Hierarchy of Transformations

- Group: Projective, Affine, Similarity, Isometrics
- Perspective not closed.
- Invariant: an alternative way to describe transformations in terms of elements or quantities (of a geometric configuration) that are preserved.
E.g. rotation + translation

Class I: Isometries

- Transformations which preserves Euclidian distance (iso = same, metric = measure)
- Orientation Preserving (Euclidian Transformation or displacement) $\varepsilon=1$
- Orientation Reversing $\varepsilon=-1$
- Rotation(R) + Translation (t): 3 DOF
- Special cases when $\mathrm{R}=\mathrm{I}$ or $\mathrm{t}=0$

$$
\mathrm{X}^{\prime}=\mathbf{H}_{E} \mathrm{X}=\left[\begin{array}{cc}
\mathbf{R} & \mathrm{t} \\
0^{\top} & 1
\end{array}\right] \mathrm{X} \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}
$$

- Invariants: Distance, Length, Area
- Orientation Preserving: Group, Reversing is not Closed

Class II: Similarities

- Similarity: An isometry composed with an isotropic (only position) scaling.
- Euclidian with isotropic scaling:

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{ccc}
s \cos \theta & -s \sin \theta & t_{x} \\
s \sin \theta & s \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

$$
\mathrm{x}^{\prime}=\mathbf{H}_{S} \mathrm{x}=\left[\begin{array}{cc}
s \mathbf{R} & \mathrm{t} \\
0^{\top} & 1
\end{array}\right] \mathrm{x} \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}
$$

- Equi-form
- Euclidian transform + scale factor $=4$ DOF
- Invariants: Angle(Parallel lines), ratio of lengths, ration of areas
- Metric Structure: Structure is defined up to a similarity

Class III: Affine transformations

- Affinities: non-singular linear transformation followed by a translation:
- Block form:

$$
\mathrm{x}^{\prime}=\mathbf{H}_{A} \mathrm{x}=\left[\begin{array}{cc}
\mathbf{A} & \mathrm{t} \\
0^{\top} & 1
\end{array}\right] \mathrm{x}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{x} \\
a_{21} & a_{22} & t_{y} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \\
& \underset{\substack{\text { eation } \\
\text { ration }}}{\substack{\text { dotermaion }}}
\end{aligned}
$$

- 2 Rotations +2 scale factors + translation $=6$ DOF
- Non-isotropic scaling (adds scale ratio and orientation on top of similiarity : 2 DOF)
- Scaling in oriented orthogonal directions.

Class III: Affine transformations

- Invariants

- Parallel lines: Intersection of parallel lines remains at infinity.
- Ratio of lengths of parallel line segments
- Ratio of area

Class VI: Projective transformations

- General non-singular linear transformation of homogeneous coordinates. $\left(\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime} \\ x_{3}^{\prime}\end{array}\right)=\left[\begin{array}{lll}h_{11} & h_{12} & h_{17} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]\left(\begin{array}{lll}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
- Block form:

$$
\mathrm{x}^{\prime}=\mathbf{H}_{P} \mathrm{x}=\left[\begin{array}{cc}
\mathbf{A} & \mathrm{t} \\
\mathrm{v}^{\top} & \mathrm{v}
\end{array}\right] \mathrm{x}
$$

-9 elements, disregarding scale factor (not v) : 8 DOF

- Invariant to ratio of ratios or cross ratio of lengths

Class VI: Projective transformations

- Comparison to Affinities
- Shape deformation (Scaling)
- Affinity: homogeneous over the plane, depends only on orientation
- Projectivity: Depends also on position (Perspective)
- v not null vector $->$ non-linear behavior in inhomogeneous system -> e.g. points at infinity can become finite, vanishing points, horizon
- Affinity:
- Projectivity: $\quad\left[\begin{array}{cc}\mathbf{A} & \mathbf{t} \\ 0^{7} & \square\end{array}\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ 0\end{array}\right)=\binom{\mathbf{A}\left(\begin{array}{c}x_{1} \\ x_{2} \\ 0\end{array}\right)}{0}$

$$
\left[\begin{array}{ll}
\mathbf{A} & \mathrm{t} \\
\mathrm{v}^{\top} & \mathrm{v}
\end{array}\right]\left(\begin{array}{c}
x_{1} \\
x_{2} \\
0
\end{array}\right)=\binom{\mathbf{A}\binom{x_{1}}{x_{2}}}{v_{1} x_{1}+v_{2} x_{2}}
$$

Class VI: Projective transformations

- Decomposition
$\mathbf{H}=\mathbf{H}_{S} \mathbf{H}_{A} \mathbf{H}_{P}=\left[\begin{array}{cc}s \mathbf{R} & \mathrm{t} \\ 0^{\top} & 1\end{array}\right]\left[\begin{array}{cc}\mathbf{K} & 0 \\ 0^{\top} & 1\end{array}\right]\left[\begin{array}{cc}\mathbf{I} & 0 \\ \mathbf{v}^{\top} & v\end{array}\right]=\left[\begin{array}{cc}\mathbf{A} & \mathrm{t} \\ \mathbf{v}^{\top} & v\end{array}\right] \quad \begin{gathered}\mathbf{A}=s \mathbf{R K}+\mathrm{tv}^{\top} \\ \mathbf{K} \text { upper-triangular, } \operatorname{det} \mathbf{K}=1\end{gathered}$
- Decomposition unique (if chosen $s>0$)
- Example

$$
\begin{aligned}
& \mathbf{H}=\left[\begin{array}{ccc}
1.707 & 0.586 & 1.0 \\
2.707 & 8.242 & 2.0 \\
1.0 & 2.0 & 1.0
\end{array}\right] \\
& \mathbf{H}=\left[\begin{array}{ccc}
2 \cos 45^{\circ} & -2 \sin 45^{\circ} & 1.0 \\
2 \sin 45^{\circ} & 2 \cos 45^{\circ} & 2.0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
0.5 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 2 & 1
\end{array}\right]
\end{aligned}
$$

Class VI: Projective transformations

- Objective: Partially determine the transformation (e.g. determine the length ratios or shape up to similarity)
- Inverse decomposition $H^{-1}=H_{P}^{-1} H_{A}^{-1} H_{s}^{-1}$
- Projectivity is invertible thus

$$
\mathbf{H}=\mathbf{H}_{P} \mathbf{H}_{A} \mathbf{H}_{S}=\left[\begin{array}{cc}
\mathbf{I} & 0 \\
\mathbf{v}^{\top} & v
\end{array}\right]\left[\begin{array}{cc}
\mathbf{K} & 0 \\
0^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
s \mathbf{R} & \mathrm{t} \\
0^{\top} & 1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A} & \mathrm{t} \\
\mathbf{v}^{\top} & v
\end{array}\right]
$$

Summary of Transformations

Projective
8dof

h_{21} \& h_{22} \& h_{23}

h_{31} \& h_{32} \& h_{33}\end{array}\right]\)

Affine
6dof

a_{21} \& a_{22} \& t_{y}

0 \& 0 \& 1\end{array}\right]\)

Concurrency, collinearity,
order of contact (intersection,
tangency, inflection, etc.),
cross ratio

Similarity $\left[\begin{array}{l}\text { Parallellism, ratio of areas, } \\
\text { ratio of lengths on parallel } \\
\text { lines (e.g midpoints), linear } \\
\text { combinations of vectors } \\
\text { (centrids). } \\
\text { The line at infinity } \text { I }_{\infty}\end{array}\right.$

| $s r_{11}$ | $s r_{12}$ | t_{x} |
| :---: | :---: | :---: | :---: |
| 0 | $s r_{22}$ | t_{y} |
| Euclidean | | |
| 3dof | | |\(\left[\begin{array}{lll}r_{11} \& r_{12} \& t_{x}

r_{21} \& r_{22} \& t_{y}

0 \& 0 \& 1\end{array}\right]\)

The number of Invariants

- Number: Functinally independent invariant quantities.
- The number of functional invariants is equal to, or greater than, the number of degrees of freedom of the configuration less the number of degrees of freedom of the transformation
- e.g. configuration of 4 points in general position has 8 dof $(2 / p t)$ and so 4 similarity, 2 affinity and zero projective invariants

The projective geometry of 1D

- Projective geometry of a line $\left(x_{1}, x_{2}\right)^{\top}$
- Ideal point: $x_{2}=0$
- Projective transformation $\quad \overline{\mathrm{x}}=\mathbf{H}_{2 \times 2} \overline{\mathrm{x}} \quad 3 \mathrm{DOF}(2 \times 2-1)$

- Not dependant on homogeneous representative of x
- Particular representative $\left(x_{2}=0\right)=>\left|\bar{x}_{i}, \bar{x}_{j}\right|$ is signed distance.
- Valid if one of the points is ideal
- Cross ratio is invariant to the projective coordinate

The projective geometry of 1D

- Illustration:

- Dual: Concurrent lines

- Representing points in p2

On a 1-dimensional image

