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Lecturer: Massimo Lauria

http://www.csc.kth.se/~lauria/sos14/

Disclaimer: this lecture notes has not yet been reviewed by the mail lecturer.
It is released as is for the convenience of the students.
We discuss two methods of improving linear relaxations of integer programs,
namely the Lovász-Schrijver and Sherali-Adams hierarchies. They allow for a
systematic way of finding tighter and tighter polytopes containing the convex
hull of the integer solutions. The main idea is to lift, that is, to augment the
linear program to a higher dimensional space and then to project it down to
the original space where a smaller polytope than the one we started with is
obtained. This procedure of lift and project are done in different ways for the
different hierarchies, as we shall see.

This lecture contained much of the material given in the notes on integer
and linear programming 1. Consequently, these lecture notes should be seen 1 See notes from first lecture on course web-

page.as a complement to those.
We consider feasibility problems of the form

find x

subject to Ax ≤ b (1)

x ∈ {0, 1}n.

The boolean constraint x ∈ {0, 1}n is equivalent to x2
i − xi = 0, for i =

0, . . . , n, thus problem (1) can be reformulated as

find x

subject to Ax ≤ b (2)

x2
i − xi = 0, for i = 0, . . . , n.

A simple linear relaxation of this problem is

find x

subject to Ax ≤ b (3)

0 ≤ x ≤ 1,

where the boolean constraint has been relaxed into a linear inequality con-
straint. Problem (3) is convex and there exists efficient algorithm for solving
it. If problem (3) lacks a feasible solution, we can state that problems (1) and
(2) lack one as well. However, if a feasible solution is found it is rare that it
is the boolean solution.

We denote the feasible set of problem (3) as P and the convex hull2 of the 2 The convex hull of a set C is denoted
conv(C).integer solution as PI , we then get

PI = conv(P ∩ {0, 1}n). (4)

Gomory3 introduces a way to cut fractional solutions by noticing that if 3 Ralpha E. Gomory. Outline of an algorithm
for integer solutions to linear programs. Bul-
letin of the American Mathematical Society,
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aTx ≤ b is a valid inequality forP and a is an integer vector, then aTx ≤ bbc
is also valid over integer solutions. We denote by P1 the intersection of P
and the additional constraints of the above form, also known as the elementary
closure of P . Iterating this procedure and we get a sequence of smaller and
smaller polytopes P ⊇ P1 ⊇ · · · ⊇ Pk · · · . It was proved that for some
k = O(n2 log n), Pk = PI . However, this procedure is not very useful for
optimization because even optimizing in P1 is already NP-hard.

The objective of Lovász-Schrijver and Sherali-Adams hierarchies is to im-
prove the initial problem relaxation (3). The relaxation is improved in the
sense that the feasible set gets smaller and therefore closer to the convex hull
of the integer solution.

In the Lovász-Schrijver and Sherali-Adams hierarchies each relaxation sys-
tem induces

P = P0 ⊇ P1 ⊇ · · · ⊇ Pt ⊇ · · · ⊇ PI . (5)

Naturally, if Pt = ∅ for any t, then PI = ∅. That is, no feasible integer
solution exists.

Lovász-Schrijver hierarchy

In the Lovász-Schrijver hierarchy4 the linear program is augmented to a higher 4 L. Lovász andA. Schrijver. Cones of matri-
ces and set-functions and 0–1 optimization.
SIAM Journal on Optimization, 1:166, 1991

dimensional space of approximately n2 dimensions. Quadratic inequalities
are introduced which, via a variable substitution, become linear inequalities
in the higher dimensional space. These inequalities are then projected back
onto the original variables, yielding a tighter feasible set. This procedure
can be repeated in an iterative manner to obtain tighter and tighter sets, as
depicted in (5).

Example 1. We want to improve the following linear relaxation:

find x

subject to x ≥ 1/2 (6)

0 ≤ x ≤ 1,

which has infinitely many fractional solutions and one boolean solution, x =

1. We introduce the quadratic inequality

(1− x)(x− 1/2) = 3x/2− x2 − 1/2 ≥ 0. (7)

By substituting x2 with y, inequality (7) becomes linear with respect to x and
y. We then project y onto x via the relation x2

i − xi = 0, for i = 0, . . . , n,
that is y = x. The new feasibility problem is

find x

subject to x ≥ 1 (8)

0 ≤ x ≤ 1,

which only has the boolean solution x = 1.

2 Scribe: Mariette Annergren
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Proof system interpretation

The Lovász-Schrijver hierarchy can be seen as a proof system for determining
if a given set contains an integer solution. We consider the case when the
given set is P . Consequently, the constraints

Ax ≤ b, 0 ≤ x ≤ 1, and x2
i − xi = 0, for i = 0, . . . , n, (9)

are the axioms of the proof system. The system allows for quadratic inequal-
ities to be introduced via multiplication and positive combinations of the ax-
ioms. Howmany of these modifications that are done to introduce a particular
linear inequality is related to the rank of the inequality5. The original prob- 5 For a definition and related results, see Def-

inition 2 and Theorem 3 in notes from the
first lecture on course webpage.

lems (1) and (2) are infeasible if we get the linear inequality 1 ≤ 0.

Geometric interpretation

We introduce the matrix variable Y ∈ R(n+1)×(n+1) and, given P , we en-
force the following constraints on Y6: 6 Y has row and columns indexed from 0 to

n. Yij is the element in the ith column and jth
row of Y and the ith column of Y is denoted
Y(i).

Yji = Yij, for every i, j = 0, . . . , n,

Y0i = Yi0 = Yii, for i = 0, . . . , n, (10)
n

∑
j=1

A(j)Yij − bYi0 ≤ 0, for i = 0, . . . , n.

If Y satisfies the constraints (10), it satisfies every derivable linear inequality
of rank 1. We can see that this is true by introducing the auxiliary variable
x0 = 1 and performing the variable substitution xixj = Yij for every i, j =
0, . . . , n. We let any terms of degree zero be represented by Y00.

Once we have a new set of inequalities expressed in Y, we project these
back onto the original variables x. 7 7 The projection of Y onto x is defined as

the Lovász-Schrijver operator. It is denoted
N(·). We then have N(Pt) = Pt+1 and
Nt(P) = Pt.

To optimize over a linear program we can, for example, use the ellipsoid
algorithm. To use this algorithm it is sufficient to have a separation oracle for
the considered convex set, as mentioned in the proof sketch of Theorem 88. 8 See notes from the first lecture on course

webpage.A separator in the Lovász-Schrijver hierarchy to determine Nt(P) is based
on the following checks: Is

1. Y = YT ,

2. Y0i = Yi0 = Yii, for i = 0, . . . , n,

3. Y(i) ∈ Nt−1(P) for i = 0, . . . , n,

4. Y(0) −Y(i) ∈ Nt−1(P) for i = 0, . . . , n?

If we can find a violated inequality, we can find a separating hyperplane and
thus construct a tighter polytope Pt. This is done with only one call to the
separator oracle, meaning that the operations Nt(P) requires nO(t) calls to
the oracle.
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Sherali-Adams hierarchy

The Sherali-Adams hierarchy can, as the Lovász-Schrijver hierarchy, be seen
as a lift and project relaxation. However, in the Sherali-Adams hierarchy
we do not have to start with linear inequalities. Consequently, we may end
up with higher and higher orders of the inequalities for each iteration. It
is not until the last iteration that we project the problem back onto linear
inequalities.

Proof system interpretation

The Sherali-Adams hierarchy can be interpreted as a proof system for deter-
mining if the set of polynomial inequalities

p1 ≥ 0, p2 ≥ 0, . . . , pm ≥ 0. (11)

holds. The Sherali-Adams proof of p ≥ 0 is

m

∑
l=1

pl gl + ∑
i
(x2

i − xi)hi + g0 = p (12)

where each

gl = αl ∏
i∈Al

xi ∏
j∈Bl

(1− xj) (13)

with αl ≥ 0 and Al ∩ Bl = ∅, and each hi is an arbitrary polynomial. For
the problem statement we consider here, problem (3), the polynomials pl for
l = 1, . . . , m correspond to the inequality constraint Ax ≤ b. The original
problems (1) and (2) are infeasible if we get p = −1.

The rank of a Sherali-Adams proof is defined in different ways in litera-
ture9. Based on the definitions of the rank, we can state the following: 9 See notes from the first lecture on course

webpage.

Nt(P) ⊇ St+1(P), (14)

where St(P) is the polytope we get through a proof of rank at most t.

Geometric interpretation

Similar to the Lovász-Schrijver hierarchy, we add the auxiliary variable x0 =

1 and introduce the variable Y ∈ Rs where s = ( n
≤t). We perform a variable

substitution such that every monomial in p is mapped into an element of Y,
for example,

x2
2x3x5 = Y{2,3,5}.

Wedenote the set of points satisfying all the new linear inequalities inRs as E .
We can then state that E satisfies every derivable linear inequality of rank at
most t, after projecting over, with some abuse of notation, (Y∅, Y1, . . . , Yn).

For an example of a Sherali-Adams relaxation, please see page 9 of notes
from the first lecture on course webpage.
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