Square dissection

Solutions by Alex Loiko

Problem 1. Prove that n squares can always be cut by straight lines to finitely many pieces in a way so that it is possible to form a new square of the resulting pieces without overlaps and gaps.

Lemma 1. Any rectangle with sides a, b,

$$\frac{1}{2} \le a/b \le 2$$

can be cut to pieces that can be assembled without overlaps and gaps to a square with side \sqrt{ab} .

Proof. Try the interactive applet at

http://www.csc.kth.se/~loiko/the_square_ruler_and_compass.html As seen in the figure, let's label the rectangle ABCD and the square PQRS. Set a = |BC|, b = |AB| and assume WLOG that $a \le b$ (otherwise we can just relabel the sides). Find a point E in the interior of CD with $|BE| = \sqrt{ab}$. (It is clear that E exists and is unique since we can find the length $|CE| = \sqrt{b^2 - ab} > 0$). Now draw the perpendicular onto BE from A. I claim that it will intersect BEat point F inside of ABCD. To prove it it is enough to prove |BF| > |BE|which is true since $|BF| = \sqrt{|AB|^2 - |AF|^2} = \sqrt{b^2 - ab} < \sqrt{ab} \Leftrightarrow b < 2a$ from similar triangles $\triangle AFB \sim \triangle BCE$.

Now we will prove that it is possible to construct a square out of ABF, AFED and BCE by calculating lengths and angles. We have:

$$|AF| = |AB| \frac{|BE|}{|BC|} = \sqrt{ab} \text{ from } \triangle AFB \sim \triangle BCE$$
$$\angle FAB = \frac{\pi}{2} - \angle ABF = \angle EBC$$
$$\angle ABF = \angle CEB = \angle DAF$$

Arrange the pieces as shown in the figure to form PQRS. There will be no gaps because $\angle SPU + \angle UPQ = \angle EBC + \angle DAF = \angle EBC + \pi/2 - \angle EBC = \pi/2$,

$$\angle RST + \angle USP = \angle FAB + \angle CEB = \pi/2 \angle STR + \angle UTQ = \angle ABF + \angle DEF = \pi$$

Figure 1: An example dissection

No overlaps because

$$|PU| = |BC| = |AD| = a \text{ (the yellow and red fit together)}$$
$$|SU| + |UT| = |CE| + |ED| = b = |AB| = |ST|$$
$$|QT| + |TR| = |FE| + |BF| = |BE| = \sqrt{ab}$$

And we have a square!

Now another lemma. This one is fairly trivial but I'll state it anyway to

avoid confusing the reader.

Lemma 2. Define $A \sim B$ to mean that rectangle A can be transformed to rectangle B for any rectangles A, B. Then \sim is an equivalence relation.

Proof. If A = B we don't have to cut anything, if there is a dissection from A to B it can be done backwards and the composition of dissections is again a dissection.

Almost done!

Lemma 3. Any rectangle can be transformed to a square of equal area where transformed means dissected into finitely many pieces and the pieces rearranged...

Proof. Define

P(r) := the statement is true for a rectangle with side-ratio r

We have alredy proven P(r) for $1/2 \le r \le 2$ in Lemma 1. We have also motivated

$$P(r) \Leftrightarrow P\left(\frac{1}{r}\right)$$

(just relabel the sides). Now we will prove

$$P(r) \Leftrightarrow P(4r)$$

Take a rectangle with side ratio r, cut it in half, put the halves on top of each other, apply **Lemma 2** and you have a rectangle with side ratio 4r. That proves the equivalence.

By induction we have

$$P(r) \Leftrightarrow P(4^n r)$$

for any $n \in \mathbb{Z}$.

Now for any $s \in \mathbb{R}^+$, there always exist an $m \in \mathbb{Z}$ with $-1/2 \leq \log_4 s + m \leq 1/2$ (just take $m = \lfloor 1/2 - \log_4 s \rfloor$) Then $4^m s \in [-1/2, 1/2]$ and P(s) is true by $P(4^m s) \Leftrightarrow P(s)$

Instead of going over to squares we will focus on rectangles for another lemma.

Lemma 4. Any rectangle can be transformed to any other rectangle of equal area.

Proof. By Lemma 4 both rectangles can be transformed to the same square. Take one, dissect to square, take the square and dissect backwards to the other. \Box

And now we are ready to prove the main result. It will be done by induction. Take two squares A and B. Paint a square with area equal to the sum Area(A)+Area(B). Put A in one corner of the resulting square. There there will be an L-shaped space not filled by square and having area equal to Area(B). That shape can be divided into two rectangles with area P, Q. We now split B into two rectangles having area P and Q, apply **Lemma 4** and get a transformation of two arbitrary squares to a new larges square. That was the base case.

The induction step is simple. Assume n squares can be assembled to a large one. Add one square. Use the assumption to reduce n of the squares to one. Use the base case to transform the two remaining squares to a large one. Done!