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2. Semidefinite programming and Relaxation
Lecturer: Massimo Lauria

Semidefinite programs is a valuable tools in approximation algorithms and in
combinatorial optimization, since semidefinite relaxations are usually stronger
than linear ones. In this lecture we describe what is a semidefinite program.

Positive semidefinite matrices

A fundamental concept in semidefinite programming is the one of positive
semidefinite matrices.

Definition 1. A square matrix A in Rn×n is called positive semidefinite if

• A is symmetric1, i.e., A = AT; 1 the condition of symmetry is often forgot-
ten, but it is required.

• for every x ∈ Rn it holds that xT Ax ≥ 0.

A matrix A is positive definite if it is positive semidefinite and is also non-
singular.

We denote the set of positive semidefinite matrices in Rn×n as PSDn and
we say that A � 0 when A ∈ PSDn. We say that A � 0 when A is positive
definite.

Fact 2. PSDn is closed under positive combinations (i.e., is a cone): for a
sequence M1, M2, . . . , M` of positive semidefinite matrices, the matrix

α1M1 + α2M2 + · · ·+ α`M` (1)

is positive semidefinite for α1 ≥ 0, α2 ≥ 0, . . . , α` ≥ 0.

Matrix decompositions

Positive definite matrices have a set of useful decomposition. If a matrix
A � 0 then there are decompositions

A = UTU Cholesky decomposition (2)

A = LDLT LDL decomposition (3)

A = QΛQT Spectral decomposition (4)

where U, L, D, Q, Λ are real matrices in Rn×n. Furthermore U, L, D are
unique.

Spectral decomposition: we have that A
is symmetric and we need to show that
eigenspaces with different eigenvalues are
orthogonal: pick x with eigenvalue λ and y
with eigenvalue µ,

xT Ay = λxTy = µxTy (5)

If λ 6= µ then xTy = 0.
Symmetric real matrices have real eigen-

values: since A is real, the eigenvectors
can be real as well. For any eigenvector x
with eigenvalue λ, we get that (Ax)T Ax =
xT AT Ax = xT AAx = λ2|x|2 is real and
positive. Thus λ is real.
Positive semidefiniteness of A implies that

λ is also positive.

In spectral decomposition (also called eigendecomposition), matrix Q is
an orthogonal matrix—it columns are unitary eigenvectors of A, i.e. QQT =

I; and Λ is the diagonal matrix containing the corresponding positive eigen-
values. Consider the Euclidean geometry induced by the norm xTx , then the
geometry induced by the norm xT Ax is Euclidean, but the space is scaled
along different axis.
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In the Cholesky decomposition the matrix U is an upper triangular real
matrix. This representation witnesses the fact that A is definite positive, since
xT Ax = xTUTUx = |Ux|2 > 0.

The LDL decomposition is a slight modification of Cholesky decompo-
sition. The matrix L is lower unit triangular, which is a lower triangular
matrix with unit diagonal, and D is a diagonal matrix. The decomposition
exists for any symmetric matrix, but for positive definite matrices the diag-
onal matrix D has positive entries. The peculiarity of this decomposition is
that the components of L and D are rational functions of the entries of A. In-
deed the LDL decomposition is a partial version of Cholesky decomposition
that avoid computing square roots. The decomposition for positive definite
matrix A follows by induction from the equation (we have α > 0)[

α vT

v C

]
=

[
1 0

v/α I

]
·
[

α 0
0 C− vvT/α

]
·
[

1 vT/α

0 I

]
(6)

We need to show that B = C− vvT/α is positive definite. Fix non zero
u ∈ Rn−1 then fix xT = [−uTv/α, uT ]. Then uT Bu = xT Ax > 0.

Once you have LDL decomposition for positive definite matrices, the
Cholesky decomposition follows immediately.

All the decomposition can be extended to positive semidefinitematrices,
but then the entries of the diagonal of U and D can be zero; the matrices U,
L, D are not uniquely defined; there are some zero eigenvectors in Λ. In
particular in equation (6) we get that α ≥ 0 by positive semidefiniteness, but
if α is zero, then v must be the zero vector too, otherwise2 there would be y 2 If the matrix has a minor M =

[
0 a
a b

]
then pick vector y = [t, 1]. Then yT My =
2ta + b2, which is negative for the appropri-
ate choice of t.

such that yT Ay < 0.

Some useful facts about matrices

Fact 3. Let A = (aij), then xT Ax = (xxT)•A

Fact 4. Let any two matrices A ∈ Rn×m and B ∈ Rm×n. Then Tr(AB) =
Tr(BA).

Fact 5. Let any two symmetric A and B. It holds that Tr(AB) = A•B.

Fact 6. For any symmetric n× n matrix A, A ∈ PSDn if and only if A•B ≥
0 for all B ∈ PSDn.

Proof. If A and B as positive semidefinite, then we represent A as QTΛQ
using spectral decomposition and apply the chain of equations

A•B = Tr(AB) = Tr(QTΛQB) = Tr(ΛQBQT). (7)

Fix B′ = QBQT , which is positive semidefinite and has non negative di-
agonal entries. Also Λ is a diagonal non negative matrix, thus Tr(AB) =

Tr(ΛB′) = ∑i λib′ii ≥ 0.
For the other direction is sufficient to consider y such that yT Ay < 0.

Then fix B = yyT and observe that A•B = yT Ay. B is semidefinite positive
by construction.
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Fact 7. For A � 0 it holds that A•B > 0 for all B ∈ PSDn, unless B = 0.

The proof of the latter fact is identical to the proof of Fact 6, with the
remark that all eigenvalues of a positive definite matrix are positive.

Semidefinite programs

Semidefinite programs can be naturally intepreted are a relaxation of quadratic
programs. Consider for example the MaxIndSet on a graph G = ([n], E),
which is expressed by the left quadratic program that follows.

maximize ∑
i

xi

subject to xixj = 0 if {i, j} ∈ E (8)

x2
i − xi = 0

maximize ∑
i

x2
i

subject to xixj = 0 if {i, j} ∈ E (9)

x2
i − x0xi = 0

x2
0 = 1

For convenience will consider a new dummy “x” variable x0 to remove
linear terms as in (9). The idea now is to relax the quadratic constraints by
encoding the products xixj as new variables yij. Some of the identities im-
plied by the interpretation yij = xixj are enforced by the program, but not all
of them can —this is why it is a relaxation. One of the properties of matrix
Y = xxT that we can enforce is positive semidefiniteness.

maximize ∑
i

yii

subject to yij = 0 if {i, j} ∈ E

yii = y0i

y00 = 1

Y � 0

A semidefinite program is a refinement of a linear program in which the
variables have a natural square matrix structure, and such matrix is positive
semidefinite. Semidefinite programming has found many uses in combina-
torics and approximation algorithms 3. We denote semidefinite programs 3 Bernd Gartner and Jiri Matousek. Approx-

imation algorithms and semidefinite pro-
gramming. Springer, 2012

(SDP) in one of this equivalent ways
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maximize C•X

subject to A1•X = b1

A2•X = b2

...

A`•X = b`
X � 0

maximize ∑
i,j

ci,j(vT
i vj)

subject to ∑
i,j

ai,j(vT
i vj) = b1

∑
i,j

a2
i,j(v

T
i vj) = b2

...

∑
i,j

a`i,j(v
T
i vj) = b`

|v0| = 1
where Ai and C are symmetric matrices. A solution X is called strictly feasi-
ble if X � 0. It is possible write SDP in a more general fashion: we can have
constraints on many different positive semidefinite matrices, since if X1 � 0

and X2 � 0 then

[
X1 0
0 X2

]
is positive semidefinite. Furthermore we can

enforce positive variables since
[

x
]
� 0 is equivalent to x ≥ 0. We can

translate inequality constraints into equality constraints using positive slack
variables. Furthermore we can relax the condition of symmetry for matri-
ces Ai and C, since X itself is required to be symmetric. Some forms of the
semidefinite program aremore convenient than others, when it comes to prove
theorems. Another equivalent form of semidefinite program is the following:

minimize bTy

subject to y1 A1 + y2 A2 + · · ·+ ym Am � C

where Ai and C are symmetric square matrices and yi are scalar variables.
This form is particularly handy when we come to study duality.

Exercise 8. Show that this latter form of semidefinite program is as expressive
as the previous ones (i.e. it is possible to express the same problems).

Semidefinite programming duality

The duality of semidefinite programming is a more general (and complex)
version of duality of linear programs. We will discuss its proof here. Most of
the proofs in this section come from Lovász lecture notes 4. 4 László Lovász. Semidefinite programs

and combinatorial optimization. In Recent
advances in algorithms and combinatorics,
pages 137–194. Springer, 2003

First we describe a form of “unsatisfiability” proof for SDP which is the
key to semidefinite programming, as it was to linear programming.

Consider a semidefinite program for an optimization problem.

maximize C•X

subject to A1•X = b1

A2•X = b2 (P)
...

Am•X = bm

X � 0
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Consider a combination of proof lines with coefficient yT = [y1 . . . ym],
such that Y = ∑i yi Ai − C � 0. Then

Y•X = ∑
i

yibi − C•X. (10)

If X � 0 then Y•X ≥ 0 by Fact 6 which means that C•X ≤ ∑i yibi. This
proves that there is an upper bound to the maximization problem, and the
smaller is the upper bound the better.

Definition 9. A semidefinite program in the form (P) is called the primal
program, and its dual is the program

minimize bTy

subject to y1 A1 + · · ·+ ym Am − C � 0 (D)

A solution is strictly feasible if y1 A1 + · · ·+ ym Am − C � 0 holds.

The primal and the dual programs bound each other, assuming they both
have feasible solutions. We know that in linear programming the optimum
values for the two programs are the same. In semidefinite programming it
gets a little bit more tricky. We start by proving a version of Farkas’ Lemma
for this framework.

Lemma 10 (Farkas’ Lemma for semidefinite programs). Let be A1, A2, . . . Am

and C some n× n symmetric matrices over the reals. Then the inequality

y1 A1 + y2 A2 + · · ·+ ym Am − C � 0 (11)

has no solutions y1, y2, . . . , ym if and only if there exists a symmetric matrix
X 6= 0

A1•X = 0

A2•X = 0
...

Am•X = 0

C•X ≥ 0

X � 0.

Proof. If part: A solution X for the second system implies

Y•X ≤ 0 (12)

for any Y = y1 A1 + y2 A2 + · · · + ym Am − C. It follows that Y is not
positive definite5 because X � 0, X 6= 0 and Fact 7. 5 We will see that this part cannot be im-

proved to provide proof of unsatisfiability in
case the constraint is relaxed to Y � 0.

Only if: We first prove this part with C = 0.
Consider the linear subspace L ⊆ Rn×n generated by y1 A1 + y2 A2 +

· · · + ym Am. If equation (11) has no solution, then L is disjoint from the
interior of the convex cone PSDn and there is an hyperplane H separating L
and the interior of PSDn

6. Assume H is characterized by some non trivial 6 By the hyperplane separator theorem,
which we won’t prove here.
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equation X•Y = 0 where X are the coefficients and Y the variables. Matrix
X can be made symmetric, and since the equation is non trivial, X 6= 0. L
is in H otherwise L would not be in one of the halfspaces. It follows that
X•Ai = Ai•X = 0 for every i. For every Y ∈ PSDn the separator X has
X•Y ≥ 0 which implies X � 0 because of fact 6.

Now we go back to C 6= 0. We consider the new constraint

y1

[
A1 0
0 0

]
+ y2

[
A2 0
0 0

]
+ · · ·+ ym

[
Am 0
0 0

]
+ z

[
−C 0

0 1

]
� 0

(13)
which is equivalent to (11): if z = 0 then the sum is not positive definite, so
every solution must have z 6= 0.

If there is no such solution then by reducing to the homogeneous case,
theremust be a non zero n+ 1× n+ 1matrix X′ � 0 that witnesses it. Let us
call X the submatrix made by its first n columns and n rows. Then Ai•X = 0

and

[
−C 0

0 1

]
•X′ = −C•X + x′n+1,n+1 = 0. By semidefiniteness of X′

then x′n+1,n+1 ≥ 0 and thus C•X ≥ 0.

We are now set to prove the duality theorem. In a way similar to linear
programming duality, the Farkas’ lemma provides a general way to witness
unsatisfiability of the primal by the means of the dual, and vice versa. Unfor-
tunately for semidefinite programming there are some conditions in order to
get strong duality7. 7 This is called Slater condition and apply in

general to convex programming. If both the
primal and the dual have strictly feasible so-
lutions, i.e. solutions which are in the inte-
rior of the convex body, then strong duality
in convex programming follows. Notice that
the two strictly feasible solutions do not need
to be optimal.

Theorem 11. Assume that both primal and dual have feasible solutions.
Then vP ≥ vD, where vP and vD are the optimal values to the primal and
dual, respectively. Moreover, if the dual has a strictly feasible solution then

1. the primal optimum is attained;

2. vP = vD.

Similarly, if the primal is strictly feasible, then the dual optimum is attained,
and it is equal to the dual optimum. Hence, if both the primal and dual have
strictly feasible solutions, then both vP and vD are attained.

Proof. Let be X any solution for program (P) and y a solution for program (D).
By Fact 6 we get that

0 ≤
(

∑
i

yi Ai − C

)
•X = yTb− C•X (14)

which means that vP ≤ vD
8. 8 This part of the theorem is often called

weak duality theorem.Furthermore the constraints bTy < vD and ∑i yi Ai � C have no feasible
solution by definition of the dual. Thus consider the matrices

A′i =

[
−bi 0

0 Ai

]
C′ =

[
−vD 0

0 C

]
(15)
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then the system ∑i yi A′i � C′ is unsatisfiable and then by Farkas’ Lemma
there is a non zero positive semidefinite matrix X′ such that A′i•X′ = 0 for
all 1 ≤ i ≤ m and C′•X′ ≥ 0. Let us write

X′ =

[
x00 xT

x X

]
(16)

so we get that

Ai•X = x00bi for i = 1 . . . m C•X ≥ x00vd. (17)

We claim that x00 6= 0 since otherwise X would be a witness (by Farkas’
Lemma) of the unsolvability of program (D) by strict feasible solutions, and
this contradicts our assumption. Since x00 6= 0 we can assume x00 = 1 by
scaling the solution in (17).

After rescaling, X is feasible a solution of program (P) with value C•X ≥
vD. Thus we get that vP ≤ vD.

Exercise 12. In the proof of Theorem 11 we just showed that if the dual has
strictly feasible solution then the primal optimum is attained. Please prove
that if the primal has strictly feasible solution then the dual optimum is at-
tained as well.

Examples of strong duality failing

In the proof of the strong duality theorem (Theorem 11) the optimum is at-
tained by assuming that the there is a strictly feasible dual solution. Further-
more we used that to prove that primal and dual optimum are the same. We
will see examples from9 in which the two optimum are not the same (i.e. there 9 László Lovász. Semidefinite programs

and combinatorial optimization. In Recent
advances in algorithms and combinatorics,
pages 137–194. Springer, 2003

is a duality gap) or in which the optimum is only reached in the limit.

Example 13. Consider the program

maximize − x1

subject to

x1 1 0
1 x2 0
0 0 x1

 � 0

Because of the positive semidefinite requirement, we get that x1, x2 ≥ 0
and that x1x2 ≥ 1. The objective function −x1 can get arbitrarily close to
0 but will stay negative, thus vP = 0 and there is no solution which actually
get to that value.

So in the previous program we have an optimum, which is reached only in
the limit.

Example 14. Consider the primal program

maximize − x33 (18)

subject to x12 + x21 + x33 = 1 (19)

x22 = 0 (20)

X � 0 (21)
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The feasible solutions for this programs are matrices of the forma 0 b
0 0 0
b 0 1

 (22)

which implies a ≥ b2 and vP = −1. Now we consider its dual program

minimize y1 (23)

subject to y1

0 1 0
1 0 0
0 0 1

+ y2

0 0 0
0 1 0
0 0 0

 �
0 0 0

0 0 0
0 0 −1

 (24)

Dual solutions have y1 = 0 and y2 ≥ 0, thus vD = 0. Here we have a duality
gap of −1 between vP and vD.

Example 15. Consider a variant of the program in Example 14 where x11

is involved in the optimized function. This example comes from10. 10 Anupam Gupta and Ryan O’Donnell.
Linear and semidefinite program-
ming (advanced algorithms) fall 2011.
http://www.cs.cmu.edu/afs/cs.cmu.

edu/academic/class/15859-f11/www/

notes/lecture12.pdf, 2011. Lecture 12

maximize − εx11 − x33 (25)

subject to x12 + x21 + x33 = 1 (26)

x22 = 0 (27)

X � 0 (28)

The feasible solutions for this programs do not change, and are still matrices
of the form a 0 b

0 0 0
b 0 1

 (29)

where a ≥ b2 and so vP = −1 as in the previous case, since it pays to make
a as small as possible and we can fix it to be 0. Now we consider its dual
program

minimize y1 (30)

subject to y1

0 1 0
1 0 0
0 0 1

+ y2

0 0 0
0 1 0
0 0 0

 �
−ε 0 0

0 0 0
0 0 −1

 (31)

Now see that with y1 = −1 and y2 = 1
ε the constrain matrix in (31) is ε −1 0

−1 1
ε 0

0 0 0

 =


√

ε

− 1√
ε

0

 · [√ε − 1√
ε

0.
]

(32)

Since the matrix is positive semidefinite then the dual solution is feasible and
vD = −1, equal to the primal optimum.
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