Recap: The epipolar geometry

The fundamental matrix F

algebraic representation of epipolar geometry

$$
\mathrm{x} \mapsto \mathrm{l}^{\prime}
$$

we will see that mapping is (singular) correlation (i.e. projective mapping from points to lines) represented by the fundamental matrix F

The fundamental matrix F

geometric derivation

$$
\begin{aligned}
& \mathrm{x}^{\prime}=\mathrm{H}_{\pi} \mathrm{x} \\
& \mathrm{l}^{\prime}=\mathrm{e}^{\prime} \times \mathrm{x}^{\prime}=\left[\mathrm{e}^{\prime}\right]_{\times} \mathrm{H}_{\pi} \mathrm{x}=\mathrm{Fx}
\end{aligned}
$$

mapping from 2-D to 1-D family (rank 2)

The fundamental matrix F

algebraic derivation

$$
\begin{array}{ll}
\mathrm{X}(\lambda)=\mathrm{P}^{+} \mathrm{x}+\lambda \mathrm{C} \\
\mathrm{l}=\mathrm{P}^{\prime} \mathrm{C} \times \mathrm{P}^{\prime} \mathrm{P}^{+} \mathrm{x} \\
\mathrm{~F}=\left[\mathrm{e}^{\prime}\right] \times \mathrm{P}^{\prime} \mathrm{P}^{+}
\end{array}
$$

(note: doesn't work for $\mathrm{C}=\mathrm{C}^{\prime} \Rightarrow \mathrm{F}=0$)

From F to the Cameras - Some Useful Properties of F

(i) Projective Invariance
(ii) Projective Ambiguity
(iii) Canonical Cameras given F

Projective transformation and invariance

Derivation based purely on projective concepts

$$
\hat{\mathrm{x}}=\mathrm{Hx}, \hat{\mathrm{x}}^{\prime}=\mathrm{H}^{\prime} \mathrm{x}^{\prime} \Rightarrow \hat{\mathrm{F}}=\mathrm{H}^{\prime-\mathrm{T}} \mathrm{FH}^{-1}
$$

F invariant to transformations of projective 3-space

$$
\begin{aligned}
& x=P X=(P H)\left(H^{-1} X\right)=\hat{P} \hat{X} \\
& x^{\prime}=P^{\prime} X=\left(P^{\prime} H\right)\left(H^{-1} X\right)=\hat{P}^{\prime} \hat{X}
\end{aligned}
$$

$$
\left(\mathrm{P}, \mathrm{P}^{\prime}\right) \mapsto \mathrm{F} \quad \text { unique }
$$

$$
\mathrm{F} \mapsto\left(\mathrm{P}, \mathrm{P}^{\prime}\right) \quad \text { not unique }
$$

canonical form

$$
\begin{aligned}
& \mathrm{P}=[\mathrm{I} \mid 0] \\
& \mathrm{P}^{\prime}=[\mathrm{M} \mid \mathrm{m}] \quad \mathrm{F}=[\mathrm{m}]_{\times} \mathrm{M}
\end{aligned}
$$

Projective ambiguity of cameras given F

previous slide: at least projective ambiguity this slide: not more! ???? (this slide: it is the only ambiguity) Show that if F is same for (P, P^{\prime}) and ($\tilde{P}, \widetilde{P}^{\prime}$), there exists a projective transformation H so that $\widetilde{P}=P H$ and $\widetilde{P}^{\prime}=P^{\prime} H$

$$
\begin{aligned}
& \mathrm{P}=[\mathrm{I} \mid 0] \quad \mathrm{P}^{\prime}=[\mathrm{A} \mid \mathrm{a}] \quad \widetilde{\mathrm{P}}=[\mathrm{I} \mid 0] \quad \widetilde{\mathrm{P}}^{\prime}=[\widetilde{\mathrm{A}} \mid \widetilde{\mathrm{a}}] \\
& \mathrm{F}=[\mathrm{a}]_{\times} \mathrm{A}=[\widetilde{\mathrm{a}}]_{\times} \widetilde{\mathrm{A}} \\
& \begin{array}{l}
\text { lemma } \widetilde{\mathrm{a}}=\mathrm{ka} \quad \widetilde{\mathrm{~A}}=k^{-1}\left(\mathrm{~A}+\mathrm{av}^{\mathrm{T}}\right)
\end{array} \\
& \quad \mathrm{aF}=\mathrm{a}[\mathrm{a}]_{\times} \mathrm{A}=0=\widetilde{\mathrm{a}} \mathrm{~F} F \underset{\mathrm{rank} 2}{\Rightarrow} \widetilde{\mathrm{a}}=\mathrm{ka} \\
& {[\mathrm{a}]_{\times} \mathrm{A}=[\widetilde{\mathrm{a}}]_{\times} \widetilde{\mathrm{A}} \Rightarrow[\mathrm{a}]_{\times}(\mathrm{k} \widetilde{\mathrm{~A}}-\mathrm{A})=0 \Rightarrow(\mathrm{k} \widetilde{\mathrm{~A}}-\mathrm{A})=\mathrm{av}^{\mathrm{T}}} \\
& H=\left[\begin{array}{cc}
k^{-1} I & 0 \\
k^{-1} \mathrm{v}^{\mathrm{T}} & k
\end{array}\right] \\
& \mathrm{P}^{\prime} \mathrm{H}=[\mathrm{A} \mid \mathrm{a}]\left[\begin{array}{ll}
k^{-1} I & 0 \\
k^{-1} \mathrm{v}^{\mathrm{T}} & \mathrm{k}
\end{array}\right]=\left[k^{-1}\left(\mathrm{~A}-\mathrm{av}^{\mathrm{T}}\right) \mid \mathrm{ka}\right]=\widetilde{\mathrm{P}}^{\prime} \\
& (22-15=7, \mathrm{ok})
\end{aligned}
$$

Canonical cameras given F

F matrix corresponds to P, P^{\prime} iff $P^{\prime \top} F P$ is skew-symmetric.
This is equivalent to $\quad\left(X^{T} \mathrm{P}^{\mathrm{T}} \mathrm{FPX}=0, \forall \mathrm{X}\right)$
F matrix, S skew-symmetric matrix

$$
\begin{aligned}
\mathrm{P}=[\mathrm{I} \mid 0] \quad \mathrm{P}^{\prime}= & {\left.\left[\mathrm{SF} \mid \mathrm{e}^{\prime}\right] \quad \text { (fund.matrix }=\mathrm{F}\right) \quad(\text { Epipole }=\mathrm{e}) } \\
& \left(\left[\mathrm{SF} \mid \mathrm{e}^{\prime}\right]^{\mathrm{T}} \mathrm{~F}[\mathrm{I} \mid 0]=\left[\begin{array}{cc}
\mathrm{F}^{\mathrm{T}} \mathrm{~S}^{\mathrm{T}} \mathrm{~F} & 0 \\
\mathrm{e}^{\mathrm{T}} \mathrm{~F} & 0
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{F}^{\mathrm{T}} \mathrm{~S}^{\mathrm{T}} \mathrm{~F} & 0 \\
0 & 0
\end{array}\right]\right)
\end{aligned}
$$

Possible choice:

$$
\mathrm{P}=[\mathrm{I} \mid 0] \quad \mathrm{P}^{\prime}=\left[\left[\mathrm{e}^{\prime}\right]_{\times} \mathrm{F} \mid \mathrm{e}^{\prime}\right]
$$

Canonical representation:

$$
\mathrm{P}=[\mathrm{I} \mid 0] \quad \mathrm{P}^{\prime}=\left[\left[\mathrm{e}^{\prime}\right]_{\times} \mathrm{F}+\mathrm{e}^{\prime} \mathrm{v}^{\mathrm{T}} \mid \lambda \mathrm{e}^{\prime}\right]
$$

The essential matrix

~fundamental matrix for calibrated cameras (remove K)

$$
\begin{aligned}
& E=[t]_{\times} R=R\left[R^{T} t\right]_{\times} \\
& \hat{x}^{\prime T} E \hat{x}=0 \quad\left(\hat{x}=K^{-1} x ; \hat{x}^{\prime}=K^{-1} x^{\prime}\right) \\
& E=K^{\prime T} F K
\end{aligned}
$$

$$
5 \text { d.o.f. (3 for R; } 2 \text { for } t \text { up to scale) }
$$

E is essential matrix if and only if two singularvalues are equal (and third=0)

$$
\mathrm{E}=\mathrm{Udiag}(1,1,0) \mathrm{V}^{\mathrm{T}}
$$

Four possible reconstructions from E

(only one solution where points is in front of both cameras)

3D reconstruction of cameras and structure

reconstruction problem:
given $X_{i} \leftrightarrow X_{i}^{\prime}$, compute $P, P^{‘}$ and X_{i}

$$
\mathbf{X}_{i}=\mathbf{P} X_{i} \quad \mathbf{X}_{i}^{\prime}=\mathbf{P} X_{i}^{\prime} \quad \text { for all } i
$$

without additional informastion possible up to projective ambiguity

Outline of reconstruction

(i) Compute F from correspondences
(ii) Compute camera matrices from F ->

Previous Slides
(iii) Compute 3D point for each pair of corresponding points computation of F
use $x_{i}^{\prime} F x_{i}=0$ equations, linear in coeff. F
8 points (linear), 7 points (non-linear), 8+ (least-squares) (more on this next chapter)
computation of camera matrices
use $\quad \mathrm{P}=[\mathrm{I} \mid 0] \quad \mathrm{P}^{\prime}=\left[\left[\mathrm{e}^{\prime}\right]_{\times} \mathrm{F} \mid \mathrm{e}^{\prime}\right]$
triangulation
compute intersection of two backprojected rays

The epipolar geometry

What if only $\mathrm{C}, \mathrm{C}^{\prime}, \mathrm{x}$ are known?

Reconstruction Ambiguity - Scale and Absolute Position and Orientation

- Could be in a puppet house
- East-West or North-South
- Could be a corridor anywhere

Reconstruction Ambiguity (Calibrated Cameras -> K known): Similarity

Reconstruction ambiguity (Uncalibrated Camera): Projective

$$
\mathrm{x}_{i}=\mathrm{PX}_{i}=\left(\mathrm{PH}_{\mathrm{P}}^{-1}\right)\left(\mathrm{H}_{\mathrm{P}} \mathrm{X}_{i}\right)
$$

Terminology

$\mathrm{X}_{\mathrm{i}} \leftrightarrow \mathrm{X}_{\mathrm{i}}{ }^{\text {i }}$
Original scene X_{i}
Projective, affine, similarity reconstruction
= reconstruction that is identical to original up to projective, affine, similarity transformation

Literature: Metric and Euclidean reconstruction
= similarity reconstruction = angles and rations between lines can be measured

The projective reconstruction theorem

If a set of point correspondences in two views determine the fundamental matrix uniquely, then the scene and cameras may be reconstructed from these correspondences alone, and any two such reconstructions from these correspondences are projectively equivalent

$$
\begin{aligned}
& \mathrm{x}_{i} \leftrightarrow \mathrm{x}_{i}^{\prime} \quad\left(\mathrm{P}_{1}, \mathrm{P}_{1}^{\prime},\left\{\mathrm{X}_{1 i}\right\}\right) \quad\left(\mathrm{P}_{2}, \mathrm{P}_{2}^{\prime},\left\{\mathrm{X}_{2 i}\right\}\right) \\
& \underbrace{\mathrm{P}_{2}=\mathrm{P}_{1} \mathrm{H}^{-1} \quad \mathrm{P}_{2}^{\prime}=\mathrm{P}_{1}^{\prime} \mathrm{H}^{-1}}_{\text {theorem from last class }} \quad \mathrm{X}_{2 \mathrm{i}}=\mathrm{HX}_{1 \mathrm{i}} \quad\left(\text { except: } \mathrm{Fx}_{i}=\mathrm{x}_{i}^{\prime} \mathrm{F}=0\right) \\
& \mathrm{P}_{2}\left(\mathrm{HX}_{1 i}\right)=\mathrm{P}_{1} \mathrm{H}^{-1} \mathrm{HX} X_{1 i}=\mathrm{P}_{1} \mathrm{X}_{1 i}=\mathrm{x}_{i}=\mathrm{P}_{2} \mathrm{X}_{2 i} \\
& \Rightarrow \text { along same ray of } \mathrm{P}_{2}, \text { idem for } \mathrm{P}_{2}^{\prime}
\end{aligned}
$$

two possibilities: $\mathrm{X}_{2 i}=\mathrm{HX}_{1 i}$, or points along baseline key result: allows reconstruction from pair of uncalibrated images

