2:nd lecture

We discussed the solutions to the home problems:

Old problem 1 It is in the book

Old problem 2 Use the AG-inequality

Old problem 3 It is equivalent to "v has a limit", search google for *Cauchy condition* or *Caychy sequence*. We gave a proof outline for real sequences. Exercise: deduce the complex case.

All of the theorems below should be familiar from Linear Algebra II.

Everywhere below V is a vector space over a field F. We are (for the moment) only interested in finitedimensional vectors spaces.

Definition 1. We say that a set of vectors $B = \{b_1, \ldots, b_n\} \subset V$ is a **basis** if every $v \in V$ can be written as a **finite linear combination** of the vectors in B in exactly one way, that is, $v = \sum_{i=1}^{n} m_i \cdot b_i$ has only one solution (m_1, m_2, \ldots, m_n) .

Theorem 1. If V has a basis B_1 and a basis B_2 with B_1 finite, then

$$|B_1| = |B_2|$$

and thus we can define dim $V = |B_i|$

Definition 2. A finite set $M = \{v_1, \ldots, v_k\}$ of vectors is called **linearly independent** if

$$0 = m_1 v_1 + \ldots + m_k v_k \Longrightarrow m_1 = m_2 = \ldots = m_k = 0$$

for $m_i \in F$.

Theorem 2. if $B = \{b_1, \ldots, b_n\} \subset V$ is lin. ind. and $|B| = \dim V$, then B is a basis in B.¹

Theorem 3. Given a set $\{b_1, \ldots, b_k\}$ of lin. ind. vectors in an *n*-dimensional vector space *V*, there exist $b_{k+1} \ldots b_n$ in *V* such that $B = \{b_1, \ldots, b_n\}$ is a basis of *V*.

Theorem 4. If W is a subspace of V,

$$\dim W \le \dim V$$

with equality iff W = V.

We also proved that the zero vector space does not have a basis (since 0 can be written in two ways as $0 \cdot 0 = 1 \cdot 0$)

We gave examples to spaces, subspaces, dimensions and bases. We proved that $1, (x - a), (x - a)^2, \ldots, (x - a)^{n-1}$ is a basis for $P = \{p(x) \in F[x] | \deg p < n\}$ and that the coefficients of a polynomial $p(x) = a_0 + a_1x + \ldots + a_{n-1}x^{n-1}$ are $\left(\frac{f(a)}{0!}, \frac{f'(a)}{1!}, \ldots, \frac{f^{(n-1)}(a)}{(n-1)!}\right)$ provided char(F) > n.

¹Is is basis *in*, basis *of*, basis *for* or something else?