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4. Semidefinite program relaxations of integer pro-
grams.
Lecturer: Massimo Lauria

http://www.csc.kth.se/~lauria/sos14/

Disclaimer: this lecture note has not yet been reviewed by the mail lecturer.
It is released as it is for the convenience of the students.
We continue the discussion on how to improve the initial relaxation made of an
integer program. Here, we focus on semidefinite program (SDP) relaxations.

Motivation for SDP relaxations

SDP relaxations are more complicated to construct than linear relaxations,
but more powerful. To see this, we consider the maximum cut problem.

Maximum cut problem1 1 Poljak and Tuza. Maximum cuts and largest
bipartite subgraphs. Combinatorial Opti-
mization, 20, 1995We consider a finite, undirected and loopless graph G(V, E), where V de-

notes the set of vertexes and E denotes the set of edges. Each edge is weighted
according to some function c : E→ R.

Let S ⊆ V, the cut is defined as the edges with one end in S and the other
end in V\S and the weight of the cut is the sum of the weights corresponding
to the edges belonging to the cut.

The maximum cut problem is equivalent to the problem of finding the set
S that maximizes the weight of the induced cut. It is NP-complete2. 2 Karp. Reducibility among combinatorial

problems. In Complexity of Computer Com-
putations. Plenum Press, 1972

Several approximation algorithms have been developed to be able to solve
it with a high performance guarantee3 in polynomial time. The approxima- 3 The performance guarantee is defined as

ρ =
optimal value of relaxed problem
optimal value of original problem

,

that is, the inverse of the integrality gap.

tion algorithm with the highest performance guarantee is an SDP relaxation
that achieves ρ ≈ 0.878.

However, any Sherali-Adams relaxation of degree t = nδ(ε) can only
achieve a performance guarantee of 1/2 + ε4. 4 Citation needed

Small example of SDP relaxation

We want to show that a polynomial p is non-negative over some polytope
and write p ≥ 0. If the polynomial p is expressible as a sum of squared
polynomials, then we can find such representation in a tractable manner by
reformulating the problem as a SDP relaxation5. Let us see a small example. 5 Parrilo

Consider
F(x, y) = 2x4 + 2x3y− x2y2 + 5y4

and assume it is expressible as a sum of squared polynomials. These have de-
gree at least 2, half the degree of F, and furthermore since F is homogeneous

Scribe: Mariette Annergren 1

http://www.csc.kth.se/~lauria/sos14/


Lecture 4 — 4 February, 2014 Sum of squares and integer programming relaxations

they have degree exactly 2. The monomials in (x, y) of degree 2 are x2, y2

and xy.
We can express sums of squares of polynomials with the following matrix

operation:x2

y2

xy


T q11 q12 q13

q21 q22 q23

q31 q32 q33


︸ ︷︷ ︸

Q

x2

y2

xy

 =

q11x4 + q22y4 + (q33 + 2q12)x2y2 + 2q13x3y + 2q23xy3. (1)

We match the coefficients in (1) with those in F(x, y), that is,

F(x, y) =

x2

y2

xy


T

Q

x2

y2

xy


for

Q =

 2 −3 1
−3 5 0
1 0 5

 .

To construct the sum of squared polynomials yielding F(x, y), we perform a
Cholesky factorization6 of the matrix Q in the following way: 6 Need SDP?

F(x, y) =

x2

y2

xy


T

UTU

x2

y2

xy

 =

x2

y2

xy


T

1√
2

2 −3 1
0 1 3
0 0 0


T

1√
2

2 −3 1
0 1 3
0 0 0


x2

y2

xy

 =

(
1√
2

(
2x2 − 3y2 + xy

))2

+

(
1√
2

(
y2 + 3xy

))2

.

We have reformulated F(x, y) as a sum of squared polynomials and, conse-
quently, we have shown that F(x, y) ≥ 0.

It is important to note that not every polynomial p ≥ 0 on Rn can be
expressed as a sum of squared polynomials if n ≥ 2. An example of this is
the Motzkin polynomial7, 7 Motzkin. The arithmetic-geometric in-

equality. In Inequalities (Proc. Sympos.
Wright-Patterson Air Force Base, Ohio,
1965). Academic Press, 1967

M(x, y, z) = x6 + y4z2 + y2z4 − 3x2y2z2.

Moment matrix8 8 Lasserre. Global optimization with poly-
nomials and the problem of moments. SIAM
Journal on Optimization, 11:796–817, 2001We consider polynomials p(x) : Rn → R of degree t. We can express them

as

p(x) = ∑
α∈[t]n

pαxα, with xα = xα1
1 xα2

2 · · · x
αn
n , and

n

∑
i=1

αi ≤ t,
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where

1, x1, x2, . . . , xn, x2
1, x1x2, . . . , x1xn, . . . , x2

n, . . . , xt
1, . . . , xt

n (2)

is a basis of p(x) and p is the coefficient vector of p(x) with respect to (2).
We introduce the auxiliary variable y00...0 = 1 and perform the variable

substitution xi
1xj

2 · · · xl
n = yij...l . The moment matrix Mt(y) has rows and

columns labelled according to the basis (2) and its elements are the corre-
sponding yij...l . For simplicity, we only show the case for n = 2 and t = 2,

M2(y) =



1 x1 x2 x2
1 x1x2 x2

2

1 1 y10 y01 y20 y11 y02

x1 y10 y20 y11 y30 y21 y12

x2 y01 y11 y02 y21 y12 y03

x2
1 y20 y30 y21 y40 y31 y22

x1x2 y11 y21 y12 y31 y22 y13

x2
2 y02 y12 y30 y22 y13 y04


.

Consider the squared polynomial

p2(x) = (∑
α

pαxα)2 = ∑
α

∑
α′

pαxα pα′x
α′ .

It can be expressed, using the moment matrix, in the following way:

p2(x) = pT
α Mt(y)Pα.

Consequently, we have that p2(x) ≥ 0⇔ Mt(y) � 0.

Lovász-Schrijver hierarchy with SDP

LS+9 is a lift and project relaxation as its linear version. We are still limited 9 The Lovász-Schrijver hierarchy with SDP.

to start each iteration with linear inequalities and we are only allowed to in-
troduce quadratic inequalities. In fact, the only difference is that the matrix
constraint Y � 0 has been added.

Geometric interpretation

As for the Lovász-Schrijver hierarchy, we introduce the auxiliary variable
x0 = 1 and perform the variable substitution xixj = yij for every i, j =

0, . . . , n. We let any terms of degree zero be represented by y00. We enforce
the following constraints on Y:

1. Y = YT ,

2. y0i = yi0 = yii, for i = 0, . . . , n,

3. Y(i) ∈ P for i = 0, . . . , n,

4. Y(0) −Y(i) ∈ P for i = 0, . . . , n.

5. Y � 0.
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Constraints 1 and 2 are due to that xixj = xjxi and xi− x2
i = 0. Constraints 3

and 4 stem from
n

∑
j=1

A(j)yij − byi0 ≤ 0, for i = 0, . . . , n,

and
n

∑
j=1

A(j)(y0j − yij)− b(y00 − yi0) ≤ 0, for i = 0, . . . , n,

respectively. The matrix constraint 5 is equivalent to p2(Y) ≥ 0 for all poly-
nomials p(·) of degree one as discussed previously.

Operator and rank

The operation N+(P) is the projection over 1 = Y00, x1 = Y01,. . . ,xn = Y0n.
The rank t of a proof in LS+ is the same as for Lovász-Schrijver hierarchy.
Note that, if P is the polytope corresponding to the set of initial inequalities
then N+(P) is determined by inequalities derivable in rank one.

The projection Nt
+(P) can be solved in nO(t) given a polynomial time sep-

arator of P. We can use the same separator as for Nt(P), with the additional
requirement that Y � 0.

Example 1. Consider the maximum independent set problem on a graph
G(V, E)

maximize ∑
u∈V

xu

subject to xu + xv ≤ 1, (u, v) ∈ E

xu ∈ {0, 1}. (3)

Over the complete graph of order n we want to show that the objective value
of (3) is at most one, this is equivalent to showing that ∑ xu ≤ 1. If we are
using LS relaxations, then we need rank n. Using LS+, we can do this in rank
one.

The axioms of the proof are 1− xu − xv ≥ 0, x2
u − xu = 0, and we can

derive

∑
u

∑
v 6=u

(1− xu − xv)xu + ∑
u
(x2

u − xu)(n− 2) + (1−∑
u

xu)
2 ≥ 0

⇒ 1−∑
u

xu ≥ 0.

Positivstellensatz proof systems10 10 Dima Grigoriev and Nicolai Vorobjov.
Complexity of null-and positivstellensatz
proofs. Annals of Pure and Applied Logic,
113(1):153–160, 2001

Positivstellensatz proof systems are, as the name implies, based on the Posi-
tivstellensatz11. 11 Bochnak, Coste, and Roy. Geometrie Al-

gebrique Reelle. Springer-verlag, 1987We consider a system of constraints

f1 = 0, . . . , fk = 0, h1 ≥ 0, . . . , hm ≥ 0, (4)
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where fi and hi are polynomials of x1, . . . , xn, and we require 0 ≤ xi ≤ 1
and x2

i − xi = 0. We introduce the following pair of polynomials:

f =
k

∑
s=1

fsgs, h = ∑
I⊆{1,...,m}

(
∏
i∈I

hi
)(

∑
j

e2
I,j
)
, (5)

where eI,j and gs are arbitrary polynomials. If f + h = −1, we know that
system (4) has no feasible solution because our initial constraints imply that
f = 0 and g ≥ 0. Such a polynomial pair is called the refutation for (4). The
degree of the refutation is given by

max
s,I,j
{deg( fs, gs), deg(e2

I,j ∏
i∈I

hi)}. (6)

Positivstellensatz calculus12 12 Dima Grigoriev and Nicolai Vorobjov.
Complexity of null-and positivstellensatz
proofs. Annals of Pure and Applied Logic,
113(1):153–160, 2001

Positivstellensatz calculus is the dynamic version of Positivstellensatz. Again
our input is the system of constraints (4), but now we let f defined in (5)
instead be an arbitrary polynomial derived from f1 = 0, . . . , fk = 0 and
x2

i − xi = 0 using the polynomial calculus inference rules13. If f + h = −1, 13 The polynomial calculus inference rules
are p q

αp + βq
,

p
xp

for any polynomials p, q, coefficients α, β
and variable x.

we call the polynomial pair the Positivstellensatz calculus refutation of (5).
The degree of the refutation is the maximum degree of e2

I,j ∏i∈I hi and of the
derivation for f .

Sum-of-squares hierarchy

The Lasserre14 hierarchy is a weaker version of the Positivstellensatz proof 14 also known as sum-of-squares

system where we do not allow to multiply constraints hj ≥ 0 together. We
consider the same system (4). We introduce the following polynomial:

p = u0 + ∑
j

ujhj + ∑
i

gi fi, (7)

where uj are sum-of-squares and gi are arbitrary polynomials. The degree of
a proof is the maximal degree of u0, ujhj and gi fi.

Geometrical interpretation

We start with h1 ≥ 0, . . . , hm ≥ 0 and a fixed t. As it was the case with
Sherali-Adams we lift the problem to a larger space and we implicitly en-
force x2

i = xi constraints by considering multilinearized polynomials, thus
we have the moment matrix Mt = (yA∪B) indexed by sets |A|, |B| ≤ t. The
constraints are to be localized on moment matrices, that is Mt(hi ◦ Y). If
hi = ∑S αS ∏i∈S xi and we substitute every monomial ∏i∈S xi for yS, then
the constraint becomes Mt(hi ◦Y) = ∑S αS(yA∪B∪S).

We want to find a y such that Mt(y) � 0 and Mt(hjy) � 0 where the last
matrix inequality is equivalent to hj p2(y) for all multilinear polynomials p
of degree at most t.
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We let Qt(K) denote the projection over 1 = y∅ and xi = y{i} for all i,
where K is the set defined by the inequalities h1 ≥ 0, . . . , hm ≥ 0.

This setting does not allow equality constraints, but we can deal with them
by splitting each equality fi = 0 into fi ≥ 0 and fi ≤ 0.

Lasserre relaxations are stronger than Sherali-Adams. The following is an
example of how to derive SA inequalities by using the Lasserre setup. Say
we have the constraint h(x) = x ≥ 0 and we want to derive the constraint
x(1− y)(1− z) ≥ 0.

The moment matrix of the constraint h is

M2(h ◦Y) =


x xy xz xyz

x yx yxy yxz yxyz

xy yxy yxy yxyz yxyz

xz yxz yxyz yxz yxyz

xyz yxyz yxyz yxyz yxyz

. (8)

The condition M2(h ◦Y) � 0 is equivalent to that αT M2(h ◦Y)α ≥ 0 for
any vector α, in particular it holds for the vector (1 −1 −1 1)T corre-
sponding to (1− y)(1− z) = (1− y− z + yz). Performing the calculation
yields

yx − yxy − yxz + yxyz ≥ 0 (9)

which is the constraint we would have obtained applying the Sherali-Adams
method.
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