Estimation - 2D Projective Transformations
 - Chapter 4 (continue ...) -

Meeting 3 - February 25, 2010
Pravin Kumar Rana

Based on Marc Pollefeys' presentations (www.cs.unc.edu/~marc/mvg/slides.html)

Content

- Chapter 4 continue ...
- Robust Estimation
- Automatic Computation of a Homography

Objective

- Given two images of the same scene
- Compute automatically the homography between them

Robust estimation

- What if set of matches contains gross outliers?
- Robust estimation:
- Determine a set of inliers from the presented "correspondences" so that the homography estimated in an optimal manner

RANSAC Robust Estimation

- RANSAC: RANdom SAmple Consensus (Fischer and Bolles)
- Given putative correspondences RANSAC determines the set of correct ones
- Idea for line fitting:

1) choose randomly two points
2) define a line
3) determine the support for this line (\#points within certain distance)
4) repeat (1-3) for a certain number of times
5) choose the line with most support

RANSAC

Objective

Robust fit of a model to a data set S which contains outliers

Algorithm

1) Randomly select a sample of s data points from S and instantiate the model from this subset.
2) Determine the set of data points S_{i} which are within a distance threshold t of the model. The set S_{i} is the consensus set of samples and defines the inliers of S.
3) If the subset of S_{i} is greater than some threshold T, re-estimate the model using all the points in S_{i} and terminate
4) If the size of S_{i} is less than T, select a new subset and repeat the above.
5) After N trials the largest consensus set S_{i} is selected, and the model is re-estimated using all the points in the subset S_{i}

RANSAC-What is the distance threshold ?

- Choose distance threshold t such that a point is an inlier with a probability α (e.g. 0.95)
- Often empirically
- If measurement error is zero-mean Gaussian noise σ then d_{\perp}^{2} is sum of squared Gaussian variable and follows distribution χ_{m}^{2} with m degree of freedom.

RANSAC -How many samples?

- Choose N (number of samples) to ensure with a probability p that at least one of the random samples of s points is free from outliers
- W is the probability that any selected point is an inlier $e=(1-W)$ is the probability for an outlier
- At least N selections are required, where $\left(1-(1-e)^{s}\right)^{N}=1-p$, so that

$$
N=\log (1-p) / \log \left(1-(1-e)^{s}\right)
$$

How large is an acceptable consensus set?

- Terminate when inlier ratio reaches expected ratio of inliers,

$$
T=(1-e) n
$$

RANSAC -How many samples?

Determining the Number of Samples Adaptively

- Compute number of samples, N , adaptively:

1. $N=\infty$, sample_count $=0$
2. While $\mathrm{N}>$ sample_count Repeat

- Choose a sample and count the number of inliers
- Set $e=1$ - (number inliers)/(total number of points)
- Set N from e and equation of previous slide with $p=0.99$
- Increment the sample_count by 1

3. Terminate.

Robust Maximum Likelihood Estimation

- Previous MLE algorithm considers fixed set of inliers

Robust cost function: (reclassifies)

$$
\mathscr{D}=\sum_{\mathrm{i}} \gamma\left(d_{\perp i}\right) \text { with } \gamma(e)= \begin{cases}e^{2} & e^{2}<t^{2} \text { inlier } \\ t^{2} & e^{2}>t^{2} \text { outlier }\end{cases}
$$

Automatic Computation of H

Objective:

Compute homography between two images.

Algorithm:

1) Interest points: Compute interest points in each image
2) Putative correspondences: Compute a set of interest point matches based on some similarity measure
3) RANSAC robust estimation: Repeat for N samples
a) Select 4 correspondences and compute H
b) Calculate the distance d_{\perp} for each putative match
c) Compute the number of inliers consistent with $\mathrm{H}\left(d_{\perp}<t\right)$

Choose H with most inliers
4) Optimal estimation: re-estimate H from all inliers by minimizing ML cost function,(e.g. with Levenberg-Marquardt).
5) Guided matching: Determine more matches using prediction by computed H Optionally iterate last two steps until convergence

Interest Points

- Automatically compute interest points in each image
- Corner Detection
- Not all points of interest have correspondences in the other image

Putative Correspondences

- Compute a set of interest point matches based on some similarity measure
- Squared sum of intensity differences (SSD)
- Normalized cross correlation on small neighborhood
- Many correspondences are not the right ones yet

Iteration

- Now we have the "true" correspondences (inliers) by having applied RANSAC
- What's next?
- Optimal estimation: re-estimate H from all inliers by minimizing ML cost function (e.g. with Levenberg-Marquardt)
- Guided matching: Use the re-estimated H to determine more matches

Implementation and run details

Number of inliers	1-e	Adaptive \mathbf{N}
6	2%	$20,038,344$
10	3%	$2,595,658$
44	16%	6,922
58	21%	2,291
73	26%	911
151	56%	43

