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Content

Chapter 3: properties and entities of projective 3D space

- many of these are generalizations of those of projective plane in 2D, but …

Content: 

� Points, lines, planes and quadrics� Points, lines, planes and quadrics

� Transformations 

� П∞ -maybe later



Notation: 3D points & Projective 

Transformation
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Planes
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Plane in 3D (R3):
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Dual: points ↔ planes, lines ↔ lines 
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Relations between points, lines and planes

� In P3 geometric relations between planes, points and lines:

1. A plane is defined uniquely by:

A. the join of 3 points (in general position);

the join of a line and point (in general position).B. the join of a line and point (in general position).

2. Three distinct planes intersect in a unique point.

3. Two distinct plane intersect in a unique line.

� points & planes: 1A – 2

� lines & points & planes : 1B – 3   



Three points define a plane
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X� Solutions:  

1. Solve as right null-space of 

2. Implicitly from coplanarity condition:
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2. Implicitly from coplanarity condition:



Three planes define a point
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π� Solutions:  

1. Solve   as right nullspace of 

� Under projective transformation                :

� Plane:

XX' H=
ππ' -TH=

Dual: points ↔ planes



Lines

� Line (definition):

� Join of two points

� Intersection of two planes

� Line (4 dof) = 2 x Point on a plane (2dof)

� Natural way of representing 4dof will be 5D space

� Goal: line representation in 3D

� Possible representations:

� Null-space and span representation

� Plücker matrices

� Plücker line coordinates



Lines - Span Representation (1)

� Line is a pencil (one-parameter family) of collinear points, and is defined 

by any two of these points 

� Line is a span of two vectors

� A, B – two non-coincident space points
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span(S) = collection of all 
(finite) linear combinations 
of the elements of a set S

=>  span(WT) is the pencil of points                 on the line

� Dual representation of line:  the intersection of two planes

P,Q- are a basis for null-space

=> span(W*T) is the pencil of planes                    with the 

line as axis

� , 02x2 is a 2x2 null matrix
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Lines - Span Representation (2)
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� Example:  X-axis can be represented as:

origin

ideal point

XY –plane
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� Join and incidence properties:

� Plane  Π=?

� Point  X=?
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� Line is represented by Plücker matrix = 4x4 skew-symmetric homogeneous 

matrix

� Line joining points A and B, is represented by matrix L:

� Properties of L:

Line - Plücker matrices (1)
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� Example: X-axis is represented as

1. L has rank 2, in fact

2. L has 4 dof

3. is generalization of                     

4. L independent of choice A and B

5. Transformation
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� Dual Plücker representation: 

� Line is formed by the intersection of two planes P and Q

� Transformation:

� Relation between L and L*:

Line - Plücker matrices (2)

TT QPPQL* −=
-1TLHHL HXX' -'* =→=

*
12:

*
13:

*
14:

*
23:

*
42:

*
3434:42:23:14:13:12 llllllllllll =

� Join and incidence properties:
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(plane through line and point)

(point on line)

(intersection point of plane and line)

(line in plane)0Lπ =
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