Proposition 1. V is a vector space over a field F. Then

$$\forall v \in V : 0_F \cdot v = 0_V$$

because

$$\begin{array}{rcl} 0_V = & (0_F v + (-0_F v)) & (inv) \\ = & (0_F + 0_F)v + (-0_F v) & (add. \ id) \\ = & (0_F v + 0_F v) + (-0_F v) & (distr) \\ = & 0_F v + (0_F v + (-0_F v)) & (assoc) \\ = & 0_F v + 0 & (inv) \\ = & 0_F v & (add. \ id) \end{array}$$

Problems from the book:

Problem 1 V is a vector space over a field F. Find the set of solutions to

$$a \cdot v = 0_V$$

in $F \times V$ for $a \in F$ and $v \in V$. Write *exactly* why each step in the solution is justified as in the proof of (1).

Problem 2 \mathbb{C}^{∞} is the vector space of all infinite sequences of complex numbers. Prove that the subset H of \mathbb{C}^{∞} containing all sequences $v = (a_0, a_1, \ldots)$ with

$$\sum_{j=0}^{\infty} |a_j|^2 \text{ converges}$$

is a vector space. **Hints:** "+" and "." in \mathbb{C}^{∞} are defines as

> $(a_0, a_1 \dots) + (b_0, b_1, \dots) = (a_0 + b_0, a_1 + b_1, \dots)$ $\lambda(a_0, a_1, \dots) = (\lambda a_0, \lambda a_1, \dots)$

Every vector space axiom besides (cl) follows from the fact that \mathbb{C}^{∞} is a vector space.

Problem 3 Prove that the subset C of \mathbb{C}^{∞} containing all $v = (a_0, a_1 \ldots)$ such that for any $\epsilon > 0$ there is an integer N with $m, n > N \Longrightarrow |a_m - a_n| < \epsilon$ is a vector space. **Hint:**

For any sequence in C the a_n : must be getting closer to each other as $n \to \infty$. Does this imply anything familiar?