the hy-
percube can be interpreted as a function f : {−1, 1}n −→ {−1, 1}, and the
value of the cut is essentially the number of coordinates that make the value
of function flip, averaging among all inputs.

We need some notation. For x, y ∈ {−1, 1}n the vector z = x⊕ y is the x⊕ y
one such that zi = xiyi. Vector ei ∈ {−1, 1}n is the one with is −1 in the
i-th coordinate and 1 everywhere else. Thus x⊕ ei is the same as x but with
the sign of the i-th coordinate flipped.

Influence
Definition 2. Consider a function f : {−1, 1}n −→ {−1, 1}. The influence
of a coordinate i ∈ [n] on f is defined as

Infi[ f ] = Pr
x∈{−1,1}n

[ f (x) 6= f (x⊕ ei)]. (1)

The total influence of f is

Inf[ f ] = ∑
i

Infi[ f ] (2)

A fundamental theorem in the analysis of boolean function gives a lower
bound on the influence in term of the variance of the function, where the Variance
variance of f is

Var[ f ] = Ex∈{−1,1}n [ f (x)2]− (Ex∈{−1,1}n [ f (x)])2

and in our case, since f has −1, 1 values this corresponds to

Var[ f ] = 1− (Ex∈{−1,1}n [ f (x)])2

Theorem 3 (KKL theorem). 5 For every function f : {−1, 1}n −→ {−1, 1} 5 J. Kahn, G. Kalai, and Nati Linial. The in-
fluence of variables on Boolean functions.
In Foundations of Computer Science, 1988.,
29th Annual Symposium on, pages 68–80.
IEEE, 1988

there is a coordinate i ∈ [n] such that

Infi[ f ] ≥ Ω
(

log n
n

)
Var[ f ] (3)
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There is a function (the so-called “Tribes” function) for which all coordi-
nates have influence log n

n (1± o(1)), so the theorem is tight.
Another tool for the analysis of boolean function is the study of the relation

between q-norms. In particular we are interested in the relation of the q-norm
of a function with respect to its second norm.

q-norms
Definition 4. We define the q-norm of f : {−1, 1}n −→ R as

‖ f ‖q = Ex[| f (x)|q]
1
q . (4)

If the function has small degree (i.e., no nonzero Fourier coefficients of
large degree) then the behaviour of the q-norms for q > 2 is not too different
from the one of the 2-norm.

Hypercontractive inequality (I)
Theorem 5. For every f : {−1, 1}n −→ R of degree d and any q ≥ 2 it
holds that

‖ f ‖q ≤ (
√

q− 1)
d‖ f ‖2. (5)

Noise operator

Another way to interpret the Hypercontractive inequality is through theNoise
Operator. Given x ∈ {−1, 1}n we let y be a noisy version of x, such that each
coordinate yi is correlated (but not necessarily identical) to the coordinate xi.
For ρ ∈ [−1, 1] we say that y is ρ-correlated with x if y is sampled according
to the following distribution.

yi =

xi with probability 1+ρ
2

−xi with probability 1−ρ
2 .

(6)

Then for any function f : {−1, 1}n −→ R we define the linear operator Noise operator

Tρ f (x) = Ey[ f (y)] (7)

where y is ρ-correlated to x. We observe that

T1 f (x) = f (x) T−1 f (x) = f (−x) T0 f (x) = Ez∈{−1,1}n [ f (z)].

The natural interpretation of the noise operator is the one of a smoothing
function. Indeed the effect of this function is to reduce the weight of the high
degree Fourier coefficients. The following claim shows that the weight of a
Fourier coefficient decreases exponentially with its degree.

Claim 6. Fix ρ ∈ [−1, 1] and let f : {−1, 1}n −→ R, then for every
S ⊆ [n],

T̂ρ f (S) = ρ|S| f̂ (S). (8)

Proof. Tρ is a linear operator and f (x) = ∑S⊆[n] f̂ (S)χS(x), so it is suffi-
cient to compute TρχS.

TρχS = Ey[χS(y)] (9)
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for y which is ρ-correlated with x. This is equivalent to Ez[χS(z⊕ x)]where
z is −1 with probability 1−ρ

2 and 1 with probability 1+ρ
2 , and where z ⊕

x is the coordinate-wise product of z and x. By definition χS(z ⊕ x) =

χS(x)χS(z), so TρχS(x) can be written as χS(x) ·Ez[χS(z)], which means
that the Fourier basis is a basis of eigenfunctions for the operator Tρ, and that

T̂ρ f (S) = Ez[χS(z)] f̂ (S).

A simple computation shows that Ez[χS(z)] = ρ|S| and concludes the proof
of the claim.

The noise operator Tρ allows another interpretation of the Hypercontrac-
tive inequality.

Hypercontractive inequality (II)
Theorem 7. For every f : {−1, 1}n −→ R of and q ≥ 2 it holds that∥∥∥∥T 1√

q−1
f
∥∥∥∥

q
≤ ‖ f ‖2. (10)

or equivalently

Ex

[∣∣∣∣T 1√
q−1

f (x)
∣∣∣∣q] ≤ Ex[| f (x)|2]q/2

. (11)

The two versions are equivalent. It is a simple exercise to prove that the
second version implies the first version if f is assumed to be homogeneous.
Consider a homogeneous polynomial f of degree d. Linearity of Tρ and
Claim 6 imply that Tρ f (x) = ρd f (x), so

‖Tρ f ‖q = |ρ|d‖ f ‖q.

By setting ρ = 1√
q−1

and applying the second version of the Hypercon-
tractive inequality we get that

‖ f ‖2 ≥
∥∥∥∥T 1√

q−1
f
∥∥∥∥

q
=

(
1√

q− 1

)d

‖ f ‖q. (12)

Corollary 8. For any f : {−1, 1}n −→ R and any ρ ∈ [0, 1], it holds that∥∥∥T√ρ f
∥∥∥2

2
≤ ‖ f ‖2

1+ρ. (13)

Proof. To prove this claim we need to use Hölder inequality6. 6 Hölder inequality claims that

〈 f , g〉 ≤ ‖ f ‖p · ‖g‖q

for any pair p, q such that 1
p + 1

q = 1 and
p, q > 1. It also extends to the case in which
p = 1 and q = ∞.

∥∥∥T√ρ f
∥∥∥2

2
= 〈T√ρ f , T√ρ f 〉 = 〈 f , Tρ f 〉 ≤

≤ ‖ f ‖1+ρ ·
∥∥Tρ f

∥∥
1+ 1

ρ
≤ ‖ f ‖1+ρ ·

∥∥∥T√ρ f
∥∥∥

2
(14)

where the first inequality is an application of Hölder inequality, and the sec-
ond is an application of the Hypercontractive inequality on function T√ρ f
with noise operator T√ρ and q = 1 + 1

ρ .
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The noise stability of a function is the correlation between the function and
its noisy version. In particular it is interesting to understand which functions
are stable with respect to noise.

Definition 9. The noise stability of a function f : {−1, 1}n −→ R is

Sρ[ f ] = 〈 f , Tρ f 〉 = Ex,y[ f (x) f (y)] (15)

where the expectation is taken for x picked uniformly at random and y that is
ρ-correlated with x.

In order to give a sum of square proof of the KKL theorem, we will es-
timate the small set expansion of a particular weighted graph related to the
hypercube, the so called noisy hypercube. For any x, y ∈ {−1, 1}n we use
the notation Symmetric difference

x∆y def
= {i | xiyi = −1}.

The vertex set of the graph is {−1, 1}n, and the edge x ∼ y has weight
equal to the probability to sample y which is ρ-correlated with x. Namely(

1− ρ

2

)|x∆y|
·
(

1 + ρ

2

)n−|x∆y|
.

Let S ⊆ {−1, 1}n, then Sρ[1S] is essentially the weighted sum of the
edges that go from a vertex in S to a vertex in S.

Theorem 10 (Small set expansion for the Noisy Hypercube). Let ρ ∈ [0, 1]
and let f : {−1, 1}n −→ {−1, 0, 1}, then

Sρ[ f ] ≤ E[ f 2]
2

1+ρ . (16)

Proof. We know that Sρ[ f ] ≤ ‖ f ‖2
1+ρ because of Corollary 8. Notice that

since f (x) is either −1, 0 or 1, then | f (x)|1+ρ = | f (x)|2 and thus

‖ f ‖2
1+ρ = Ex[| f (x)|1+ρ]2/(1+ρ) = Ex[| f (x)|2]2/(1+ρ).

Hypercontractive inequality for q = 4

In this section we prove the second version Hypercontractive inequality, for
the simplest non trivial case which is q = 4.

Claim 11. It holds that Hypercontractive inequality for q = 4∥∥∥∥T 1√
3

f
∥∥∥∥

4
≤ ‖ f ‖2. (17)

or equivalently that

E

[(
T 1√

3
f
)4
]
≤ E[ f 2]

2
. (18)
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Proof. The proof is by induction on the number of variables n. If n = 0 the
function is constant and thus the inequality is trivially true.

If n > 0 we identify a variable x and write f = x · g + h where g, h are
both functions not dependent on variable x. We can do this because f can be
written as a multilinear polynomial.

The rest of the proof is just a chain of equations and inequalities. All
expected values are taken on a random input x ∈ {−1, 1}n.

E

[(
T 1√

3
f
)4
]
≤ E

[(
T 1√

3
xg + T 1√

3
h
)4
]
≤

E

[(
T 1√

3
xg
)4

+ 4
(

T 1√
3
xg
)3(

T 1√
3
h
)
+ 6

(
T 1√

3
xg
)2(

T 1√
3
h
)2

+ 4
(

T 1√
3
xg
)(

T 1√
3
h
)3

+

(
T 1√

3
h
)4
]
(19)

since g does not depend on x, we get

T 1√
3
xg =

(
T 1√

3
x
)(

T 1√
3

g
)
=

x√
3

(
T 1√

3
g
)

(20)

which allows to write

E

[
x4

9

(
T 1√

3
g
)4

+
4x3

3
√

3

(
T 1√

3
g
)3(

T 1√
3
h
)
+ 2x2

(
T 1√

3
g
)2(

T 1√
3
h
)2

+
4x√

3

(
T 1√

3
g
)(

T 1√
3
h
)3

+

(
T 1√

3
h
)4
]

(21)
which we can simplify observing that the expectation is taken under the

uniform distribution of inputs, so x is independent from g and h. In particular
the expected value of xd is 1 is d is even and 0 otherwise. In the end we get

E

[
1
9

(
T 1√

3
g
)4

+ 2
(

T 1√
3

g
)2(

T 1√
3
h
)2

+

(
T 1√

3
h
)4
]
=

1
9

E

[(
T 1√

3
g
)4
]
+ 2E

[(
T 1√

3
g
)2(

T 1√
3
h
)2
]
+ E

[(
T 1√

3
h
)4
]

(22)

We apply Cauchy-Schwarz inequality on the central summand. This is an
operation we cannot formalize directly in sum of square proofs. In the
end we upper bound the previous expression by

1
9

E

[(
T 1√

3
g
)4
]
+ 2

√√√√E

[(
T 1√

3
g
)4
]
·E
[(

T 1√
3
h
)4
]
+E

[(
T 1√

3
h
)4
]

The last expression has four expected values. All of them can be upper
bounded using the Hypercontractive inequality, by induction on the number
of variables.

1
9

E[g2]2 + 2
√

E[g2]2E[h2]2 + E[h2]2 ≤

≤ E[g2]2 + 2E[g2]E[h2] + E[h2]2 =(
E[g2] + E[h2]

)2
= E[ f 2]2. (23)
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