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7. Sum of squares lower bounds for 3-SAT and 3-XOR
Part 1/2.
Lecturer: Massimo Lauria

http://www.csc.kth.se/~lauria/sos14/

Disclaimer: this lecture note has not yet been reviewed by the main lecturer.
It is released as it is for the convenience of the students.

This lecture is about Positivstellensatz Calculus and a lower bound for the
degree in that proof system of the so called random k-XOR formulas. We define
the Positivstellensatz Calculus, the Binomial Calculus and prove a lower bound
for the degree of random k-XOR formulas in Binomial Calculus. The proof of
why this result leads to a lower bound for Positivstellensatz is in the next lecture.

Positivstellesatz Calculus (PC>)

Let us consider the ordered field of the reals R, a finite set of variables X and
a finite set P of polynomial equations in the ring R[X].

A derivation of p ≥ 0 from P in PC> is a sequence of polynomial equa-
tions ending with p′ = 0 such that p = p′+∑i h2

i , where hi are polynomials
in R[X]. Each polynomial equation in the sequence is either from P or is the
result of an inference from polynomial equations appearing previously in the
sequence according to the following inference rules:

q = 0
xq = 0

x ∈ X,
q = 0 r = 0
αq + βr = 0

α, β ∈ R. (1)

A refutation of P in PC> is a derivation of −1 ≥ 0 starting from P. The
degree of a derivation of p ≥ 0 is the maximum degree of the intermediate
polynomials appearing in the derivation of p′ and the maximum degree of
the h2

i ’s.
The Binomial Calculus (BC) is a particular case of the previous proof

system. A BC derivation of some binomial equation p = 01 from some 1 We recall that a binomial is sum of two
terms, each of them of the form α ∏ xi for
some α ∈ R and for some subset of vari-
ables xi from X.

set of binomial equations Q is a PC< derivation of p ≥ 0 from Q where
each intermediate polynomial equation is actually a binomial equation and
the ∑i h2

i part is 0.
A refutation of Q in BC is a derivation in BC of α − 1 = 0 for some

α ∈ R, α 6= 1. The very same notion of degree of PC> apply here.

Random k-XOR formulas

Let X = {x1, . . . , xn} be a set of variables and m, k ∈N. Sample uniformly
at random b ∈ {0, 1} and S ⊂ [n] of size k and from them build the parity
constraint ∑i∈S xi ≡ b (mod 2). Repeat independently at random this pro-
cess m times to obtain a random k-XOR formula on variables in X with m
parity constraints2. 2 A very similar process is used to build ran-

dom k-SAT formulas: pick uniformly at ran-
dom a set S ⊂ [n] of size k and a random
mapping b : S → {0, 1}. From those build
the clause

∨
i∈S xb(i)

i , where x1 := x and
x0 := ¬x. Repeat independently at random
this process m times and take the conjunc-
tion of the clauses you get.

We can associate to a random k-XOR formula a set of polynomial equa-
tions such that the formula has a boolean solution iff the set of polynomial
equations has a solution. The encoding of a single parity constraint∑i∈S xi ≡
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b (mod 2) as a set of polynomial equations in R[X] is the following:{
∏
i∈S

(1− 2xi) = (−1)b

}
S

∪ {x2
i = xi}i∈X . (2)

In what follow we will use another encoding using a different set of vari-
ables Y = {y1, . . . , yn}. In this case the parity constraint ∑i∈S xi ≡ b
(mod 2) has a solution iff the following set of polynomial equations in R[Y]
has a zero:

{∏
i∈S

yi = (−1)b} ∪ {y2
i = 1}i∈S. (3)

Obviously there is a linear transformation from R[X] to R[Y] mapping
the first set into the second: xi 7→ (yi − 1)/2.

Notice that the degree of PC> refutations of an unsatisfiable set of parity
constraints does not depend on whether the encoding as polynomial equations
is the one in (2) or (3). As already observed there is a linear mapping from
one set to the other so we can apply that mapping to a PC> refutation over
R[Y] to obtain a valid PC> refutation over R[X] (and vice versa) both having
the same degree.

Theorem 1. For each k ≥ 3 and δ > 0 there exists α, such that a random
k-XOR formula φ in n variables and ∆n clauses, where ∆ ≥ (1 + ln 2) 1

2δ2 ,
with high probability has the following properties:

1. At most
(

1
2 + δ

)
∆n parity constraints of φ can be simultaneously satis-

fied,

2. Any PC> refutation of φ requires degree αn.

Proof of part 1 of the Theorem. Given φ we proceed by applying Chernoff
Bound and then union bound. Lets fix an assignment x ∈ {0, 1}n and let
Ci(x) be the random variable that is 1 if x satisfy the i-th parity constraint
in φ and 0 otherwise. Hence ∑i Ci(x) is the number of linear constraints of
φ satisfied by x. Then E[Ci(x)] = 1

2 and by linearity E[∑i Ci(x)] = 1
2 ∆n.

Hence, by Chernoff Bound3, for any δ > 0, 3 We use the (standard) following form of
Chernoff Bound: let X1, . . . , Xm be inde-
pendent 0-1 random variables and X =

∑i∈[m] Xi then for every λ > 0

P [X ≥ E[X] + λ] ≤ e−
2λ2
m .

P

[
∑

i
Ci(x) ≥ (

1
2
+ δ)∆n

]
≤ e−2δ2∆n.

Hence by union bound

P

[
∃x ∈ {0, 1}n

(
∑

i
Ci(x) ≥ (

1
2
+ δ)∆n

)]
≤ 2n · e−2δ2∆n ≤ e−n.

The last inequality comes from the assumption that ∆ ≥ (1 + ln 2) 1
2δ2 .

Before going deep into the proof of part 2. of Theorem 1 we just state and
prove an interesting corollary.

Corollary 2. For each k ≥ 3 and δ > 0, there exists an α, such that with
high probability for a random k-SAT formula φ with ∆n clauses and ∆ ≥
(1 + ln 2) 1

2δ2 :
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1. At most
(

2k−1
2k + δ

)
∆n clauses of φ can be satisfied at the same time and

2. Any PC> refutation of φ requires degree at least αn.

Proof. The proof of point 1 is exactly the same of the analogous point of
Theorem 1. The only difference is that the expected value of the random
variable representing the number of clauses satisfied changes to 2k−1

2k ∆n. The
rest of the calculations are exactly the same.

Regarding the second point we just observe that from random k-XOR we
can derive in degree (k + 1) random k-SAT.

For each parity constraint ∑i∈S xi ≡ b (mod 2) in random k-XOR we
choose uniformly at randomone of the clauses derivable from that constraint4. 4 For example consider the parity constraint

x1 + x2 + x3 ≡ 0 (mod 2), that has
polynomial encoding as (1 − 2x1)(1 −
2x2)(1 − 2x3) = 1, that is the same of
x1 + x2 + x3 − 2(x1x2 + x1x3 + x2x3) +
4x1x2x3 = 0. From this, multiplying by x1,
x2 and x3 we can derive (in degree 4)

x1 − x1x2 − x1x3 + 2x1x2x3 = 0,

x2 − x1x2 − x2x3 + 2x1x2x3 = 0,

x3 − x3x2 − x1x3 + 2x1x2x3 = 0.

Summing all those and subtracting the initial
one we get x1x2x3 = 0, that is the encoding
of ¬x1 ∨ ¬x2 ∨ ¬x3.

That is half of the possible k clauses in the variables {xi}i∈S are cut away and
the other half is derivable in degree k+ 1 from ∏i∈S(1− 2xi) = (−1)b. The
k-SAT formulas we obtain in this way have a distribution indistinguishable
from that of random k-SAT. Hence for sufficiently large n it is not possible to
derive in small degree random k-SAT, otherwise random k-XOR would have
small degree refutations too but this is excluded by Theorem 1.

The previous Theorem and the Corollary show in particular that after αn
steps in the Lasserre hierarchy the integrality gap is 1/2 + δ for Max k-XOR
and 2k−1

2k + δ for Max k-SAT. This means that for both of those problems the

integrality gap cannot be much better than 1/2 or 2k−1
2k respectively.

Proof of Theorem 1 (Part 2)

As the proof is quite long, we recap briefly its high level structure:

• Observe that to prove a degree lower bound for k-XOR formulas, it is irrel-
evant if we choose the encoding in (2) or (3). So, to make our life easier,
we choose the encoding in (3).

• Up to a constant factor of 2, it is the same to prove a degree lower bound
for the binomial encoding of a random k-XOR over R[Y] in BC or for the
other encoding in PC>. See next Lecture.

• Actually prove a degree lower bound in BC for the encoding (3) of a ran-
dom k-XOR over R[Y].

The remaining part of this lecture is devoted to proving the last point
above. We premise a Lemma about the structure of random k-XOR formu-
las. The proof is omitted but follows immediately from Proposition 22 in
(Schoenebeck, 2008)5. 5 Grant Schoenebeck. Linear level lasserre

lower bounds for certain k-csps. In Founda-
tions of Computer Science, 2008. FOCS’08.
IEEE 49th Annual IEEE Symposium on,
pages 593–602. IEEE, 2008

Lemma 3. Given constants k ≥ 3, ∆ > 0 and γ ∈ (0, k/2), there exists
a β, such that for a random k-XOR formula with n variables and ∆n parity
constraints with high probability the following hold

1. for each φ′ ⊆ φ if |φ′| ≤ βn then φ′ is satisfiable,
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2. for each φ′ ⊆ φ if |φ′| ≤ 2
3 βn then there are at least γ|φ′| variables

appearing once in φ′.

Theorem 4. Given constants k ≥ 3, ∆ > 0 and γ ∈ (0, k/2), there exists α,
such that with high probability, for a random k-XOR formula φ in n variables
and ∆n constraints, every BC refutation of φ over R[Y]6 require degree at 6 That is every BC refutation of the encoding

(3) of φ over R[Y].least αn.

Proof. Let B the set of all binomial equations we can derive from φ in Bino-
mial Calculus. We define a measure µ : B→ R as follows7 : 7 φ′ |= p means that the set of parity con-

straints φ′ imply the equation p, ie the sat-
isfying assignmnets of φ′ are also satisfying
assignments of p.

Similarly, for an assignment β and a for-
mula φ, β |= φ means that the assignment β
satisfies all constraints in φ.

µ(p) := min{|φ′| : φ′ ⊆ φ ∧ φ′ |= p}. (4)

Clearly for each binomial b appearing in the encoding of φ we have that
µ(b) = 1 and µ is sub-additive wrt the inference rules in (1). This is imme-
diate from the definition of µ that if {p, q} |= r then µ(r) ≤ µ(p) + µ(q).

Let us now consider a refutation π of φ in BC, say ending with η = 1 for
some η ∈ R, η 6= 1. By Lemma 3 we have that µ(η = 1) > βn.

By the sub-additivity of µ, we have that there exists some medium com-
plexity binomial equation in π. More precisely there exists a binomial equa-
tion q in π such that

1
3

βn < µ(q) ≤ 2
3

βn.

Just take as q the first binomial appearing in π such that µ(q) > 1
3 βn. q

must have been inferred by previous binomials. By the fact that q is the first
binomial in π having big µ and by sub-additivity of µ we have also the other
inequality µ(q) ≤ 2

3 βn.
We want now to prove that q has large degree. Let φ′ ⊆ φ such that

φ′ |= q. By the above inequality we have that 1
3 βn < |φ′| ≤ 2

3 βn, hence by
Lemma 3 we have at least γ|φ′| single variables in φ′. If we prove that those
variables have to appear also in q we are done: as q is a binomial this means
that deg(q) ≥ γ|φ′|/2 ≥ 1

6 βn. Then the parameter α of the statement of
the Theorem is just 1

6 β.
We now prove that each variable that appears once in φ′ has to appear in

q too. Suppose by contradiction there is some variable yi appearing once in
φ′ and not appearing in q. This variable appears only in one parity con-
straint of φ′, say l. Consider φ̄ = φ′ \ {l}. By minimality of φ′ there
exists an assignment β such that β |= φ̄ and β(q) = 08 . Then just take 8 Where we use the standard meaning of

0=False and 1=True.β∗ an assignment that disagree with β only on the value given to yi. This
imply that β∗(q) = β(q) = 0, as yi does not appear in q. But also that
β∗(l) = 1− β(l) = 1, as flipping a single value in a parity constraint flip
also the truth value of the constraint. Hence β∗ |= φ and β∗(q) = 0 in
contradiction with the fact that φ |= q.
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