Estimation - 2D Projective Transformations - Chapter 4 (continue ...) -

> Meeting 3 - February 25, 2010 Pravin Kumar Rana

Based on Marc Pollefeys' presentations (www.cs.unc.edu/~marc/mvg/slides.html)

Content

- Chapter 4 continue ...
 - Robust Estimation
 - Automatic Computation of a Homography

Objective

- Given two images of the same scene
- Compute automatically the homography between them

Robust estimation

- What if set of matches contains gross outliers?
- Robust estimation:
 - Determine a set of inliers from the presented "correspondences" so that the homography estimated in an optimal manner

RANSAC Robust Estimation

- RANSAC: <u>RAN</u>dom <u>SAmple Consensus</u> (Fischer and Bolles)
- Given putative correspondences RANSAC determines the set of correct ones
- Idea for line fitting:
 - 1) choose randomly two points
 - 2) define a line
 - 3) determine the support for this line(#points within certain distance)
 - 1) repeat (1-3) for a certain number of times
 - 2) choose the line with most support

RANSAC

Objective

Robust fit of a model to a data set S which contains outliers

<u>Algorithm</u>

- 1) Randomly select a sample of *s* data points from S and instantiate the model from this subset.
- 2) Determine the set of data points S_i which are within a distance threshold t of the model. The set S_i is the consensus set of samples and defines the inliers of S.
- 3) If the subset of S_i is greater than some threshold *T*, re-estimate the model using all the points in S_i and terminate
- 4) If the size of S_i is less than *T*, select a new subset and repeat the above.
- 5) After *N* trials the largest consensus set S_i is selected, and the model is re-estimated using all the points in the subset S_i

RANSAC-What is the distance threshold ?

- Choose distance threshold t such that a point is an inlier with a probability α (e.g. 0.95)
- Often empirically
- If measurement error is zero-mean Gaussian noise σ then d_{\perp}^2 is sum of squared Gaussian variable and follows distribution χ_m^2 with *m* degree of freedom.

RANSAC -How many samples?

- Choose N (number of samples) to ensure with a probability p that at least one of the random samples of s points is free from outliers
- Wis the probability that any selected point is an inlier e = (1-W) is the probability for an outlier
- At least N selections are required, where $(1-(1-e)^s)^N = 1-p$, so that

$$N = \log(1-p) / \log(1-(1-e)^{s})$$

How large is an acceptable consensus set?

• Terminate when inlier ratio reaches expected ratio of inliers,

$$T = (1 - e)n$$

RANSAC -How many samples?

Determining the Number of Samples Adaptively

- Compute number of samples, N, adaptively:
 - 1. N = ∞ , sample_count = 0
 - 2. While N > sample_count Repeat
 - Choose a sample and count the number of inliers
 - Set *e* = 1 (number inliers)/(total number of points)
 - Set N from *e* and equation of previous slide with p = 0.99
 - Increment the sample_count by 1
 - 3. Terminate.

Robust Maximum Likelihood Estimation

• Previous MLE algorithm considers fixed set of inliers

Robust cost function: (reclassifies)

$$\mathcal{D} = \sum_{i} \gamma(d_{\perp i}) \text{ with } \gamma(e) = \begin{cases} e^2 & e^2 < t^2 \text{ inlier} \\ t^2 & e^2 > t^2 \text{ outlier} \end{cases}$$

Automatic Computation of H

Objective:

Compute homography between two images.

<u>Algorithm:</u>

- 1) Interest points: Compute interest points in each image
- **2) Putative correspondences:** Compute a set of interest point matches based on some similarity measure
- 3) **RANSAC robust estimation:** Repeat for *N* samples
 - a) Select 4 correspondences and compute H
 - b) Calculate the distance d_{\perp} for each putative match
 - c) Compute the number of inliers consistent with H ($d_{\perp} < t$)

Choose H with most inliers

- **4) Optimal estimation:** re-estimate H from all inliers by minimizing ML cost function, (e.g. with Levenberg-Marquardt).
- **5) Guided matching**: Determine more matches using prediction by computed H Optionally iterate last two steps until convergence

Interest Points

- Automatically compute interest points in each image
- Corner Detection
- Not all points of interest have correspondences in the other image

Putative Correspondences

- Compute a set of interest point matches based on some similarity measure
 - Squared sum of intensity differences (SSD)
 - Normalized cross correlation on small neighborhood
- Many correspondences are not the right ones yet

Iteration

- Now we have the "true" correspondences (inliers) by having applied RANSAC
- What's next?
- **Optimal estimation**: re-estimate H from all inliers by minimizing ML cost function (e.g. with Levenberg-Marquardt)
- **Guided matching**: Use the re-estimated H to determine more matches

Implementation and run details

Number of inliers	1-e	Adaptive N
6	2%	20,038,344
10	3%	2,595,658
44	16%	6,922
58	21%	2,291
73	26%	911
151	56%	43

