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Sparse Summarization of Robotic Grasping Data

Martin Hjelm Carl Henrik Ek Renaud Detry Hedvig Kjellström Danica Kragic

Abstract— We propose a new approach for learning a
summarized representation of high dimensional continuous
data. Our technique consists of a Bayesian non-parametric
model capable of encoding high-dimensional data from complex
distributions using a sparse summarization. Specifically, the
method marries techniques from probabilistic dimensionality
reduction and clustering. We apply the model to learn efficient
representations of grasping data for two robotic scenarios.

I. INTRODUCTION

Many problems in robotics deal with high dimensional
data and one of the important questions is how to represent
it in as simple and efficient form as possible.

Even with solid domain knowledge and intuition, under-
standing the data can be hampered and we can assume low-
dimensionality is desirable for understanding and finding the
right form of representation. To that end it is common to
reduce dimensionality as a pre-processing step using one of
the many dimensionality reduction techniques available [1]–
[4]. Another important class of methods is those that prefer
or require additional dimensionality reduction in terms of
clustered or discrete data. As an example, most features in
computer vision such as HOGs, shapes and SIFTs [5]–[7]
rely on an efficient discretization and representation of a very
high-dimensional feature space. As another example, in ma-
chine learning, the structure of a graphical model has a pro-
found effect on its descriptive power. Little general progress
has been made for learning structure from continuous data.
For discrete data, however, a range of methods exists (for a
review see [8]). As a tool for visualizing and summarizing
data, clustering, and discretization can be very effective. In
[9] clustering was used to extract a prototypical grasp, which
allowed generalization of grasps to novel objects. However,
discretization is a ”hard-choice” where once a data-point is
associated to a state its relationship to the original feature
representation is lost.

We present a method that performs dimensionality reduc-
tion and clustering simultaneously. We learn a latent space
via the augmentation of the observed data together with
a sparse, generative mapping. The generative mapping is
coupled with the latent space representation of the augmented
data in such a way as to enforce the latent representation of
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Fig. 1: Simplifying inference by forcing a re-representation: relating objects, actions
and tasks using a generative approach.

the observed data to be explainable through the augmented
data, which is encouraged to be uncorrelated.

II. RELATED WORK

Dimensionality reduction methods are central to many
application domains. Formally such methods make the as-
sumption that the observed representation of the data has
been generated from an underlying representation through a
generative mapping. Such methods are divided in (i) spectral
methods that find a mapping from the observed data to the
new parameterization and (ii) generative models, that find a
representation that can generate the observed data. Spectral
methods aim to model the inverse of the generative mapping
and are therefore more restricted, considering only the set of
solutions where the generative mapping takes the form of a
bijection [10]. Generative methods are much more flexible
but additional information must be provided to limit the
space of solutions. In this paper we will exploit the flexibility
of the generative approach.

A generative method that has seen wide success is the
Gaussian Process Latent Variable Model (GP-LVM) [1]. In
the GP-LVM framework the generative mapping is mod-
eled using a flexible Gaussian Process (GP) prior [11]
and the resulting representation is referred to as the latent
representation. One of the main benefits of the model is
that it is straightforward to incorporate priors on the latent
representation. In the original presentation of the model an
uninformative prior was used to regularize the solution space
[1]. However, many different priors have been suggested,
encoding different preferences on the representations. [12]
presents a model that enforces the latent locations to respect
the local distance in the observed space. In [13] the authors
propose a prior based on class information, learning a
representation that reflects the class division. Similarly [14]
constrains the latent space to respect a certain topology.
Wang et al. [15] uses a prior that encourages the latent
space to reflect the dynamics of the data by using an auto-
regressive prior that is suitable for dynamic modeling. The
representations learned using such priors have had a big



impact on modeling of high-dimensional dynamic data such
as human pose [16]. In robotics this has been further de-
veloped with the proposal of additional regularization which
encourage temporally regular shaped latent spaces for data
over multiple repetitions such that each matches a simple
template sequence [17].

The wide variety of priors that have been discussed
above, all share the same goal: finding a representation that
will suit a specific task or model. We present a prior that
generates latent representations aimed at summarizing high
dimensional data using a sparse clustered representation. Our
approach is an extension of the work presented in [18],
[19] but provides a much more principled formulation that
significantly increases the strength and applicability of the
model.

III. MODEL

Given a set of observed data Y = [y1, . . . ,yN ] repre-
sented in a space or parameterization Y we wish to find a
new parameterization X that summarizes and represents the
observed data. Formally there is a mapping f that relates
elements xi in the latent representation X to its correspond-
ing observed parameterization yi ∈ Y , f : X → Y . For
a set of observed data Y there exists an infinite number of
possible representations that respect the above relationship.
Here, we adopt a latent variable approach where the mapping
f will take functional form. We are interested in finding a
well separated and grouped representation such that it can
easily be summarized in terms of a clustering. For the latent
representation we adopt a GP-LVM model, assuming the
observed data to be generated from the latent representation
through a functional mapping with additive Gaussian noise.
This leads to the likelihood of the model p(Y|f), where f
is the instantiation of the function. The GP-LVM proceeds
by assuming that each dimension of the observed data is
independent, given the latent locations, and by placing a GP
prior over the mapping.

A Gaussian process is a collection of random variables,
any finite number of which have a joint Gaussian distribu-
tion [11]. A GP is uniquely determined by its mean and
covariance function, where the covariance function relates
the influence of the other random variables in the collection
that is: f(x) ∼ GP(µ(x), k(x,x′)), where µ and k(·, ·) are
the mean and the covariance function respectively.

The benefit of the GP-LVM compared to other latent
variable models is that the mapping f can analytically be
integrated out from the likelihood. This leads to a marginal
likelihood which averages over every possible mapping f ,

p(Y|X) =

D∏
i=1

∫
p(Yi|F)p(F|X)dF =

D∏
i=1

N (Yi|0,K). (1)

Here Yi corresponds to the i:th dimension of the observed
data, K the specific covariance.

The GP prior in the model is extremely flexible and can,
with an appropriately chosen kernel function, be made to
have a non-zero probability for a large range of functions
allowing for a very representative model.

Learning implies seeking the latent location X and the
hyper-parameters θ and can be found by maximizing the
posterior of the model

argmax
X,θ

p(X, θ|Y) ∝ p(Y|X, θ) p(X) (2)

In the original model presented in [1] an uninformative prior
was used for the latent space to find a solution that was as
unrestricted as possible. However, when additional informa-
tion is available, such as in [13], or when a specific structure
of the space is desired such can easily be accommodated
within the framework by formulation of a more specific prior
p(X) [17]. We will now proceed to explain how a prior that
facilitates a clustered representation can be formulated.

A. Latent space priors

It is illustrative to think about the problem from another di-
rection, imagining already clustered, well-represented lower
dimensional input that are related to some higher dimen-
sional target values via some function. This is essentially
a regression problem and to solve it we want to use GP
regression. However, the regression must meet the condition
that some points in the data - the cluster centers - represent
the same information as the data in the clusters e.g. if we
were to remove some data points the solution should still be
the same. Therefore we augment our dataset with additional
input and target value pairs (U, fu) that have this explanatory
capability. We refer to the pairs as inducing inputs and
inducing points. The complete probability is now written as

p(Y, f , fu|X,U) = p(Y|f , fu) p(f |fu) p(fu) (3)

where fu are the inducing points in the observed space
and U the corresponding latent inputs. This is the same
formulation as in sparse GP regression [20]. However there
the augmentation data – the inducing points and inputs – are
considered as additional variables for approximating the true
posterior but here they are cluster centers with the power to
represent the data points that belong to the clusters.

If we go back to our GP-LVM and use the augmentation
idea to model our representation of the data to a latent
clustering; we realize that if the cluster centers should be
responsible for explaining the points belonging to the cluster
then the inducing points in the observed space should be as
uncorrelated as possible. By reducing the correlation between
the inducing points we are forcing them to choose which
points in the dataset to explain. The GP-LVM will thus be
forced to find a balance between a good latent representation
and one that clusters the latent variables. A good latent
representation will mean a mapping to the observed data
that is as probable as possible. The decorrelation property
and the explanatory capacity of the augmentation data will
mean a latent representation that is as separated as possible
and where the cluster centers explain the cluster points as
good as possible.

In practice such behavior will manifest itself when the
covariance function evaluated on the inducing inputs U is
diagonal. For example in a grasp representation this means



recovering a set of independent postures that are capable of
inducing the full range of possible postures in the data. To
that end, we are motivated by the inducing prior that was
defined in [18], [19] which penalizes the L1 norm of the
off-diagonal elements of a kernel matrix evaluated on the
inducing variables,

p(U|θ, β) ∼ N (
√
D(U, θ)|0, β−1U ), (4)

D(U, θu) =

M∑
ij

λij k(ui,uj , θu), λij =

{
0 i = j

1 i 6= j
,

where k(ui, uj , θu) is the covariance function of the GP prior
on the inducing points fu, θ the support and β−1U the precision
parameter or what we will later refer to as the constraint
parameter. This will force the covariance matrix of the
inducing points, in the GP prior, into a more diagonal form
since any non-zero off-diagonal values will be penalized.

Introducing the augmented clustering data into the GP-
LVM we can marginalize out fu in the same manner as f
was marginalized out, leading to the following posterior,

p(X,U, θ|Y) ∝ p(Y|X,U, θ) p(U|θ) p(X), (5)

where the optimization now is also over the cluster centers.
In the original model proposed in [18], a discretization of

the latent space i.e. the inducing inputs of the posterior above
were sought. However, the prior over them, P (U) and the
generative mapping was decoupled meaning that it did not
fully exploit and model the relation between U and fu. In the
optimization process they were separate from each other in
the sense that the kernel support parameter was not shared.
This means that in the optimization process the parameter on
fu focused on explaining the observed data Y, and was not
affected by the prior on U to the same extent; if a certain
form of the latent representation part would be highly likely.

By coupling the support parameter in the cluster prior
and the inducing GP prior we enforce consistency. This
happens since the support parameter for the inducing GP
prior is now less likely to move in a direction that would
increase the representative probability at the expense of the
cluster prior probability. Hence the explanatory capacity of
the inducing inputs for the latent variables in terms of clusters
becomes much more effective. In the experimental section we
will show results comparing the original uncoupled approach
with the new approach of shared kernel function parameters.
Since our formulation of the augmentation of the data is
mathematically equivalent to sparse GP regression we can
utilize the same methods. We therefore use the sparse,
variational approximation of [21] for the GP prior.

The maximization of the posterior, i.e., the learning, is
done via conjugate gradient descent. The latent variables are
assigned to the cluster centers / inducing inputs with which
they have the largest covariance. In this case this is equivalent
to choosing the minimum Euclidian distance since we are
using a spherical kernel. This is an attractive aspect of our
method since it opens up for other kernels or other distance
measures for assigning points to clusters. It also means that
our assignments are not hard assignments unless we specify

so, since the covariance gives a degree of association. In our
case this is useful since it allows us to be either coarse or fine-
tuned when selecting grasp generalizations for example. In
a more general setting it allows for agglomerative clustering
depending on the cut-off value of the covariance one set to
rule the association.

IV. EXPERIMENTS

We use three datasets for evaluation: a synthetic dataset
allowing us to have full control over the characteristics of
the data, and two recently presented grasping datasets.

A. Initialization, Parameters, Number of clusters

The initialization process can be thought of as a pre-step
to help the clustering. We can think of the log posterior
we are trying to optimize as an energy function being the
sum of two parts E = ERepresentation + EClustering, where
ERepresentation is our GP-LVM posterior, the representative part
and EClustering is the clustering part, our prior on the latent
variables and cluster centers. This energy function has several
local minima due to the large representation space, the latent
variables and inducing inputs configuration in the latent
space. Initializing using standard probabilistic PCA (PPCA)
[3] as is the default case for the GP-LVM might not be
the most beneficial, since it will create strong local minima
for the representative part while not taking into account
the clustering part. The conjugate gradient descent is highly
likely to get stuck in local minima close to the initialization.
To give the optimization process carte blanche if the PPCA
is too biased, we utilize a random initialization for the latent
variables while the inducing variables are chosen using K-
means to ensure an even distribution of the cluster centers.

The precision parameter of the inducing prior can be
thought of as a parameter to tighten or relax our constraints
on the correlation between the inducing points. It affects the
separation of the clusters where a tight (large) constraint will
force the latent points closer to the cluster centers and a more
relaxed (small) constraint will have a lesser clustering effect.

That the number of cluster centers affects the solution
is a natural and desirable property of the model. But the
effect of the ratio of data points to clusters on the solution is
more subtle. This can be understood by thinking about the
assumption of the inducing inputs and points as explanatory
for the observed data. If the ratio is too big and the data too
noisy, the explanatory capacity and the power of the cluster
center prior will be reduced since the covariance will have
a natural diagonal and therefore the representative part will
take over in the optimization.

B. Synthetic dataset

As a good litmus test for our approach we generated two
test datasets consisting of 400 points sampled from four
(Fig.2) and ten (Fig.3) different two-dimensional Gaussians
with random means and identical covariances on the unit
square. The points were then linearly projected into ten
dimensions where Gaussian noise was added. During genera-
tion we also saw to it that the sampled points would overlap,



(a) 3 clusters (b) 4 clusters (c) 8 clusters

Fig. 2: Synthetic dataset generated by sampling from 4 Gaussians and projected into to 10 dimensions with added noise. The red stars specifies the cluster
centers and the color gradient specifies degree of covariance. In (a) we use 3 cluster points, which results in a pulling a part of the data as two points
split the explaining of the 4 underlying clusters. (b) Using 4 cluster centers we find 4 Gaussian looking clusters. The blue center is forced left due to the
constraint parameter. In (c) we choose 8 clusters this divides the data such that some bigger clusters of latent variables are explained by two cluster centers.

(a) 4 clusters (b) 10 clusters (c) 15 clusters

Fig. 3: Synthetic dataset generated in the same way as in figure 2 but with 10 Gaussian clusters. The behavior is consistent with the analysis in figure 2.

to not make it too simple for a PPCA-K-means solution. We
choose the following scenarios to test our model:

1) True amount of clusters: The true amount of clusters
is, of course, an ambiguous statement dependent on the
definition criteria for the clusters, as well as how hard the
lines are drawn between categories. If one tries to group
apples and pears the line is quite clear, but if one chooses
damaged fruit there is suddenly a sliding scale. The notion of
the true amount remains in the questions we ask and the way
we structure the data. Thus, without encoding a preference
on the latent variables via the prior, the representation and
clustering is going to be the one most likely to have generated
the observed data but not necessarily the one we deem to
be the true. Of course, some representations are going to
be more likely than others. With this in mind, Figure 2b
shows that if we ask for four clusters corresponding to the
clusters underlying the observed data, our method delivers
four Gaussian-looking clusters.

2) Too few clusters: Using too few cluster centers has the
effect that the model tries to push together the data even when
there is an inherent and more probable separation. Basically
the inducing inputs are forced to represent more of the data,
stretching and compressing the latent variables, as seen in
Figures 2a and 3a.

3) Too many clusters: Enforcing a less likely clustering
onto the data means less separation and divisions of natural
clusters between two or more centers. Again, Figures 2c and
3c exemplify the trade-off between the representation and
clustering, with the representation being some larger chunks
of latent points crammed together while the cluster prior tries
to divide the data.

C. Grasping data

We continue by applying the proposed method to the same
dataset that was previously used by the original method using
the de-coupled prior [18], [19]. The dataset consists of a
twenty-dimensional representation of a hand configuration
performing different grasps. Different grasps are related to
objects depending on how the objects are used. By discretiz-
ing the data according to the learned clustered representation,
the authors learn an efficient factorization of the data. The
following experiments clarify the benefits of the coupled
prior by comparing the results of our method with the
original one.

We first run the GPLVM algorithm without a prior using
ten inducing points on the data. Comparing the results, 4b,
with the initialization, 4a, we can see that the difference
is mostly in spreading the data. Introducing the un-coupled
prior, 4c-d, the data points get even more drawn out and
clusters starts to form. The uncoupled prior is still too weak



(a) PPCA-Kmeans init with 10 clusters. (b) 10 clusters, no prior on the inducing inputs. (c) 10 clusters using the uncoupled prior.

(d) 5 clusters using the coupled prior. (e) 10 clusters using the coupled prior.

Fig. 4: Clustering of the Fcon Armar dataset
[19]. We first do a simple PPCA-K-means
initialization in (a) and then a GPLVM solu-
tion from that initialization without the cluster
point prior in (b). The difference between the
initialization and GPLVM is not big as can be
expected. Adding the uncoupled prior to the
GPLVM results in a slightly more clustered and
spread out latent space. However comparing
it with the results seen in (d) and (e) where
the coupling is in place it is easy to see how
much more powerful that solution is. In (e) the
data is almost pulled apart despite the strong
representation part.

compared to the representation part to start separating the
data from the initialization, resulting in the solution being
close to the no-prior. The large amount of data compared
to the number of centers makes the solution sensitive to the
constraint parameter, the random initialization, and the initial
placement of the cluster centers. For strong results we must
rely on a PPCA-K-means initialization, implying that the
uncoupled prior in this case is not strong enough to move
past uninteresting minima. When we introduce the coupling
something interesting happens: the data starts getting more
pulled apart, as seen in 4d and 4e. In 4d one cluster center is
responsible only for a few data points. This can be explained
by some observed data having high variance. Increasing the
number of cluster centers, 4e, gives a more even distribution
of the data points but some clusters still shares two cluster
centers. This suggests that there can be a number of clusters
that is more probable with respect to the representative part
or that the intra-cluster variance makes the centers need more
inducing inputs than one to be explained.

D. Grasp Shape Experience

We now present an instance of the sparse summarization
problem in the context of robot grasp learning. To efficiently
grasp new objects, it has been argued that robots should learn
from experience and transfer acquired grasping skills to new
objects as they come [22], [23]. We have recently argued that
it can be done by learning the shape of parts by which objects
are often grasped [24], [25]. The core of our approach is to
compare the shapes of surface segments extracted around
a robot’s hand while it is trained to grasp different objects.

Our rationale is that shapes that are observed across multiple
grasps should be helpful for grasping new objects. We
suggested a two-step solution to this problem: (1) measure
the similarity in shape between all pairs of grasps in the
dataset, and (2) cluster the grasps in the space induced by the
similarity measure. As it is costly to teach grasps to a robot,
the dataset is sparse, which makes clustering challenging.

We now present our work on the data and similarity
measure presented in [26]. The data was collected by tele-
operating a robot to grasp eight objects in several different
ways1. Then, surface segments of various extents were
segmented out of the objects around the grasping points, and
a shape similarity measure was applied to all pairs of such
segments. The similarity measures were then ordered into a
matrix.

We start out by applying PCA to the similarity matrix
and project the data down into twenty dimensions. Our prior
belief is that the data will generalize well by the division
into three categories. Hence, we ran our method using three
cluster centers, the results of which may be seen in Fig. 5a.
The clustering turns out to be similar to the PPCA-K-means
initialization and consistent in the clustering. This can be
understood by realizing that if the natural division is three,
then the data can be expected to have a high between-cluster
variance implying strong minima for the representation part,
which in practice would be close to the initialization. How-
ever, when we move on to using five clusters (Fig.5) we see a
big change from the three cluster grouping. With more cluster

1http://renaud-detry.net/research-gt.php



(a) Random initialization with 3 cluster centers (b) Random initialization 5 clusters using prior

Fig. 5: GSE data clustering solution using 3 and 5 clusters. Using 3 cluster centers groups the data similar to a PPCA-K-means solution meaning that the
representation part has a possible strong minima. The 5 cluster solution in (b) infuses a finer granularity. The representation part now has to take much
more of the constraints of the clustering part into consideration and thereby forces a more grouped and different latent configuration.

centers, the prior now splits the data into a finer granularity,
forcing the representation to move away from the original
expression and form more refined clusters. We also make the
observation that the clustering is consistent in that the same
points roughly gets assigned to the same clusters when using
a random initialization of the latent space in repeated trials.
This means that there is a clear underlying natural grouping,
which we find. Furthermore, since the clustering is confident
in the optimal solution, it implies that the posterior has few
local minima.

V. CONCLUSION

We have presented an approach to learn a sparse,
low-dimensional representation of high-dimensional robotic
grasping data. The model is general and provides a summa-
rization of any continuous data. We are currently evaluating
the possibilities of integrating the coupled inducing point
prior model with the full Bayesian variational approach to the
GP-LVM [27]. Further, we are interested in integrating the
proposed prior with a dynamic model which should facilitate
learning of key-frames for dynamic data.
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