Camera Auto-calibration

Alper Aydemir
Royal Institute of Technology, Stockholm

Auto-calibration

- Determine internal camera parameters from images
- Assumptions:
- Rigid-body camera movement,: rotation + translation
- Known point correspondences
> Fixed internal parameters

Auto-calibration

- $P_{i}=K_{i}\left[R_{i} \mid t_{i}\right]$
- $\mathrm{P}_{\mathrm{i}} \mathrm{H}=\mathrm{K} \mathrm{R}_{\mathrm{i}}\left[\mathrm{I} \mid \mathrm{t}_{\mathrm{i}}\right]$ same calibration matrix for each camera
- Sufficiently enough views to constraint H to achieve a metric reconstruction

Auto-calibration

- Use point correspondences to obtain a projective reconstruction
- Recall: xFx' = 0, for x, x' image coordinates, F can be found uniquely.
- Get P and P^{\prime} from F as:
- $P=[I \mid 0]$ and $P^{\prime}=\left[\left[e_{x}{ }_{x} F \mid e^{\prime}\right]\right.$ (result 9.14)
- Projective reconstruction is accurate up to an homography, why is that?

Auto-calibration

- Projective reconstruction ambiguity
- Given F, let $\left(P_{1}, P^{\prime}{ }_{1}, X_{1}\right)$ and $\left(P_{2}, P^{\prime}{ }_{2}, X_{2}\right)$ two reconstructions then there exists a matrix H with $P_{2}=P_{1} H^{-1}$ and $X_{1}=H X_{2}$. (change-of-basis transformation)
- For points:
- $P_{2} X_{2}=P_{2}(H X I)=P_{1} H^{-1} H X_{1}=P_{1} X_{1}$
- For camera matrices:
- Main idea: write F in two different ways and see how they are related \rightarrow carry this result to writing P's in terms of F (theorem 9.10) turns out they are projectively related

Auto-calibration

- So far: from point correspondences to reconstruction up to homography H .
- $\mathrm{P}_{\text {true }}^{\mathrm{i}}=\mathrm{Pi} \mathrm{H}$, obtain H to get K and camera position.
- Use auto-calibration constraints on K

Auto-calibration

- Looking for H in $\mathrm{Pi}_{\text {true }}=\mathrm{PiH}$
- How many unknowns and their origin ?
- Select first camera as origin then:
- $P_{\text {true }}^{\prime}=K[I \mid 0]$ \& use canonical for $P^{\prime}=[1 \mid 0]$
- Take $\mathrm{H}=\left[\mathrm{At} ; \mathbf{v}^{\top} \mathrm{k}\right]$
- Then K^{\prime} [I|O] = [I|0] H
- H is of the form: [$\left.K^{1} 0 ;-p^{\top} K^{\prime} I\right]$

$$
p=-\left(K^{\prime}\right)^{-T} \mathbf{v}
$$

- There are 8 unknowns
- Related $=$ absolute plane + absolute conic
- We can only reconstruct up to similarity
(I5-I2) + (I2-7) dof's

Auto-calibration

- Take $P^{i}=\left[A^{i} \mid a^{i}\right]$,

$$
H=\left[\begin{array}{lll}
K^{\prime} 0 ;-P^{\top} K^{\prime} & I
\end{array}\right]
$$

- Write $P^{i}=K^{i} R^{i}=\left(A^{i}-a^{i} p^{T}\right) K^{\prime}$
- Get rid of R^{i} :
- $R^{i}=\left(K^{i}\right)^{-1}\left(A^{i}-a^{i} p^{\top}\right) K^{\prime}$ (using $R R^{\top}=I$)
- $K^{i K^{i T}}\left(\left(A^{i}-a^{i} p^{T}\right) K^{\prime}\right)^{-1}=\left(A^{i}-a^{i} p^{T}\right) K^{1}$
$K^{i} K^{i \top}=\left(A^{i}-a^{i} p^{\top}\right) K^{1} K^{I T}\left(A^{i}-a^{i} p^{\top}\right)$
- $\mathrm{K}^{\mathrm{i}}{ }^{\mathrm{iT}}$ is the dual image of absolute conic $\omega_{\infty}{ }^{*}$, i.e. mapping of absolute conic under a point homography (hence duality)

$$
\begin{aligned}
& \omega_{\infty}^{* i}=\left(A^{i}-a^{i} p^{T}\right) \omega_{\infty}^{* I}\left(A^{i}-a^{i} p^{T}\right)^{T} \\
& \omega_{\infty}^{i}=\left(A^{i}-a^{i} p^{T}\right)^{-T} \omega_{\infty}^{I}\left(A^{i}-a^{i} p^{T}\right)^{-1}
\end{aligned}
$$

- Point homography: $x=H X$
- Absolute conic: $\Omega_{\infty}=C_{\infty}=I$
- $\omega=\mathrm{H}^{-\top} \mathrm{C}_{\infty} \mathrm{H}^{-1}$, image of absolute conic
$\Rightarrow(K R)^{-T} C_{\infty}(K R)^{-1}=\left(K^{\top}\right)^{-1}$
- Given a camera matrix P:
- $\omega_{\infty}{ }^{*}=\mathrm{P}_{\infty}{ }^{*} \mathrm{P}^{\top} \rightarrow \mathrm{KK}^{\top}=\mathrm{P}_{\infty}{ }^{*} \mathrm{P}^{\top}$
- Why is $\mathrm{Q}_{\infty}{ }^{*}$ important ?
- $\mathrm{C}^{*}=\mathrm{PQ}^{*} \mathrm{P}^{\top}$
- $\omega_{\infty}{ }^{*}$ is the outline of the quadric $\mathrm{Q}_{\infty}{ }^{*}$
- For a general Q this is a conic

Absolute Quadratic

- [$10 ; 0$ 0] under Euclidean
- [Q $0 ; 0$ 0] under Affine
- Arbitrary 4×4 rank 3 matrix under projective
- Behaves like a point under transformations.
- For normal planes Qp gives it's Euclidean direction - It's null vector is P_{∞}

Photosynth

