
Affine space

Lecture notes by Alex Loiko

Problem 1

f1 = x5 + x4 + x3, (f1)
∗ = x5 + x4y + x3y2

f2 = 2x3 + 4x2 + 6, (f2)
∗ = 2x3 + 4x2y + 6y3

f3 = x, (f3)
∗ = x

Problem 2 Homogenize in C[x, y, z]

f1 = x5 + y5x4 + yx3, (f1)
∗ = x5z4 + y5x4 + x3yz5

f2 = 2x3 + 4yx2 + 6y4, (f2)
∗ = 2x3z + 4yx2z + 6y4

f3 = xy7, (f3)
∗ = xy7

Problem 3 Dehomogenize wtr to y

F1 = x5 + yx4 + 7y2x3, (F1)∗ = x5 + x4 + 7x3

F2 = x3 + 4yx2 + 60y3, (F2)∗ = x3 + 4x2 + 60

F3 = xy7, (F3)∗ = x

Problem 4 If F3 = xy7, then (F3)∗ = x and ((F3)∗)
∗ = x 6= F3

Problem 5 We have F = yt(F∗)
∗ for some t. Write

F =

n∑
i

aix
iyd−i, d = deg(F )

Then F∗(x) = F (x, 1) and that is

n∑
i

aix
i1d−i =

n∑
i

aix
i =

n∑
i

aix
iyd−i

yd−i

When we homogenizie it back we have

(F∗)
∗ =

n∑
i

aix
iyd

′−i

for some d′ not necessary equal to d and we can choose t = yd−d
′
.
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Definition 1. Let f ∈ C[x, y], f is not a constant polynomial. Then f is
reducible if there exist h, g ∈ C[x, y], both non-constant such that

f = h · g

We say that f is irreducible if there does not exist such polynomials h, g. Thus
a polynomial can be constant, reducible and irreducible.

For example x + 1 in C[x, y] is irreducible, x2 − y2 in C[x, y] is reducible since
x2 − y2 = (x− y)(x+ y). x2 + y2 is reducible in C[x, y] but not in R[x, y].

Definition 2. A1(R) is called real affine line. It is a set. We can think of it
as a line that contains all the real points. We can have A1(0) or A1(i) in A1(C).
Here comes the formal definition:

A1(R) = {r|r ∈ R}

A1(C) = {w|w ∈ C}
A2(R) is called the affine real plane. Similarly we have A2(C) is called the
affine complex plane Formally,

A2(R) = {(r1, r2)|r1, r2 ∈ R}

A2(C) = {(w1, w2)|w1, w2 ∈ C}

An affine space is not the same as a vector space. Here comes some examples.
We study A1(R). To do it we consider polynomials in R[x]. We pick p(x) = x+1.
To that polynomial we associate its root x0 = −1. Now pick h(x) = x2 − 1. It
has two roots {x1, x2} = {−1, 1}. We associate them to that polynomial. The
assosiated set of a polynomial may be empty if the polinomial doesn’t have real
roots.

Now consider A2(R) and the polynomial p(x, y) = x+1. It has roots (−1, y0)
for any y0. h(x, y) = x2 − 1. It has roots (−1, y) and (1, y) for any y.

Definition 3. Let f ∈ R[x]; we call V (f) the affine real variety associated
to f where

V (f) ⊂ A1(R), V (f) = {r ∈ A1(R) : f(r) = 0}
Similarly, we define V (f) for two-variable polynomials.

We always have
V (1) = ∅

In A1(R)
V (x+ 1) = {−1}

In A2(R)
V (x2 + y2 − 1) = unit circle

In A2(R),
V (x2 + y2 + 1) = ∅

The reason for introducing C is to make sure any polynomial of deg n always
has n roots in A1(C).
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Theorem 1. FTA
If

f(x) ∈ C[x]

then there always exist a number

w ∈ Cf(w) = 0

Corollary 1. If deg(f) = d, f ∈ C[x], there exist β1 . . . βn ∈ C

f(x) = α(x− β1) . . . (x− βd)

Consider a homogenoous polynomial f(x, y) in C[x, y] with degree d. Write
it as

f(x, y) =

d∑
i=0

αix
iyd−i

Then

f∗ = f(x, 1) =

d∑
i=0

αix
i ∈ C[x]

and
f∗ = α(x− β1)(x− β2) . . . (x− βd)

We can prove (fg)∗ = f∗g∗ which immideately proves that (f∗)
∗ = ytf by

Problem 5
Going back to varietys and affine spaces, we have in A2(R) that

V (f(x, y)) = lines passing through the origin
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