Camera Auto-calibration

Alper Aydemir Royal Institute of Technology, Stockholm

- Determine internal camera parameters from images
- Assumptions:
 - Rigid-body camera movement,: rotation
 + translation
 - Known point correspondences
 - Fixed internal parameters

P_i = K_i [R_i | t_i] P_iH = K R_i [I | t_i] same calibration matrix for each camera

 Sufficiently enough views to constraint H to achieve a metric reconstruction

- Use point correspondences to obtain a projective reconstruction
- Recall: xFx' = 0, for x,x' image coordinates, F can be found uniquely.
- Get P and P' from F as:
 - P = [| 0] and P' = [[e'_x F | e'] (result 9.14)

Projective reconstruction is accurate up to an homography, why is that?

- Projective reconstruction ambiguity
- Given F, let (P₁, P'₁, X₁) and (P₂, P'₂, X₂) two reconstructions

then there exists a matrix H with $P_2 = P_1 H^{-1}$ and $X_1 = H X_2$. (change-of-basis transformation)

- For points:
 - $P_{2}X_{2} = P_{2}(HXI) = P_{1}H^{-1}HX_{1} = P_{1}X_{1}$
- For camera matrices:
 - Main idea: write F in two different ways and see how they are related → carry this result to writing P's in terms of F (theorem 9.10) turns out they are projectively related

- So far: from point correspondences to reconstruction up to homography H.
- Pⁱ_{true} = PⁱH, obtain H to get K and camera position.
- Use auto-calibration constraints on K

- Looking for H in Pⁱ_{true} = PⁱH
- How many unknowns and their origin ?
- Select first camera as origin then:
 - P^I_{true} = K[| 0] & use canonical for
 P^I = [| 0]
 - Take $H = [A t; \mathbf{v}^T k]$
- Then K¹ [I | 0] = [I | 0] H

H is of the form: [K¹ 0; -p^TK¹]

$$\mathbf{P} = - (\mathbf{K}^{\mathsf{I}})^{-\mathsf{T}} \mathbf{v}$$

There are 8 unknowns

- Related = absolute plane + absolute conic
- We can only reconstruct up to similarity
 (15 12) + (12 7) dof's

KⁱK^{iT} = (Aⁱ – aⁱp^T)K^IK^{IT}(Aⁱ – aⁱp^T)
 KⁱK^{iT} is the dual image of absolute conic ω_∞*, i.e. mapping of absolute conic under a point homography (hence duality)

$$\omega_{\infty}^{*i} = (A^{i} - a^{i}p^{T}) \omega_{\infty}^{*I} (A^{i} - a^{i}p^{T})^{T}$$
$$\omega_{\infty}^{i} = (A^{i} - a^{i}p^{T})^{-T} \omega_{\infty}^{I} (A^{i} - a^{i}p^{T})^{-I}$$

- Why is $K^{i}K^{iT} = \omega^*$?
- Point homography: x = HX
- Absolute conic: $\Omega_{\infty} = C_{\infty} = I$
- $\omega = H^{-T}C_{\infty}H^{-1}$, image of absolute conic
- $(KR)^{-T}C_{\infty}(KR)^{-1} = (KK^{T})^{-1}$

• Given a camera matrix P:

►
$$\omega_{\infty}^{*} = P Q_{\infty}^{*} P^{T} \rightarrow KK^{T} = P Q_{\infty}^{*} P^{T}$$

- Why is Q_{∞}^* important ?
- $\bullet \mathbf{C}^* = \mathbf{P}\mathbf{Q}^*\mathbf{P}^\mathsf{T}$
- ω_{∞}^{*} is the outline of the quadric Q_{∞}^{*}
- For a general Q this is a conic

Absolute Quadratic

- [I 0 ; 0 0] under Euclidean
- [Q 0; 0 0] under Affine
- Arbitrary 4x4 rank 3 matrix under projective
- Behaves like a point under transformations.
- For normal planes Qp gives it's Euclidean direction
 - It's null vector is p_{∞}

Photosynth