
Problem 1 How many invertible n× n matrices are there with coefficients in Zp? When n = 2
and p = 2 there are 16 matrices in total but only the following 6 of them are invertible:(

0 1
1 0

) (
0 1
1 1

) (
1 0
0 1

) (
1 1
0 1

) (
1 1
1 0

) (
1 0
1 1

)
You may use the fact that a matrix is invertible iff it’s determinant is nonzero. Note
that the answer to this problem is the cardinality of the set of all automorphisms of Zn

p ,
Aut (Zn

p ) = GL(n, p).

Problem 2 The file matrices.txt on the website contains a list of 100 sets of up to 20 vectors
in Qn where n ≤ 10. Each group occupies a single line. The first set looks like this:

[[-3,1,2,-5,8,4],[-6,6,7,-7,1,1],[-6,5,-4,7,-9,-9],[8,-6,-1,-6,0,5],[-7,-3,-5,-2,-4,-4]]

This set contains 5 linearly independent vectors in Q6 and the dimension of the vector
space spanned by these vectors is therefore 5. The task is to compute the dimension of
each vector space spanned by each set of vectors. All vectors have integral single-digit
coefficients. The sum of all dimensions is a 3-digit integer. Find this number.
Below is a solution for a special case of this problem in python. It uses the functions in
ops.py to find the dimension. The file rank.py contains a solution to this problem for the
special case of n vectors in Q2. solution.py will not work on matrices.txt because it
expects n× 2 matrices.
To compute the dimension of the vectors space spanned by some vectors v1, v2, . . . vn, we
first need some notation: Let V = [v1, v2, v3, . . . vn] stand for the vector space spanned by
v1 . . . vn. The three most important observations are

• If we replace vk by λvk, V does not change unless λ = 0.
• If we add λvj to vk, V does not change.
• If we swap vj and vk V does not change.

As an example, take v1, v2, v3 = (0, 1, 0), (1, 1, 0), (0, 1, 1). We write them above each other
as a matrix,  0 1 0

1 1 0
0 1 1


Now swap v1 and v2. The matrix changes to 1 1 0

0 1 0
0 1 1


We have V = [v2, v1, v3]. Now add −1 times v1 to v3: 1 1 0

0 1 0
0 0 1


This changes V to [v2, v1, v3−v1]. But the three vectors v1, v1, v3−v1 are obviously linearly
independent so the dimension of V is 3.
The three operations swap two rows, multiply row by nonzero scalar and add row
times scalar to row are implemented in python in ops.py. The file rank.py contains
a function that solves the problem for n vectors of size 2. Your task is to generalize it to
find the dimension for any size and number of vectors.
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ops.py
from fractions import Fraction

def width(A):
w = len(A[0])
assert all(len(A[i]) == w for i in range(height(A)))
return w

# height of matrix A
def height(A): return len(A)

# swaps two rows in a matrix A.
def swap(rowj, rowk, A):

assert(0 <= rowj < height(A))
assert(0 <= rowk < height(A))
A[rowj], A[rowk] = A[rowk], A[rowj]

# Adds row*factor to row ’to’ in A
def addTo(row, factor, to, A):

assert(0 <= row < height(A))
assert(0 <= to < height(A))
for i in range(width(A)):

A[to][i] += A[row][i]*factor

# multiplies row by nonzero factor
def times(row, factor, A):

assert(factor != 0)
assert(0 <= row < height(A))
for i in range(width(A)):

A[row][i] *= factor

# prints the matrix nicely:
def print_mtx(A):

print("\n")
for row in A:

print(" ".join(str(x) for x in row))
print("\n")

# converts matrix to rational numbers:
def to_rational(A):

for row_idx in range(height(A)):
for col_idx in range(width(A)):

A[row_idx][col_idx] = Fraction(A[row_idx][col_idx])

rank.py
from ops import *

# solves the problem for vectors in Q^2
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# in a _very_ straight-forward way
# (A is nx2)
def solve_n_x_two(A, verbose = True):

to_rational(A)

# find something non-zero on the first column:
idx = -1 # first non-zero index
for i in range(height(A)):

if A[i][0] != 0:
idx = i
break # stops iteration

if verbose:
if idx == -1:

print("The first column is 0")
else:

print("The first nonzero index is {}".format(idx))

if idx == -1:
# then the first column is ZERO
# we check if there is something != 0 in the 2:nd column:
return 0 if all(A[i][1] == 0 for i in range(height(A))) else 1

# otherwise A[idx][0] is nonzero. We move row idx to the top:
swap(0, idx, A)

if verbose:
print_mtx(A)

# now A[0][0] != 0.

# make all the other rows start with 0:
for row in range(1, height(A)):

factor = -(1/A[0][0])*A[row][0]
addTo(0, factor, row, A)

if verbose:
print("first row fixed:")
print_mtx(A)

# Now we have something like this:
#
# X *
# 0 *
# 0 *
# ...
# 0 *
#

# check if there is something != 0 on the 2:nd column starting with 2:nd entry
return 1 if all(A[i][1] == 0 for i in range(1, height(A))) else 2
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solution.py
from rank import solve_n_x_two

f = open("matrices.txt")
dimensions = sum(solve_n_x_two(eval(line)) for line in f.readlines())
print("The total dimension is {}".format(dimensions))
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