
Hierarchy of Transformations

 Group: Projective, Affine, 
Similarity, Isometrics

 Perspective not closed.

 Invariant: an alternative way to 
describe transformations in terms 
of elements or quantities (of a 
geometric configuration) that are 
preserved. 
 E.g. rotation + translation
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Class I: Isometries

 Transformations which preserves Euclidian distance (iso = 
same, metric = measure)

 Orientation Preserving (Euclidian Transformation or displacement)  

 Orientation Reversing

 Rotation(R) + Translation (t): 3 DOF

 Special cases when R = I or t = 0

 Invariants: Distance, Length, Area

 Orientation Preserving: Group, Reversing is not Closed
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Class II: Similarities

 Similarity: An isometry composed with an isotropic (only position) 
scaling.

 Euclidian with isotropic scaling:

 Equi-form

 Euclidian transform + scale factor = 4 DOF

 Invariants: Angle(Parallel lines), ratio of lengths, ration of areas

 Metric Structure: Structure is defined up to a similarity
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Class III: Affine transformations

 Affinities: non-singular linear transformation followed by a translation: 

 Block form:

 SVD:

 2 Rotations + 2 scale factors +  translation = 6 DOF

 Non-isotropic scaling (adds scale ratio and orientation on top of 
similiarity : 2 DOF)

 Scaling in oriented orthogonal directions.
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Class III: Affine transformations

 Invariants

 Parallel lines: Intersection of parallel lines remains at infinity.

 Ratio of lengths of parallel line segments

 Ratio of area



Class VI: Projective transformations

 General non-singular linear transformation 0f 
homogeneous coordinates.

 Block form:

 9 elements, disregarding scale factor (not  ) : 8 DOF

 Invariant to ratio of ratios or cross ratio of lengths
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Class VI: Projective transformations

 Comparison to Affinities

 Shape deformation (Scaling)
 Affinity: homogeneous over the plane, depends only on 

orientation

 Projectivity: Depends also on position (Perspective) 

 v not null vector -> non-linear behavior in 
inhomogeneous system -> e.g. points at infinity can 
become finite, vanishing points, horizon
 Affinity: 

 Projectivity: 
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Class VI: Projective transformations

 Decomposition

 Decomposition unique (if chosen s>0)

 Example
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Class VI: Projective transformations

 Objective: Partially determine the transformation  
(e.g. determine the length ratios or shape up to 
similarity)

 Inverse decomposition

 Projectivity is invertible thus
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Summary of Transformations
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The number of Invariants

 Number: Functinally independent invariant quantities.

 The number of functional invariants is equal to, or greater than, the 
number of degrees of freedom of the configuration less the number of 
degrees of freedom of the transformation

 e.g. configuration of 4 points in general position has 8 dof (2/pt) and 
so 4 similarity, 2 affinity and zero projective invariants



The projective geometry of 1D

 Projective geometry of a line

 Ideal point: 

 Projective transformation

 The cross ratio

 Not dependant on homogeneous representative of x

 Particular representative (           ) =>             is signed distance.

 Valid if one of the points is ideal

 Cross ratio is invariant to the projective coordinate
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The projective geometry of 1D

 Illustration:

 Dual: Concurrent lines

 Representing points in p2

On a 1-dimensional image


