MULTIPLE VIEW GEOMETRY CHAPTER 6 - CAMERA MODELS

based on M. Pollefeys' presentation:
http://www.cs.unc.edu/~marc/mvg/course08.ppt

Marianna Madry-Pronobis 2010/03/11

Book Content

1. Background: Projective geometry (2D, 3D), Parameter estimation, Algorithm evaluation.
2. Single View:

- Camera model
- Calibration
- Single View Geometry

Camera

\square Today cameras stems from the camera obscura - an optical device that projects an image of its surroundings on a screen
illum in tabula per radios Solis, quam in coelo contingit: hoc eft, fi in ccelo fuperior pars delıquiũ patiatur, in radiis apparebir inferior deficere, vt ratio exigit optica.

Sic nos exaCtè Anno . 1544 . Louanii celipfum Solis obferuauimus, inuenimuś́; deficere paulò plus ä dex-
\square Camera is a mapping between the 3D world and a 2D image

- In Ch. 6: number of camera models (matrices) that represent 3D2D mapping

Content Ch. 6

1. Finite cameras
2. Properties of projective camera
3. Camera at infinity

Finite Cameras

Pinhole Camera Model

$$
\begin{aligned}
& y / f=Y / Z \\
& y=f Y / Z
\end{aligned}
$$

Euclidean
coordinates:

$$
(X, Y, Z)^{T} \mapsto(f X / Z, f Y / Z)^{T}
$$

Homogeneus coordinates:

$$
\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \mapsto\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{llll}
f & & & 0 \\
& f & & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Finite Cameras

Homogeneous Coordinates \& Projection

$$
\begin{aligned}
& \left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{llll}
f & & & 0 \\
& f & & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \\
& \left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{llll}
f & & \\
& f & \\
& & 1
\end{array}\right]\left[\begin{array}{llll}
1 & & & 0 \\
& 1 & & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
\end{aligned}
$$

$\begin{array}{ll}\text { Image point: } & \mathrm{X}=(\mathrm{fX}, \mathrm{fY}, \mathrm{Z})^{\mathrm{T}} \\ \text { Word point: } & \mathrm{X}=(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, 1)^{\mathrm{T}}\end{array}$
Projection: $\quad \mathrm{x}=\mathrm{P} \mathbf{X}$, where $\mathrm{P}=\operatorname{diag}(f, f, 1)[\mathrm{I} \mid 0]$

Finite Cameras

Principal Point Offset

- Assumption: image coordinate origin at the principal point $P=\left(p_{x}, p_{y}\right)^{T}$
- In practice, it may not be so:

$$
\begin{aligned}
& (X, Y, Z)^{T} \mapsto\left(f X / Z+p_{x}, f Y / Z+p_{y}\right)^{T} \\
& \left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \mapsto\left(\begin{array}{c}
f X+Z p_{x} \\
f Y+Z p_{x} \\
Z
\end{array}\right)=\left[\begin{array}{ccc}
f & p_{x} & 0 \\
& f & p_{y} \\
& & 1
\end{array} 0\right. \\
& \\
&
\end{aligned}
$$

$$
\mathrm{x}=\mathrm{K}[\mathrm{I} \mid 0] \mathrm{X} \quad \text { where } K=\left[\begin{array}{lll}
f & & p_{x} \\
& f & p_{y} \\
& & 1
\end{array}\right] \begin{gathered}
\text { K is camera } \\
\text { calibration } \\
\text { matrix }
\end{gathered}
$$

Finite Cameras

Camera Rotation and Translation

- Word coordinate frame (inhomogeneous 3-vectors):
\tilde{X}
$\tilde{\mathrm{X}}$ - word point
$\tilde{\mathrm{X}}_{\text {cam }}$ - the same point in the camera coord. frame
$\tilde{C} \quad$ - camera center

$$
\tilde{\mathrm{X}}_{\mathrm{cam}}=\mathrm{R}(\tilde{\mathrm{X}}-\tilde{\mathrm{C}})
$$

- In homogeneous coordinates:

$$
\mathrm{X}_{\mathrm{cam}}=\left[\begin{array}{cc}
\mathrm{R} & -\mathrm{R} \tilde{\mathrm{C}} \\
0 & 1
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)=\left[\begin{array}{cc}
\mathrm{R} & -\mathrm{RC} \\
0 & 1
\end{array}\right] \mathrm{X}
$$

Projection:

$$
\Rightarrow \mathrm{X}=\underbrace{=P(9 \mathrm{dof})}_{\sim} \underset{\sim}{\mathrm{KR}[\mathrm{I} \mid-\widetilde{\mathrm{C}}]} \mathrm{X}
$$

$$
\tilde{\mathrm{X}}_{\mathrm{cam}}=\mathrm{R} \tilde{\mathrm{X}}+\mathrm{t}
$$

Projection:

$$
\Rightarrow \mathrm{x}=\mathrm{PX} \quad \mathrm{P}=\mathrm{K}[\mathrm{R} \mid \mathrm{t}] \quad \mathrm{t}=-\mathrm{R} \tilde{\mathrm{C}}
$$

Finite Cameras

CCD Cameras

\square Pinhole camera:
\square equal scales in both x - and y-axial directions
$\square x$-axis perpendicular to y-axis
\square CCD cameras may have:
\square non-square pixels
\square not perpendicular x - and y-axis
\square Calibration matrix:

$$
K=\left[\begin{array}{ccc}
\alpha_{x} & s & p_{x} \\
& \alpha_{y} & p_{y} \\
& & 1
\end{array}\right]
$$

Finite Cameras

Finite Projective Camera: Summary

- Calibration matrix: $K=\left[\begin{array}{ccc}\alpha_{x} & s & p_{x} \\ & \alpha_{y} & p_{y} \\ & & 1\end{array}\right]$
- Projection matrix: $\quad \mathrm{P}=\underset{\text { nonsingular }}{\mathrm{KR}}[\mathrm{I} \mid-\tilde{\mathrm{C}}] \quad 11 \operatorname{dof}(5+3+3)$
- Representation of P by M :

$$
\begin{gathered}
\mathrm{M}=\mathrm{KR} \\
\Rightarrow \mathrm{P}=\mathrm{M}\left[\mathrm{I} \mid \mathrm{M}^{-1} \mathrm{p}_{4}\right] \Rightarrow \mathrm{P}=\left[\mathrm{M} \mid \mathrm{p}_{4}\right]
\end{gathered}
$$

- Cameras:
- Finite: $\quad P_{4 \times 3} \mid \operatorname{det}(M) \neq 0$
- Infinite: If rank $P=3$, but rank $M<3$

Projective Camera - Camera Anatomy

Projective Camera - Camera Anatomy

Camera Center

- Projection: $\mathrm{x}=\mathrm{PX}$
- Camera center is a null-space of the camera projection matrix: $\mathrm{PC}=0$
- Proof:

$$
\begin{aligned}
\mathrm{X} & =\lambda \mathrm{A}+(1-\lambda) \mathrm{Ca} \\
\mathrm{x} & =\mathrm{PX}=\lambda \mathrm{PA}+(1-\lambda) \mathrm{PC}=\lambda \mathrm{PA}
\end{aligned}
$$

- For all A all points on $A C$ project on image of A, therefore C is camera center
- Camera center: ${ }_{C=}=\binom{-\mathrm{M}^{-1} \mathrm{p}_{4}}{1}$
- Infinite cameras: $C=\binom{d}{0}, \mathrm{Md}=0$

Projective Camera - Camera Anatomy
 Column Vectors

$P=\left[\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3} \mathrm{p}_{4}\right]$

- Example:

$$
\left[\mathrm{p}_{2}\right]=\left[\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3} \mathrm{p}_{4}\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\right.
$$

$\Rightarrow p_{i}$ are image points corresponding to X, Y, Z directions (vanishing points) and origin

Projective Camera - Camera Anatomy

Row Vectors

$$
\boldsymbol{P}=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{p}^{\top} \\
\mathrm{p}^{\top} \\
\mathrm{p}^{\mathrm{T}}
\end{array}\right]
$$

Row vectors p^{i} can be interpreted as world planes

- Principal plane - consists of X which are imaged on the line at infinity of the image
- Axis plane - set of X on P^{2} are points on the image x-axis

Projective Camera - Camera Anatomy
 Principal Point

\square Principal axis passes through the camera center C with direction perpendicular to plane P^{3}; the axis intersect image plan at the principal point

Projective Camera

Action of Projective Camera on Points

- Forward projection: $\quad \mathrm{x}=\mathrm{PX}$
- Points $D=\left(d^{\top}, 0\right)^{\top}$ on the plane at infinity represent vanishing points

$$
\mathrm{x}=\mathrm{PD}=\left[\mathrm{M} \mid \mathrm{p}_{4}\right] \mathrm{D}=\mathrm{Md}
$$

- Back-projection:
- Intersection of the camera center C and point x (backproj. X)

$$
\begin{aligned}
& \mathrm{PC}=0 \\
& \mathrm{X}=\mathrm{P}^{+} \mathrm{x} \quad \begin{array}{l}
\mathrm{P}^{+}=\mathrm{P}^{\top}\left(\mathrm{PP}^{\top}\right)^{-1} \\
\text { (pseudo-inverse) }
\end{array} \quad \mathrm{PP}^{+}=\mathrm{I} \\
& \mathrm{X}(\lambda)=\mathrm{P}^{+} \mathrm{x}+\lambda \mathrm{C}
\end{aligned}
$$

Projective Camera

Depth of Points

$$
\begin{aligned}
& w=\mathrm{P}^{3^{\mathrm{T}} \mathrm{X}=}=\mathrm{P}^{3^{\mathrm{T}}}(\mathrm{X}-\mathrm{C})=\mathrm{m}^{3^{\mathrm{T}}}(\tilde{\mathrm{X}}-\tilde{\mathrm{C}}) \\
& \quad(\mathrm{PC}=0) \quad \text { (dot product) } \\
& w \text { - dot product of the ray from } \mathrm{C} \text { to } \mathrm{X} \\
& \text { with the principal ray direction }
\end{aligned}
$$

If $\operatorname{det} M>0 ;\left\|\mathrm{m}^{3}\right\|=1$, then m^{3} unit vector in positive direction

$$
\operatorname{depth}(\mathrm{X} ; \mathrm{P})=\frac{\operatorname{sign}(\operatorname{det} \mathrm{M}) w}{T\left\|\mathrm{~m}^{3}\right\|} \quad \mathrm{X}=(X, Y, Z, T)^{\mathrm{T}}
$$

