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1 Pauli Group and Stabilizers

Also recall that the Pauli group is defined as follows

G1 = {±I,±X,±Y,±Z,±iI,±iX,±iY,±iZ} Gn = G⊗n1

Also, a state |ψ〉 is stabilized by an element g ∈ G⊗n if g|ψ〉 = |ψ〉.

1. Show that if v1 and v2 are stabilized by a set S ⊆ G⊗n then αv1 + βv2 is
also stabilized by S for complex numbers α, β. So a stabilizer set S defines
a vector space VS .

2. Show that VS = ∩g∈SVg
3. Show that if V is a vector space stabilized by a set S ⊆ G⊗n then S is a

subgroup of G⊗n where the operation is multiplication. Hint: what are the
inverse elements of X,Y and Z?

4. Two elements g1, g2 commute if g1g2 = g2g1 and anticommute if g1g2 =
−g2g1. Show that two elements g1, g2 ∈ G1 either commute or anti-commute.

5. Generalize the item above by showing that two elements g1, g2 of Gn either
commute or anticommute.

6. Let g1, g2, ..., gk be a set of generators for the group S. Show that S every
element of S commutes if and only if gigj = gjgi for every 1 ≤ i, j ≤ k.

2 The Five Qubit Flip Code

Recall that a [n, k] quantum code C is nothing but a subpace of (C2)⊗n of
dimension 2k. If S is a reduced set of generators of Gn then the code (i.e., the
subspace) stabilized by S is denoted C(S).

1. Show that the three qubit flip code spanned by the basis states |000〉 and
|111〉 is stabilized by 〈Z1Z2, Z2Z3〉, where 〈S〉 is the group generated by S.

2. Show that the three qubit phase flip code spanned by |+ ++〉 and | − −−〉
is stabilized by 〈X1x2, X2X3〉

3. The five qubit code is the stabilizer code stabilized by 〈g1, g2, g3, g4〉 where
– g1 = X1Z2Z3X4I5
– g2 = I1X2Z3Z4X5

– g3 = X1I2X3Z4Z5



– g4 = Z1X2I3X4Z5

Show that the five qubit code stabilizes the following 5 qubit states, which
act as the logical 0 and logical 1:

|0L〉 =
1

4

[|00000〉+ |10010〉+ |01001〉+ |10100〉+ |01010〉 − |11011〉 − |00110〉 − |11000〉
−|11101〉 − |00011〉 − |11110〉 − |01111〉 − |10001〉 − |01100〉 − |10111〉+ |00101〉]

|1L〉 =
1

4

[|11111〉+ |01101〉+ |10110〉+ |01011〉+ |10101〉 − |00100〉 − |11001〉 − |00111〉
−|00010〉 − |11100〉 − |00001〉 − |10000〉 − |01110〉 − |10011〉 − |01000〉+ |11010〉]

4. Show that the logical X and Z for the 5-qubit code are respectively Z =
Z1Z2Z3Z4Z5 and X = X1X2X3X4X5

3 Correctable Sets of Errors

Recall that the centralizer of S ⊆ Gn is defined by the set of all elements h ∈ Gn

such that hg = gh for every g ∈ S. Assume that −I /∈ S. Let E = {E1, ..., Ek} ⊆
Gn be a set of errors. Then one can show that E is a correctable set of errors if
E†iEj /∈ Z(S)− S for all 1 ≤ i, j ≤ k.

1. Since we already know that pauli operators either commute or anticommute,
given a set of errors E = {E1, ..., Ek}, how can we test if E is correctable
for C(S)?

2. Use your answer to the last question to show that the 3 qubit flip code
corrects {I,X1, X2, X3} and the phase flip code corrects {I, Z1, Z2, Z3}.

3. Show that the five qubit code corrects against arbitrary 1-qubit errors.

4 Steane Code

Let C1 be a [n, k1] code and C2 a [n, k2] code such that C2 ⊆ C1 and such
that both C⊥2 and C1 correct t errors. We saw that we can define a [n, k1 − k2]
quantum code CSS(C1, C2) that can correct errors on t qubits. Consider the
parity check matrix of the [7, 4, 3] Hamming code C:

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


1. Let C1 = C and C2 = C⊥

2. Argue that both C1 and C⊥2 can correct 1 error. (Hint: What is the distance
of C⊥2 ?)

3. Show that C2 ⊆ C1. In other words the Hamming code can be used to
construct a [7, 1, 1] quantum code, which is called the Steane code.


