Affine space

Lecture notes by Alex Loiko

Problem 1

$$f_1 = x^5 + x^4 + x^3, (f_1)^* = x^5 + x^4y + x^3y^2$$

$$f_2 = 2x^3 + 4x^2 + 6, (f_2)^* = 2x^3 + 4x^2y + 6y^3$$

$$f_3 = x, (f_3)^* = x$$

Problem 2 Homogenize in $\mathbb{C}[x, y, z]$

$$\begin{aligned} f_1 &= x^5 + y^5 x^4 + y x^3, & (f_1)^* &= x^5 z^4 + y^5 x^4 + x^3 y z^5 \\ f_2 &= 2x^3 + 4y x^2 + 6y^4, & (f_2)^* &= 2x^3 z + 4y x^2 z + 6y^4 \\ f_3 &= x y^7, & (f_3)^* &= x y^7 \end{aligned}$$

Problem 3 Dehomogenize wtr to y

$$F_1 = x^5 + yx^4 + 7y^2x^3, \ (F_1)_* = x^5 + x^4 + 7x^3$$

$$F_2 = x^3 + 4yx^2 + 60y^3, \ (F_2)_* = x^3 + 4x^2 + 60$$

$$F_3 = xy^7, \ (F_3)_* = x$$

Problem 4 If $F_3 = xy^7$, then $(F_3)_* = x$ and $((F_3)_*)^* = x \neq F_3$ **Problem 5** We have $F = y^t (F_*)^*$ for some t. Write

$$F = \sum_{i}^{n} a_{i} x^{i} y^{d-i}, d = \deg(F)$$

Then $F_*(x) = F(x, 1)$ and that is

$$\sum_i^n a_i x^i 1^{d-i} = \sum_i^n a_i x^i = \sum_i^n \frac{a_i x^i y^{d-i}}{y^{d-i}}$$

When we homogenizie it back we have

$$(F_*)^* = \sum_i^n a_i x^i y^{d'-i}$$

for some d' not necessary equal to d and we can choose $t = y^{d-d'}$.

Definition 1. Let $f \in \mathbb{C}[x, y]$, f is not a constant polynomial. Then f is **reducible** if there exist $h, g \in \mathbb{C}[x, y]$, both non-constant such that

 $f = h \cdot g$

We say that f is irreducible if there does not exist such polynomials h, g. Thus a polynomial can be constant, reducible and irreducible.

For example x + 1 in $\mathbb{C}[x, y]$ is irreducible, $x^2 - y^2$ in $\mathbb{C}[x, y]$ is reducible since $x^2 - y^2 = (x - y)(x + y)$. $x^2 + y^2$ is reducible in $\mathbb{C}[x, y]$ but not in $\mathbb{R}[x, y]$.

Definition 2. $\mathbb{A}^1(\mathbb{R})$ is called **real affine line**. It is a set. We can think of it as a line that contains all the real points. We can have $\mathbb{A}^1(0)$ or $\mathbb{A}^1(i)$ in $\mathbb{A}^1(\mathbb{C})$. Here comes the formal definition:

$$A^{1}(\mathbb{R}) = \{r | r \in \mathbb{R}\}$$
$$A^{1}(\mathbb{C}) = \{w | w \in \mathbb{C}\}$$

 $\mathbb{A}^2(\mathbb{R})$ is called the affine real plane. Similarly we have $\mathbb{A}^2(\mathbb{C})$ is called the affine COMPLEX plane Formally,

$$\mathbb{A}^{2}(\mathbb{R}) = \{ (r_{1}, r_{2}) | r_{1}, r_{2} \in \mathbb{R} \}$$
$$\mathbb{A}^{2}(\mathbb{C}) = \{ (w_{1}, w_{2}) | w_{1}, w_{2} \in \mathbb{C} \}$$

An affine space is not the same as a vector space. Here comes some examples. We study $\mathbb{A}^1(\mathbb{R})$. To do it we consider polynomials in $\mathbb{R}[x]$. We pick p(x) = x+1. To that polynomial we associate its root $x_0 = -1$. Now pick $h(x) = x^2 - 1$. It has two roots $\{x_1, x_2\} = \{-1, 1\}$. We associate them to that polynomial. The assosiated set of a polynomial may be empty if the polynomial doesn't have real roots.

Now consider $\mathbb{A}^2(\mathbb{R})$ and the polynomial p(x, y) = x+1. It has roots $(-1, y_0)$ for any y_0 . $h(x, y) = x^2 - 1$. It has roots (-1, y) and (1, y) for any y.

Definition 3. Let $f \in \mathbb{R}[x]$; we call V(f) the affine real variety associated to f where

$$V(f) \subset \mathbb{A}^{1}(\mathbb{R}), V(f) = \{r \in \mathbb{A}^{1}(\mathbb{R}) : f(r) = 0\}$$

 $V(1) = \emptyset$

Similarly, we define V(f) for two-variable polynomials.

We always have

In
$$\mathbb{A}^1(\mathbb{R})$$

$$V(x+1) = \{-1\}$$

In $\mathbb{A}^2(\mathbb{R})$

 $V(x^2 + y^2 - 1) =$ unit circle

In $\mathbb{A}^2(\mathbb{R})$,

$$V(x^2 + y^2 + 1) = \emptyset$$

The reason for introducing \mathbb{C} is to make sure any polynomial of deg *n* always has *n* roots in $\mathbb{A}^1(\mathbb{C})$.

Theorem 1. FTA If

$$f(x) \in \mathbb{C}[x]$$

then there always exist a number

$$w\in \mathbb{C}f(w)=0$$

Corollary 1. If $\deg(f) = d$, $f \in \mathbb{C}[x]$, there exist $\beta_1 \dots \beta_n \in \mathbb{C}$

$$f(x) = \alpha(x - \beta_1) \dots (x - \beta_d)$$

Consider a homogenoous polynomial f(x, y) in $\mathbb{C}[x, y]$ with degree d. Write it as

$$f(x,y) = \sum_{i=0}^{d} \alpha_i x^i y^{d-i}$$

Then

$$f_* = f(x, 1) = \sum_{i=0}^d \alpha_i x^i \in \mathbb{C}[x]$$

and

$$f_* = \alpha(x - \beta_1)(x - \beta_2)\dots(x - \beta_d)$$

We can prove $(fg)^* = f^*g^*$ which immideately proves that $(f_*)^* = y^t f$ by **Problem 5**

Going back to varietys and affine spaces, we have in $\mathbb{A}^2(\mathbb{R})$ that

$$V(f(x, y)) =$$
 lines passing through the origin