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8. Sum of squares lower bounds for 3-SAT and 3-XOR
Part 2/2.
Lecturer: Massimo Lauria

http://www.csc.kth.se/~lauria/sos14/

Disclaimer: this lecture note has not yet been reviewed by the main lecturer.
It is released as it is for the convenience of the students.

The whole lecture is devote to show that if a k-XOR formula φ requires
degree D refutations in Binomial Calculus (BC), then it requires degree D/2
Positivstellensatz Calculus refutations (PC>).

Lemma 1. Assume that

f = ∑
i

αi(ti − t′i) (1)

where (ti − t′i) has a BC refutation of degree d, then f can be written as

f = ∑
i

βi(si − s′i)

where for each i (si − s′i) has a BC refutation of degree d and all monomials
in the terms {si, s′i}i are in f .

Proof. Assume that some monomial m appears in the RHS of (1) but not in
f . We show that we can prune that monomial from the sum without affecting
f . Hence, repeating this process we end with the desired expression. To
show how the pruning works consider the sum Sm of all terms of the RHS of
equation (1) containing m:

Sm = ∑
j∈A

αj(m− t′j).

Wlog each t′j in the sum above is not containing m. Moreover as m doesn’t
appear in f it m must be canceled out, that is ∑j∈A αj = 0. Fix i ∈ A such
that t′i is one of the t′j of the equation above.

Then

Sm = ∑
j∈A

αjm− ∑
j∈A

αjt′j
∑j∈A αj=0

= ∑
j∈A

αjt′i − ∑
j∈A

αjt′j = ∑
j∈A

αj(t′i − t′j).

Moreover (t′i − t′j) for each j ∈ A can be derived in BC using degree at most
d as by hypothesis both (m− t′i) and (m− t′j) can be derived in BC using
degree at most d. Hence we showed how to prune m from the RHS of (1).

Corollary 2. If f = 0 is deduced in degree d by the equational part of PC>

then f = ∑j αj(tj − t′j), where each (tj − t′j) has a derivation in degree d in
BC and there are no cancelations.

Proof. By induction. At the beginning of the PC> we have binomials. Then
at each inference step apply Lemma 1.

Theorem 3. Given a k-XOR formula φ. If the minimum degree to refute the
binomial encoding of φ in Binomial Calculus (BC) is D, then the minimum
degree to refute the polynomial encoding of φ in Positivstellensatz Calculus
(PC>) is at least D/2.
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Proof. Suppose by contradiction that there exists a proof of degree d < D/2
of the polynomial encoding P of φ in PC>. That is we have an equation of
the form

p′ = 1 + ∑
j

h2
j , (2)

where p′ = 0 is inferred from P according to the inference rules of PC>. By
applying Corollary 2 wlog we can suppose that p′ = ∑i αi(ti − t′i), where
each (tj − t′j) has a BC derivation in degree d and there are no cancelations.

Observe that for each j deg(h2
j ) ≤ d1 , and not just deg(∑j h2

j ) ≤ d. 1 By contradiction suppose that for some j
deg(h2

j ) > d, then the leading term of hj

can’t cancel out in the sum ∑j h2
j , hence it

should appear also in p′. But this is not pos-
sible as all monomials in p′ have degree not
greater than d.

Let us consider the linear operator L : R[Y] → R defined as follows:
L(1) = 1 and for each monomial m

L(m) :=

α if m− α with α ∈ R has a BC proof from P of degree ≤ d,

0 otherwise.

If we look just at monomials (and polynomials) of degree at most d this
operator is well defined and moreover in that case L(m) ∈ {−1, 0, 1}. In fact
otherwise we could build the following BC refutation of P: start with a BC
derivation of m = a, for some a ∈ R \ {−1, 1}, of degree d < D/2. Then
take squares: m2 = a2, but as in the encoding P of φ we have the equations
y2

i = 1 for each variable yi ∈ Y then m2 = 1. Hence we would have derived
α2 = 1, ie a BC refutation of P of degree 2d < D. That is not possible, as
D is the minimal degree needed to refute P in BC.

In order to apply L to equation (2) we want to prove the followings:

1. if t− t′ has a BC derivation of degree at most d from P then L(t− t′) = 0;

2. for each polynomial p ∈ R[Y] of degree at most d/2 L(p2) ≥ 0.

Then, from equation (2), it follows an immediate contradiction

0 = L(p′) = 1 + ∑
j

L(h2
j ) ≥ 1.

Property 1 is obvious: consider am− a′m′ = 0. If we can prove in BC
that m = α, we can always by transitivity do the same for m′.

The rest of the proof is devoted to prove property 2: as L(y2m) = L(m)

we can focus on p ∈ R[Y] overmultilinearmonomials. Let p = ∑S⊆[n] αSyS,
where yS := ∏i∈S yi. Then

L(p2) = ∑
S,T

αSαT L(ySyT) = ∑
S,T

αSαT L(yS∆T). (3)

Define now an undirected graph G = (V, E) with vertex set the yS with S
appearing in p and (yS, yT) ∈ E iff L(yS∆T) = ±1. Then L induce a natural
labeling mapping E into {−1, 1}. Notice that for each S ⊆ [n] (yS, yS) is
always in E as L(yS∆S) = L(1) = 1.

Moreover if BC derives yS∆T = ±1 and yT∆U = ±1 in degree d then
using inference BC derives in degree d yS∆U = ±1: every connected com-
ponent of G is a clique. Moreover each connected component of G can be
split into two vertex sets A, B such that for each I, J in the same vertex set
L(yI∆J) = 1 and for I ∈ A J ∈ B L(yI∆J) = −1.
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To prove the last statement it is sufficient to prove that for each triangle the
product of the values of the labeling of its edges is 1. Let {yS, yT , yU} be the
vertexes of a triangle in G, then

L(yS∆T)L(yT∆U)L(yS∆U) = L(y∅) = L(1) = 1.

We prove a stronger result than L(p2) ≥ 0: we prove that this is true wrt
every connected component of G. More precisely let S be a sub-polinomial
of the RHS of equation (3) giving rise in G to a connected component and let
A and B as above. We show that S ≥ 0. From this will follow immediately
that L(p2) ≥ 0.

S = ∑
I,J∈A

αIαJ L(yI∆J) + ∑
I,J∈B

αIαJ L(yI∆J) + ∑
I∈A,J∈B

2αIαJ L(yI∆J) =

= ∑
I,J∈A

αIαJ + ∑
I,J∈B

αIαJ − ∑
I∈A,J∈B

2αIαJ =

=

(
∑
I∈A

αI

)2

+

(
∑
J∈B

αJ

)2

− ∑
I∈A,J∈B

2αIαJ =

=

(
∑
I∈A

αI − ∑
J∈B

αJ

)2

≥ 0.
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