Affine Factorization

-Reconstructs 3D points and camera matrices, assuming affine cameras and that the same points are imaged in all cameras.
-This is the maximum likelihood estimation if the measured image points have isotropic mean-zero Gaussian noise that is independent and equal for all measurements.

Inhomogenous Affine Camera

$$
x_{i}^{c}=M^{c} X_{i}+t^{c}
$$

$x_{i}^{c} \quad$ inhomogeneous 2D image position of point i in camera c $X_{i} \quad$ inhomogeneous 3D world position of point i
$M^{c} \quad 2 \times 3$ matrix for camera c
t^{c} 2D image translation for camera c
$\langle X\rangle=\frac{1}{N} \sum_{i=1}^{N} X_{i} \quad$ mean 3D position of the points
$\left\langle x^{c}\right\rangle=\frac{1}{N} \sum_{i=1}^{N} x_{i}^{c} \quad$ mean image position of the points in camera c

Choose coordinate systems in images and 3D world such such that:

$$
\left\langle x^{c}\right\rangle=0 \quad\langle X\rangle=0
$$

For an affine camera $\langle X\rangle$ projects to $\left\langle x^{c}\right\rangle$:

$$
\begin{aligned}
& M^{c}\langle X\rangle+t^{c}=M^{c} \frac{1}{N} \sum_{i=1}^{N} X_{i}+t^{c}=\frac{1}{N} \sum_{i=1}^{N}\left(M^{c} X_{i}+t^{c}\right)=\frac{1}{N} \sum_{i=1}^{N} x_{i}^{c}=\left\langle x^{c}\right\rangle \\
& \Rightarrow t^{c}=0 \\
& \Rightarrow x_{i}^{c}=M^{c} X_{i}
\end{aligned}
$$

Do 3D reconstruction by minimizing reprojection error :
$\min _{M^{c}, X_{i}} \sum_{i, c}\left\|x_{i}^{c}-M^{c} X_{i}\right\|^{2}$

Matrix formulation

Minimize reprojection error: $\quad \min _{M^{c}, X_{i}} \sum_{i, c}\left\|x_{i}^{c}-M^{c} X_{i}\right\|^{2}$

$\hat{\mathrm{W}}$ should have rank 3 since $\hat{\mathrm{M}}$ and $\hat{\mathrm{X}}$ have rank 3

$$
\sum_{i, c}\left\|x_{i}^{c}-M^{c} X_{i}\right\|^{2}=\|W-\hat{W}\|_{F}^{2}
$$

$$
\min _{M^{c}, x_{i}} \sum_{i, c}\left\|x_{i}^{c}-M^{c} X_{i}\right\|^{2}=\min _{\substack{\hat{N} \\ \text { s.t. }}}\|W-\hat{W}\|_{F}^{2} \quad \operatorname{rank}(\hat{W})=3
$$

Minimize reprojection error : $\quad \min \|W-\hat{W}\|_{F}^{2}$

$$
\text { s.t. } \quad \operatorname{rank}(\hat{W})=3
$$

The \hat{W} that is closest to W while having a rank of three can be computed by doing singular value decomposition of W and taking the three biggest singular values:
$W=U D V^{T} \quad \hat{W}=U_{2 C \times 3} D_{3 \times 3} V_{3 \times N}^{T}=\hat{M} \hat{X}=\left(\begin{array}{c}M^{1} \\ M^{2} \\ \vdots \\ M^{C}\end{array}\right)\left(\begin{array}{llll}X_{1} & X_{2} & \cdots & X_{N}\end{array}\right)$
$\hat{M}=U_{2 C \times 3} D_{3 \times 3}$
$\hat{X}=V_{3 \times N}^{T}$

Affine ambiguity of the reconstruction :
$\hat{M}=U_{2 C \times 3} D_{3 \times 3} A$
$\hat{X}=A^{-1} V_{3 \times N}^{T}$

Points not visible in all cameras

Assume we have performed 3D reconstruction for the points visible in all cameras. As a result we have reconstructed the camera matrices Mc. Suppose we have image measurements of an additional point in some of the cameras. We can then reconstruct the corresponding 3D point X using the computed camera matrices. Each measurement from a camera give the linear equation:

$$
x^{c}=M^{c} X
$$

Given sufficiently many measurements from different cameras we can find the least squares solution to X. We can also reproject X to get its image in all cameras.

$$
\left(\begin{array}{c}
x^{1} \\
x^{2} \\
\vdots \\
x^{c}
\end{array}\right)=\hat{M} X=\left(\begin{array}{c}
M^{1} \\
M^{2} \\
\vdots \\
M^{c}
\end{array}\right) X
$$

Affine Reconstruction by Alternation

$$
x_{i}^{c}=M^{c} X_{i}+t^{c}
$$

Assuming known Assuming known X , M and t, find least find least squares squares solution of $X \quad$ solution of M and t

Can handle points not visible in all cameras and measurements being weighted differently, but in those cases global optimal convergence is not always guaranteed.

Projective Factorization

$$
\lambda_{i}^{c} x_{i}^{c}=P^{c} X_{i}
$$

$x_{i}^{c}=\left(\begin{array}{c}u_{i}^{c} \\ v_{i}^{c} \\ 1\end{array}\right)$
P^{c}
$X_{i} \quad$ homogeneous world position of point i
λ_{i}^{c}
image coordinates of point i in camera c

3 x 4 projection matrix of camera c
projective depth of point i in camera c

Assuming known λ_{i}^{c} and x_{i}^{c}, do reconstruction by minimizing "reprojection error":
$\min _{P^{c}, X_{i}} \sum_{i, c}\left\|\lambda_{i}^{c} x_{i}^{c}-P^{c} X_{i}\right\|^{2}$

Matrix formulation

Minimize reprojection error: $\quad \min _{P^{c}, X_{i}} \sum_{i, c}\left\|\lambda_{i}^{c} x_{i}^{c}-P^{c} X_{i}\right\|^{2}$
$W=\left(\begin{array}{cccc}\lambda_{1}^{1} x_{1}^{1} & \lambda_{2}^{1} x_{2}^{1} & \cdots & \lambda_{N}^{1} x_{N}^{1} \\ \lambda_{1}^{2} x_{1}^{2} & \lambda_{2}^{2} x_{2}^{2} & & \lambda_{N}^{2} x_{N}^{2} \\ \vdots & & \ddots & \vdots \\ \lambda_{1}^{C} x_{1}^{C} & \lambda_{2}^{C} x_{2}^{C} & \ldots & \lambda_{N}^{C} x_{N}^{C}\end{array}\right) \quad \hat{W}=\left(\begin{array}{cccc}P^{1} X_{1} & P^{1} X_{2} & \cdots & P^{1} X_{N} \\ P^{2} X_{1} & P^{2} X_{2} & & P^{2} X_{N} \\ \vdots & & \ddots & \vdots \\ P^{C} X_{1} & P^{C} X_{2} & \ldots & P^{C} X_{N}\end{array}\right)=\underbrace{\left(\begin{array}{c}P^{1} \\ P^{2} \\ \vdots \\ P^{C}\end{array}\right)}_{\hat{P} 3 C \times 4} \underbrace{\left.\begin{array}{llll}X_{1} & X_{2} & \cdots & X_{N}\end{array}\right)}_{\hat{X} \quad{ }_{4 \times N}}$
\hat{W} should have rank 4 since \hat{P} and \hat{X} have rank 4

$$
\sum_{i, c}\left\|x_{i}^{c}-P^{c} X_{i}\right\|^{2}=\|W-\hat{W}\|_{F}^{2}
$$

$$
\min _{P^{c}, X_{i}} \sum_{i, c}\left\|\lambda_{i}^{c} X_{i}^{c}-P^{c} X_{i}\right\|^{2}=\min _{\substack{\hat{w} \\ \text { s.t. }}}\|W-\hat{W}\|_{F}^{2} \quad \operatorname{rank}(\hat{W})=4
$$

Minimize reprojection error : $\quad \min \|W-\hat{W}\|_{F}^{2}$

$$
\text { s.t. } \quad \operatorname{rank}(\hat{W})=4
$$

The \hat{W} that is closest to W while having a rank of four can be computed by doing singular value decomposition of W and taking the four biggest singular values:
$W=U D V^{T} \quad \hat{W}=U_{3 C \times 4} D_{4 \times 4} V_{4 \times N}^{T}=\hat{P} \hat{X}=\left(\begin{array}{c}P^{1} \\ P^{2} \\ \vdots \\ P^{C}\end{array}\right)\left(\begin{array}{llll}X_{1} & X_{2} & \cdots & X_{N}\end{array}\right)$
$\hat{P}=U_{3 C \times 4} D_{4 \times 4}$
$\hat{X}=V_{4 \times N}^{T}$

Projective ambiguity of the reconstruction :

$$
\begin{aligned}
\hat{M} & =U_{3 C \times 4} D_{4 \times 4} A \\
\hat{X} & =A^{-1} V_{4 \times N}^{T}
\end{aligned}
$$

Issues

Need values for λ_{i}^{c}. Can set $\lambda_{i}^{c}=1$ as initial guess, or use other reconstruction methods as a first step.

Due to λ we are not minimizing geometric error.
We can reduce the effect of this by two normalization procedures:

1. Normalize image coordinates.
2. A heuristic to further improve the result is to take the measurement matrix W and normalize each row followed by a normalization of each column. This procedure may be iterated.
