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Disclaimer: this lecture note has not yet been reviewed by the main lecturer.
It is released as it is for the convenience of the students.
In this lecture, we study the properties of the solution vectors of the Lasserre
relaxation. We start with some basic properties of the solutions, and then con-
tinue to show that the solution vectors give us a family of locally consistent
distributions over feasible integral local solutions. At the end of the lecture, we
see an example of this property in graph coloring.

In this lecture we prove some properties of the solution vectors of the
Lasserre hierarchy. (These notes follow closely the lecture notes made by
Thomas Rothvoß1.) 1 Thomas Rothvoß. The lasserre hierarchy

in approximation algorithms. Lecture Notes
for the MAPSP 2013 Tutorial (preliminary
version), 2013

First, we recall the notation defined in previous lectures. Let

K = {x ∈ Rn∣∀i, hi(x) ≥ 0} (1)

be some relaxation of a binary feasibility problem. That is, K is the set of
fractional points that satisfies all the constraints, where the hi’s are polyno-
mial constraints. In most of the previous examples, all hi’s are linear and
therefore K is a polytope. Otherwise, we usually call K a semialgebraic set.
In the rest of the lecture, we assume that all constraints are linear.

The polytope PI = conv(K ∩ {0, 1}n) is the convex hull of all integral
solutions. Recall that the t-th level of the Lasserre hierarchy Lt(K) is the set
of vectors y ∈ R2[n] that satisfies the following constraints:

Mt(y) ⪰ 0,

Mt(hi ○ y) ⪰ 0, ∀i, (2)

y∅ = 1.

Let Qt(K) be the projection of Lt(K) over y
{i} =∶ xi. For simplicity of

notation, we write yi instead of y
{i} in the rest of the note.

Basic properties of the Lasserre relaxation

We first discuss some of the basic properties of the Lasserre relaxation. For
more details, see Lemma 1 and the corresponding proof in lecture notes 2. 2 Thomas Rothvoß. The lasserre hierarchy

in approximation algorithms. Lecture Notes
for the MAPSP 2013 Tutorial (preliminary
version), 2013

Lemma 1. Define K and Lt(K) as above for some t ≥ 0, and let y ∈ Lt(K).
Then the following holds:

1. For all ∣I∣ ≤ t, 0 ≤ yI ≤ 1.

2. For any I ⊆ J, ∣J∣ ≤ t, 0 ≤ yJ ≤ yI .

3. For ∣I∣ ≤ t, ∣J∣ ≤ t, ∣y
∣I∪J∣∣ ≤

√yIyJ .

4. For ∣S∣ ≤ t, y ∈ Lt(K), if there exists i ∈ S such that yi = 0, then yS = 0.
Similarly, if for all i ∈ S, yi = 1, then yS = 1.
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Proof. For proving the first two statements we make use of the fact that
Mt(y) ⪰ 0 if and only if every principal minor of Mt(y) is greater than
or equal to zero.

1) Consider the principal minor

∣y∅ yI

yI yI
∣ = yI(1− yI) ≥ 0. (3)

Constraint (3) yields 0 ≤ yI ≤ 1.
2) Consider the principal minor

∣ yI yI∪J

yI∪J yJ
∣ = yIyJ − y2

I∪J ≥ 0. (4)

Since I ⊆ J, we have that yI∪J = yJ . Therefore constraint (4) is equivalent to
yIyJ − y2

J ≥ 0. From 1) we have yI , yJ ≥ 0, thus yI ≥ yJ .
3) Again, consider (4).
4) The first half of the statement follows by applying the first statement of

Lemma 1 with I ∶= {i} and J ∶= S.
For the second half of the statement, we can use the fact that the Sherali-

Adams constraints are implied by the Lasserre constraints, and use

∑
H⊆S′

(−1)∣H∣yH ≥ 0

inductively for all sets S′ ⊆ S.

Consistent local distributions

Next, we show that the vectors in Lt(K) can be written as a convex combina-
tion of fractional solutions that are locally integral, see for example Section
2.3 in lecture notes 3. We have the following theorem: 3 Thomas Rothvoß. The lasserre hierarchy

in approximation algorithms. Lecture Notes
for the MAPSP 2013 Tutorial (preliminary
version), 2013

Theorem 2. Let y ∈ Lt(K) and S ⊆ [n], ∣S∣ ≤ t. Then y ∈ conv(z∣z ∈
Lt−∣S∣(K);∀i ∈ S, zi ∈ {0, 1}).

To prove Theorem 2, we first prove the following claim:

Claim 3. Let y ∈ Lt(K), and i ∈ [n] be some variable where yi ∉ {0, 1}. Then
there exist z0, z1 ∈ Lt−1(K), and α, β ∈ [0, 1], such that α + β = 1, z0

i = 0,
z1

i = 1, and y = αz0 + βz1.

Proof. Since yi ∉ {0, 1}, we can define the elements of z0 and z1 as

z1
I =

yI∪{i}

yi
,

z0
I =

yI − yI∪{i}

1− yi
.

Clearly z0
i = 0 and z1

i = 1, andwith α = 1−yi and β = yi, we get y = αz0+ βz1.
Now we verify that z0, z1 ∈ Lt(K).

First, we check that Mt(y) ⪰ 0 implies that Mt−1(z1) ⪰ 0. Recall that
since the moment matrix Mt is positive semidefinite, there exists a vS for
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each S ⊆ [n], ∣S∣ ≤ t, such that Mt(y)I,J = ⟨vI , vJ⟩, for all ∣I∣ ≤ t, ∣J∣ ≤ t.
Define

u1
I =

1
√yi

vI∪{i}.

Then the matrix M = (⟨u1
I , u1

J ⟩)∣I∣≤t−1,∣J∣≤t−1 is positive semidefinite by defi-
nition. We need to show that MI,J = z1

I∪J for ∣I∣, ∣J∣ ≤ t − 1. Note that

MI,J =
1
yi

⟨vI∪{i}, vJ∪{i}⟩ =
1
yi

yI∪J∪{i} = z1
I∪J ,

thus, Mt−1(z1) ⪰ 0.
Second, we check that Mt(y) ⪰ 0 implies that Mt−1(z0) ⪰ 0. Similarly to

above, we can define
u0

I =
vI − vI∪{i}√

1− yi
,

and conclude that Mt−1(z0) ⪰ 0.
The final thingwe need to show is that Mt(h○y) ⪰ 0 implies that Mt−1(h○

z0) ⪰ 0 and Mt−1(h ○ z1) ⪰ 0. The proof idea is similar to the above argu-
ment. Remember that if we assume h = ∑S αS∏i∈S xi, then

Mt(h ○ y)I,J = ⟨ṽI , ṽJ⟩ = ∑
S

αSyI∪J∪S.

Now define
ṽ1

I =
ṽI∪{i}

yi
,

and we can verify that indeed Mt−1(h ○ z1) ⪰ 0. Similarly we can show that
Mt−1(h ○ z0) ⪰ 0.

For a different proof formulation see Proof 1 of Lemma 2 in lecture notes4. 4 Thomas Rothvoß. The lasserre hierarchy
in approximation algorithms. Lecture Notes
for the MAPSP 2013 Tutorial (preliminary
version), 2013To prove Theorem 2, we simply apply Claim 3 iteratively to all variables

in S.
The following statement shows that we need at most level n of the Lasserre

hierarchy to obtain PI :

Corollary 4. Qn(K) = PI .

Suppose now that we have some y ∈ Ln(K). Then, summarizing the above,
we can see that there exists some distribution D over {0, 1}n, such that for
any I ⊆ [n], we have

yI = Pr
X∼D

[⋀
i∈I

(Xi = 1)] .

Now consider the sets of indices J0, J1 ⊆ [n]. By the inclusion-exclusion
principle, we have

Pr
X∼D

⎡⎢⎢⎢⎢⎣
⋁
i∈J0

(Xi = 1)
⎤⎥⎥⎥⎥⎦
= ∑
∅⊂H⊆J0

(−1)∣H∣+1 Pr
X∼D

[⋀
i∈H

(Xi = 1)] .

Negating this gives

Pr
X∼D

⎡⎢⎢⎢⎢⎣
⋀
i∈J0

(Xi = 0)
⎤⎥⎥⎥⎥⎦
= ∑

H⊆J0

(−1)∣H∣ Pr
X∼D

[⋀
i∈H

(Xi = 1)] . (5)
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Equation (5) yields the generalized inclusion-exclusion formula

Pr
X∼D

⎡⎢⎢⎢⎢⎣
⋀
i∈J1

(Xi = 1) ∧ ⋀
i∈J0

(Xi = 0)
⎤⎥⎥⎥⎥⎦

= ∑
H⊆J0

(−1)∣H∣ Pr
X∼D

⎡⎢⎢⎢⎢⎣
⋀

i∈J1∪H
(Xi = 1)

⎤⎥⎥⎥⎥⎦
. (6)

This motivates the following definition:

Definition 5. For y ∈ Ln(K), define

yJ0,J1
I = ∑

H⊆J0

(−1)∣H∣yI∪H∪J1 .

From this, we have

yJ0,J1
I∪{i} = yJ0,J1∪{i}

I

yJ0∪{i},J1
I = yJ0,J1

I − yJ0,J1
I∪{i}. (7)

Also, corresponding to (6), we have

yJ0,J1
∅

= Pr
X∼D

⎡⎢⎢⎢⎢⎣
⋀
i∈J0

(Xi = 0) ∧ ⋀
i∈J1

(Xi = 1)
⎤⎥⎥⎥⎥⎦

yJ0,J1
I = Pr

X∼D

⎡⎢⎢⎢⎢⎣
⋀
i∈I

(Xi = 1) ∧ ⋀
i∈J0

(Xi = 0) ∧ ⋀
i∈J1

(Xi = 1)
⎤⎥⎥⎥⎥⎦

.

Definition 6. Assume that yJ0,J1
∅

> 0, define

zJ0,J1
I =

yJ0,J1
I

yJ0,J1
∅

. (8)

If y ∈ Ln(K), we have, by Bayes’ formula, that

zJ0,J1
I = Pr

X∼D

⎡⎢⎢⎢⎢⎣
⋀
i∈I

(Xi = 1)∣ ⋀
i∈J0

(Xi = 0) ∧ ⋀
i∈J1

(Xi = 1)
⎤⎥⎥⎥⎥⎦

.

This is the intuition of the following lemma:

Lemma 7. Let y ∈ Lt(K), S ⊆ [n], ∣S∣ ≤ t. Define zJ0,J1 as in (8). Then we
have

1. ∑J0⊍J1=S yJ0,J1
∅

= 1.

2. for all i ∈ J0, zJ0,J1
i = 0, and for all i ∈ J1, zJ0,J1

i = 1.

3. for all J0, J1, zJ0,J1 ∈ Lt−∣S∣(K).

4. y expressed as the convex combination

y = ∑
J0⊍J1=S
y

J0,J1
∅

>0

yJ0,J1
∅

zJ0,J1 .
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Proof. We prove the statements inductively on the size of S. Suppose S =
S′ ∪ {i}, and we have proved the lemma for S′. Then

yI = ∑
J0⊍J1=S′

yJ0,J1
I

= ∑
J0⊍J1=S′

((yJ0,J1
I∪{i}) + (yJ0,J1

I − yJ0,J1
I∪{i}))

= ∑
J0⊍J1=S′

yJ0,J1∪{i}
I + ∑

J0⊍J1=S′
yJ0∪{i},J1

I

= ∑
J0⊍J1=S

yJ0,J1
I .

This, along with Definition 6, gives the RHS of the equality in 4). Setting
I = ∅ and noticing that y∅ = 1 give us the equality in 1). The proof of 2) and
3) is similar to that of Claim 3.

From this, it is easy to define locally consistent probability distributions
from vectors in Lt(K).

Theorem 8. Let y ∈ Lt(K). Then for any S ⊆ [n], ∣S∣ ≤ t, there is a distribu-
tion D(S) over {0, 1}S, such that for all I ⊆ S

Pr
z∼D(S)

[⋀
i∈I

zi = 1] = yI .

Proof. Using Lemma 7, we can write y as a combination of vectors,

y = ∑
J0⊍J1=S
y

J0,J1
∅

>0

yJ0,J1
∅

zJ0,J1 .

In the distribution D(S), with probability yJ0,J1
∅

, we set all bits in J1 to 1 and
all bits in J0 to 0. Note that for I ⊆ S,

Pr
z∼D(S)

[⋀
i∈I

(zi = 1)] = ∑
I⊆J1⊆S
J0=S∖J1

yJ0,J1
∅

= ∑
J0⊍J1=S∖I

yJ0,J1
I = yI .

For a concrete example of this property, we look at Graph 3-Coloring.
Let G = (V, E) be an undirected graph and suppose it is 3-colorable, i.e., the
nodes can be colored with red, green and blue such that adjacent nodes get
assigned different colors. Then we get the following relaxation:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x ∈ {0, 1}n

xi,c + xj,c ≤ 1 ∀c ∈ {R, G, B},{i, j} ∈ E
∑c xi,c ≥ 1 ∀i ∈ V.

Lemma 9. Let y ∈ L3t(K) be a solution for the 3t-th level Lasserre relaxation
of the above program. Then there is a family of distributions {D(S)}S⊆V,∣S∣≤t,
such that for any S ⊆ V with ∣S∣ ≤ t, we have that

1. any χ in the support of D(S) is a legal coloring for the induced subgraph
G[S].

2. the probabilityPrχ∼D(S)[χ(il) = cl ,∀i = 1,⋯, k] = y
{(i1,c1),(i2,c2),⋯,(ik ,ck)}

,
for all i1,⋯, ik ∈ S, c1,⋯, ck ∈ {R, G, B}.
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