Projective Geometry and Transformations of 3D
 - Chapter 3 -

Meeting 2-11.02.2010
Marianna Pronobis

based on M. Pollefeys' presentation: www.cs.unc.edu/~marc/mvg/course04.ppt

Content

Chapter 3: properties and entities of projective 3D space

- many of these are generalizations of those of projective plane in 2D, but ...

Content:

\square Points, lines, planes and quadrics
\square Transformations

Notation: 3D points \& Projective Transformation

3D point

Point in 3D (\mathbf{R}^{3}):

$$
(X, Y, Z)^{\top} \in \mathbf{R}^{3}
$$

Homogeneus vector:

$$
\mathrm{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)^{\top} \in \mathbf{P}^{3}
$$

Point in $\mathbf{R}^{\mathbf{3}}$ with inhomogeneous coordinates:

$$
\mathrm{X}=\left(\frac{X_{1}}{X_{4}}, \frac{X_{2}}{X_{4}}, \frac{X_{3}}{X_{4}}\right)^{\top}=(X, Y, Z)^{\top} \quad\left(X_{4} \neq 0\right)
$$

Projective Transformation

$$
X^{\prime}=\mathbf{H X} \quad(15 \mathrm{dof}=4 \times 4-1)
$$

Planes

3D Plane

Plane in 3D ($\left.\mathbf{R}^{3}\right): \quad \pi_{1} X+\pi_{2} Y+\pi_{3} Z+\pi_{4}=0$
Homogeneus
representation: $\quad \pi_{1} X_{1}+\pi_{2} X_{2}+\pi_{3} X_{3}+\pi_{4} X_{4}=0$
Point on plane: $\quad \boldsymbol{\pi}^{\top} \mathrm{X}=0$

Euclidian Representation

$$
\pi_{1} X+\pi_{2} Y+\pi_{3} Z+\pi_{4}=0 \Leftrightarrow \mathrm{n} \cdot \tilde{\mathrm{X}}+d=0
$$

$$
\begin{array}{ll}
\mathrm{n}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)^{\top} & \pi_{4}=d \\
\tilde{\mathrm{X}}=(X, Y, Z)^{\top} & X_{4}=1
\end{array}
$$

Dual: points \leftrightarrow planes, lines \leftrightarrow lines

Relations between points, lines and planes

\square In $\mathbf{P}^{\mathbf{3}}$ geometric relations between planes, points and lines:

1. A plane is defined uniquely by:
A. the join of 3 points (in general position);
B. the join of a line and point (in general position).
2. Three distinct planes intersect in a unique point.
3. Two distinct plane intersect in a unique line.

- points \& planes: 1A-2
- lines \& points \& planes : 1B-3

Three points define a plane

Find π, when $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3} \in \pi \Leftrightarrow \mathrm{X}_{1}^{\top} \pi=0, \mathrm{X}_{2}^{\top} \pi=0, \mathrm{X}_{3}^{\top} \pi=0 \quad \mathrm{X}_{1}^{\top}$
\square Solutions:

$$
f\left[\begin{array}{l}
X_{1}^{\top} \\
X_{2}^{\top} \\
X_{3}^{\top}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
X_{2}^{\top} \\
X_{3}^{\top}
\end{array}\right] \pi=0
$$

2. Implicitly from coplanarity condition:
\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { if } \mathrm{X} \in \pi \text { then } \\
\operatorname{det}\left[\mathrm{X} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3}\right]=0\end{array}
$$ \& \operatorname{det}\left[\begin{array}{llll}X_{1} \& \left(X_{1}\right)_{1} \& \left(X_{2}\right)_{1} \& \left(X_{3}\right)_{1}

X_{2} \& \left(X_{1}\right)_{2} \& \left(X_{2}\right)_{2} \& \left(X_{3}\right)_{2}

X_{3} \& \left(X_{1}\right)_{3} \& \left(X_{2}\right)_{3} \& \left(X_{3}\right)_{3}

X_{4} \& \left(X_{1}\right)_{4} \& \left(X_{2}\right)_{4} \& \left(X_{3}\right)_{4}\end{array}\right]=0\end{array}\right]=0\)	$X_{1} D_{234}-X_{2} D_{134}+X_{3} D_{124}-X_{4} D_{123}=0$
$\pi=\left(D_{234},-D_{134}, D_{124},-D_{123}\right)^{\top}$	

Three planes define a point

$\square \quad$ Find X when $\mathrm{X} \in \pi_{1}, \pi_{2}, \pi_{3} \Leftrightarrow \pi_{1}^{\top} \mathrm{X}=0, \pi_{2}^{\top} \mathrm{X}=0, \pi_{3}^{\top} \mathrm{X}=0$

$$
\left[\begin{array}{l}
\pi_{1}^{\top} \\
\pi_{2}^{\top} \\
\pi_{3}^{\top}
\end{array}\right] \mathrm{X}=0
$$

- Solutions:

1. Solve X as right nullspace of
$\left[\begin{array}{l}\pi_{1}^{\top} \\ \pi_{2}^{\top} \\ \pi_{3}^{\top}\end{array}\right]$

Dual: points \leftrightarrow planes
\square Under projective transformation $\mathrm{X}^{\prime}=\mathbf{H X}$:

- Plane: $\pi^{\prime}=\mathbf{H}^{-\top} \pi$

Lines

\square Line (definition):

- Join of two points
- Intersection of two planes
\square Line (4 dof) $=2 \times$ Point on a plane (2dof)
- Natural way of representing 4dof will be 5D space
- Goal: line representation in 3D
- Possible representations:
- Null-space and span representation
- Plücker matrices
- Plücker line coordinates

Lines - Span Representation (1)

- Line is a pencil (one-parameter family) of collinear points, and is defined by any two of these points
- Line is a span of two vectors
$\square \boldsymbol{A}, \boldsymbol{B}-$ two non-coincident space points

$$
\mathrm{W}=\left[\begin{array}{l}
\mathrm{A}^{\top} \\
\mathrm{B}^{\top}
\end{array}\right]
$$

span(S) = collection of all (finite) linear combinations of the elements of a set S
$\Rightarrow \operatorname{span}\left(\mathbf{W}^{\top}\right)$ is the pencil of points $\lambda A+\mu \mathrm{B}$ on the line

- Dual representation of line: the intersection of two planes

$$
\mathrm{W}^{*}=\left[\begin{array}{l}
\mathrm{P}^{\top} \\
\mathrm{Q}^{\top}
\end{array}\right] \quad \begin{aligned}
& \mathrm{P}, \mathrm{Q} \text { - are a basis for null-space } \\
& \Rightarrow>\operatorname{span}\left(\mathbf{W}^{* \top}\right) \text { is the pencil of planes } \lambda^{\prime} \mathrm{P}+\mu^{\prime} \mathrm{Q} \text { with the } \\
& \text { line as axis }
\end{aligned}
$$

- $\mathrm{W}^{*} \mathrm{~W}^{\top}=\mathrm{WW}^{* \top}=0_{2 \times 2}, 0_{2 \times 2}$ is a 2×2 null matrix

Lines - Span Representation (2)

Example: X-axis can be represented as:

$$
\begin{array}{lll}
\mathrm{W}=\left[\begin{array}{l}
\mathrm{A}^{\top} \\
\mathrm{B}^{\top}
\end{array}\right] & \lambda \mathrm{A}+\mu \mathrm{B} & \mathrm{~W}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
\text { origin } \\
\text { ideal point }
\end{array} \\
\mathrm{W}^{*}=\left[\begin{array}{l}
\mathrm{P}^{\top} \\
\mathrm{Q}^{\top}
\end{array}\right] & \lambda \mathrm{P}+\mu \mathrm{Q} & \mathrm{~W}^{*}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \begin{array}{c}
\mathrm{xY} \text {-plane } \\
\mathrm{xz} \text {-plane }
\end{array}
\end{array}
$$

\square Join and incidence properties:

- Plane $\Pi=$?

$$
\mathbf{M}=\left[\begin{array}{c}
\mathrm{W} \\
\mathrm{X}^{\top}
\end{array}\right] \quad \mathbf{M} \pi=0
$$

- Point $\mathbf{X}=$?

$$
\mathbf{M}=\left[\begin{array}{c}
\mathbf{W}^{*} \\
\pi^{\top}
\end{array}\right] \quad \mathbf{M} \mathbf{X}=0
$$

Line - Plücker matrices (1)

\square Line is represented by Plücker matrix $=4 \times 4$ skew-symmetric homogeneous matrix
\square Line joining points \mathbf{A} and \mathbf{B}, is represented by matrix L :

$$
\begin{aligned}
& l_{i j}=A_{i} B_{j}-B_{i} A_{j} \\
& \mathrm{~L}=\mathrm{AB}^{\top}-\mathrm{BA}^{\top}
\end{aligned}
$$

\square Properties of L :
*T

1. L has rank 2 , in fact $\mathrm{LW}^{* \top}=0_{4 \times 2}$
2. Lhas 4 dof
3. $\mathrm{L}=\mathrm{AB}^{\top}-\mathrm{BA}^{\top}$ is generalization of $\mathrm{l}=\mathrm{x} \times \mathrm{y}$ in \mathbf{P}^{2}
4. L independent of choice A and B
5. Transformation $\mathrm{X}^{\prime}=\mathrm{HX} \rightarrow \mathrm{L}^{\prime}=\mathrm{HLH}^{\top}$
\square Example: X-axis is represented as $\mathrm{L}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0\end{array}\right]-\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{lll}0 & 0 & 0 \\ 1\end{array}\right]^{\top}=\left[\begin{array}{cccc}0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$

Line - Plücker matrices (2)

\square Dual Plücker representation:

- Line is formed by the intersection of two planes \mathbf{P} and \mathbf{Q}

$$
\mathrm{L}^{*}=\mathrm{PQ}^{\top}-\mathrm{QP}^{\top}
$$

- Transformation: $\mathrm{X}^{\prime}=\mathrm{HX} \rightarrow \mathrm{L}^{*}=\mathrm{H}^{-\top} \mathrm{LH}^{-1}$
- Relation between \mathbf{L} and $\mathbf{L}^{*}: l_{12}: l_{13}: l_{14}: l_{23}: l_{42}: l_{34}=l_{34}^{*}: l_{42}^{*}: l_{23}^{*}: l_{14}^{*}: l_{13}^{*}: l_{12}^{*}$
\square Join and incidence properties:

$$
\begin{array}{ll}
\pi=L^{*} \mathrm{X} & \text { (plane through line and point) } \\
\mathrm{L}^{*} \mathrm{X}=0 & \text { (point on line) } \\
\mathrm{X}=\mathrm{L} \pi & \text { (intersection point of plane and line) } \\
\mathrm{L} \pi=0 & \text { (line in plane) } \\
{\left[\mathrm{L}_{1}, \mathrm{~L}_{2}, \ldots\right] \pi=0 \quad \text { (coplanar lines) }}
\end{array}
$$

