
Everywhere below V is a vector space over a field F .

Problem 1 Let P = {p(x) ∈ F [x]|deg p < n}. Assume f, g ∈ P . Prove that if there exists n
distinct scalars a1, a2, . . . an ∈ F with f(ai) = g(ai) for 1 ≤ i ≤ n, then

f ≡ g

Hint:
Write the n equalities as matrix multiplication. (Or not. There are other ways to prove
this)

Problem 2 Let P be as in the last problem and let a1, a2 . . . an be n distinct numbers in F .
Then let

gi(x) =
∏
k 6=i

x− ak
ai − ak

for 1 ≤ i ≤ n. Prove that g1(x), g2(x), . . . gn(x) is a basis in P and that the coefficients of
f(x) ∈ P in this basis are (f(a1), f(a2), . . . f(an)).
Hint:
Apply the first problem.

Problem 3 Let f : V −→ F be a nonzero linear function, see (1) and assume dimV = n. Prove
that

dimker f = dim{v|f(v) = 0} = n− 1

without using any fancy linear transformation or matrix theorems1.
Hint:
Find a basis in ker f and extend it to V .

Problem 4 (Related to the previous problem) Assume dimV = n and let W be a subspace of
V with dimW = n− 1. Prove that there is a linear function f : V → F with ker f =W .
Hint:
Same as Problem (3).

Remark 1. Note that “have equal values at all points” or “equal at n− 1” points are not enough
in Problem (1). Take n = 6, f(x) = x5 and g(x) = x and F = Z5. f and g are equal at all
points in Z5 but are not the same polynomial.

1 Linear functions
Given a vector space V over a field F , we call a function f : V −→ F linear if it satisfies

f(αv + βw) = αf(v) + βf(w) (lin)

for all α, β ∈ F and all v, w ∈ V . Given a basis B = b1, b2 . . . bn of V , we write v ∈ V as a linear
combination v = λ1b1 + . . . λnbn for λi ∈ F . By (lin), the value of f at v is

f(v) = f(λ1b1 + . . .+ λnbn) = λ1f(b1) + . . .+ λnf(bn)

and the value of f on V only depends on the value of f on B.
1It’s of course OK if you prove them
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Example 1. Let V = R2 and F = R. Then any linear function V −→ F must be of the form

f(v) = f((a, b)) = f(a · (1, 0) + b · (0, 1)) = af((1, 0)) + bf((0, 1))

Let α = f((1, 0)), β = f((0, 1)),

af((1, 0)) + bf((0, 1)) = aα+ bβ

Example 2. Let V be an n-dimensional vector space over an arbitrary field F . By Theorem
1 of [1], there is a basis B = (b1 . . . bn) of B. Then f(v) = f(

∑
i λibi) =

∑
i λif(bi) If f is

nonzero (that is, there is a v ∈ V such that f(v) 6= 0), then all f(bi) cannot be 0. There has to
be at least some bi with f(bi) 6= 0.

Definition 1. Given a linear function f : V −→ F , we define ker f = {v ∈ V |f(v) = 0}. ker f
is a subset of V . It is also a vector space because

a, b ∈ ker f =⇒ f(a+ b) = f(a) + f(b)

= 0 + 0 = 0 =⇒ a+ b ∈ ker(f)

λ ∈ F, a ∈ ker f =⇒ f(λa) = λf(a) = 0

=⇒ λa ∈ ker f

which proves (cl).

Remark and more hints on problems 3 and 4
In 3, you have to prove that

dimker f = n− 1

given that dimV = n and that f is nonzero (that is, not zero on all points) By Theorem 1 of
[1], V has a basis B = b1 . . . bn and by Example (2) f(v) can be represented as

f(v) = f(λ1b1 + . . .+ λnbn) = λ1f(b1) + . . .+ λnf(bn)

so what we want to prove is that given the solution set in (λ1, . . . , λn) of

λ1f(b1) + . . .+ λnf(bn) = 0

the set of all (λ1b1 + . . . + λnbn) is an (n − 1)-dimensional vector space. At the moment, the
only way we can prove this is by explicitly constructing a basis for this vector space, proving
that it is indeed a basis (it should be linearly independent) and counting the number of basis
elements to n− 1. Without loss of generality, f(bn) 6= 0. Now finish the proof!

In 4, you are given a subspaceW of V with dimension n−1 and are told to find a linear function.
By definition (and Theorem 1 of [1]) there is a basis B′ of size n− 1 for W . By Theorem 3
of [1] that basis can be extended to a basis for V . Now find the linear function.
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