The Gold Standard method

-An initial estimate of F using the normalized 8-point algorithm.

- Extract two camera matrices

$$
P=[I \mid 0] \quad \text { and } \quad P^{\prime}=\left[\left[e^{\prime}\right]_{\times} F \mid e^{\prime}\right] \quad \text { with } e^{\prime} \text { obtained from } F
$$

- Estimate the 3D positions of the real-world points, from the correspondences and F.
- Project the 3D points back to image planes using the estimate of the camera projection matrices
- Minimize the difference in the real points and the backprojected points
by varying P and P^{\prime} and the coordinates of the 3D points (and thus also implicitly by varying F).

The Gold Standard method

Minimize a geometric distance (cost):

$$
\sum_{i} d\left(\mathrm{x}_{i}, \hat{\mathrm{x}}_{i}\right)^{2}+d\left(\mathrm{x}_{i}^{\prime}, \hat{\mathrm{x}}_{i}^{\prime}\right)^{2} \quad \text { subject to } \hat{\mathrm{x}}^{\top \mathrm{T}} \mathrm{~F} \hat{\mathrm{x}}=0
$$

Minimize cost using Levenberg-Marquardt

summary:

Initialize: normalized 8-point, (P, P^{\prime}) from F , reconstruct X_{i}

$$
\begin{aligned}
& \mathrm{P}=[\mathrm{I} \mid 0], \mathrm{P}^{\prime}=[\mathrm{M} \mid \mathrm{t}], \mathrm{X}_{i} \\
& \hat{\mathrm{x}}_{i}=\mathrm{PX}_{i}, \hat{\mathrm{x}}_{i}=\mathrm{P}^{\prime} \mathrm{X}_{i}
\end{aligned}
$$

Iterate over P^{\prime} and X to minimize the cost function $3 n($ foreach point $)+12$ (for P^{\prime}) parameters.

Once $\mathrm{P}^{\prime}=[\mathrm{M} \mid t]$ is found, compute $\mathrm{F}=[\mathrm{t}]_{\times} \mathrm{M}$.

