

A derivation for $p \Rightarrow p$

- 1 $p \Rightarrow (\underbrace{(p \Rightarrow p)}_Q \Rightarrow p)$ axiom
- 2 $(p \Rightarrow (\underbrace{(p \Rightarrow p)}_Q \Rightarrow \underbrace{p}_R)) \Rightarrow ((p \Rightarrow \underbrace{(p \Rightarrow p)}_Q) \Rightarrow (p \Rightarrow \underbrace{p}_R))$ axiom
- 3 $(p \Rightarrow (p \Rightarrow p)) \Rightarrow (p \Rightarrow p)$ 1, 2, MP
- 4 $p \Rightarrow (\underbrace{p}_Q \Rightarrow p)$ axiom
- 5 $p \Rightarrow p$ 3, 4, MP

Past Linear Temporal Logic *PLTL*
Expressive completeness of *LTL*

The definition of *PLTL*: (.U.) and (.S.) under the strict interpretation

$$\varphi ::= \perp \mid p \mid \varphi \Rightarrow \varphi \mid (\varphi \mathbf{U} \varphi) \mid (\varphi \mathbf{S} \varphi)$$

$s, n \models (\varphi \mathbf{U} \psi)$ if there exists a $k > 0$ s.t.

$s, n + i \models \varphi$ for $i \in \{1, \dots, k - 1\}$ and $s, n + k \models \psi$

$s, n \models (\varphi \mathbf{S} \psi)$ if there exists a $k \in \{1, \dots, n\}$ s.t.

$s, n - i \models \varphi$ for $i \in \{1, \dots, k - 1\}$, and $s, n - k \models \psi$

$\{1, \dots, 0\}$ stands for \emptyset .

$$\circ \varphi \rightleftharpoons (\perp \mathbf{U} \varphi)$$

(.U_{LTL}) - (.U.) under the non-strict interpretation.

$$(\varphi \mathbf{U}_{LTL} \psi) \rightleftharpoons \psi \vee (\varphi \wedge (\varphi \mathbf{U} \psi)), \quad (\varphi \mathbf{U} \psi) \rightleftharpoons \circ(\varphi \mathbf{U}_{LTL} \psi).$$

Abbreviations and variants of the notation

□ and ◊ have strict variants too:

$$\Diamond\varphi \Rightarrow (\top \mathbf{U} \varphi), \quad \Box\varphi \Rightarrow \neg\Diamond\neg\varphi$$

The beginning of time:

$$\mathbf{I} \Rightarrow \neg(\top \mathbf{S} \top)$$

Abbreviations about the past:

$$\ominus A \Rightarrow (\perp \mathbf{S} A), \quad \Diamond A \Rightarrow (\top \mathbf{S} A), \quad \boxminus A \Rightarrow \neg\Diamond\neg A$$

Alternative "computer" notation for the temporal operators:

$$\begin{array}{cccccc} \circ & \Diamond & \Box & \ominus & \Diamond & \boxminus \\ X & F & G & Y & P & H \end{array}$$

Exercise 1 Describe the extensions to be made to the model-checking algorithm in order to enable model-checking past *LTL* formulas.

Gabbay's separation theorem

A formula is

past (future) if it is $(.U.)$ -free $((.S.)$ -free);

strictly future (past) if it has the form $\circ\varphi$ ($\ominus\varphi$) with a future (past) φ ;

boolean combination of $\varphi_1, \dots, \varphi_n$ if it has the form

$$\varphi ::= \perp \mid \varphi_1 \mid \dots \mid \varphi_n \mid \varphi \Rightarrow \varphi;$$

separated if it is a boolean combination of past and future formulas.

Exercise 2 Every future (past) formula is equivalent to a boolean combination of propositional variables and strictly future (past) formulas.

Theorem 1 (Gabbay's separation theorem) Every *PLTL* formula is equivalent to a separated formula.

Remark 1 The theorem applies to models with unbounded past as well.

Proof of Gabbay's separation theorem: lemmata

Lemma 1 The following equivalences are valid in *PLTL*:

$$(\alpha \wedge \beta \mathbf{U} \gamma) \Leftrightarrow (\alpha \mathbf{U} \gamma) \wedge (\beta \mathbf{U} \gamma)$$

$$(\alpha \wedge \beta \mathbf{S} \gamma) \Leftrightarrow (\alpha \mathbf{S} \gamma) \wedge (\beta \mathbf{S} \gamma)$$

$$(\gamma \mathbf{U} \alpha \vee \beta) \Leftrightarrow (\gamma \mathbf{U} \alpha) \vee (\gamma \mathbf{U} \beta)$$

$$(\gamma \mathbf{S} \alpha \vee \beta) \Leftrightarrow (\gamma \mathbf{S} \alpha) \vee (\gamma \mathbf{S} \beta)$$

Proof: Direct check. \dashv

Proof of Gabbay's separation theorem: Lemmata

Lemma 2 [key lemma] a, q, α and β be propositional variables. Then each of the formulas

$$\begin{array}{ll} (qSa \wedge (\alpha U \beta)) & (q \vee (\alpha U \beta)Sa \wedge (\alpha U \beta)) \\ (qSa \wedge \neg(\alpha U \beta)) & (q \vee (\alpha U \beta)Sa \wedge \neg(\alpha U \beta)) \\ (q \vee (\alpha U \beta)Sa) & (q \vee \neg(\alpha U \beta)Sa \wedge (\alpha U \beta)) \\ (q \vee \neg(\alpha U \beta)Sa) & (q \vee \neg(\alpha U \beta)Sa \wedge \neg(\alpha U \beta)) \end{array}$$

has an equivalent one in which $(.U.)$ occurs only in the subformula $(\alpha U \beta)$ which itself is **not** in the scope of a $(.S.)$.

Corollary 1 Let α and β be purely propositional, and χ and θ be boolean combinations of $(\alpha U \beta)$ and past formulas. Then $(\theta S \chi)$ is equivalent to a boolean combination of $(\alpha U \beta)$ and past formulas.

Proof: Convert θ, χ to CNF, DNF, resp., apply Lemma 1, then Lemma 2. \dashv

Proof the key lemma, (1): $(qS a \wedge (\alpha \mathbf{U} \beta))$

$(qS a \wedge (\alpha \mathbf{U} \beta))$ is equivalent to

$$[(qS a) \wedge (\alpha S a) \wedge \alpha \wedge (\alpha \mathbf{U} \beta)] \vee$$

$$[\beta \wedge (\alpha S a) \wedge (qS a)] \vee$$

$$(qS \beta \wedge q \wedge (\alpha S a) \wedge (qS a))$$

Proof: $t_0 \models (qS a \wedge (\alpha \mathbf{U} \beta))$ iff there exist $t_1 < t_0$ and $t_2 > t_1$ such that $t_1 \models a$, $t_2 \models \beta$, $t \models q$ for $x \in (t_1, t_0)$, and $t \models \alpha$ for $t \in (t_1, t_2)$. 3 possibilities:

$$t_2 > t_0 : \underbrace{a}_{t_1}, \alpha \wedge q, \dots, \alpha \wedge q, \underbrace{\alpha}_{t_0}, \alpha, \dots, \alpha, \underbrace{\beta}_{t_2} \quad (\alpha \wedge qS a) \wedge \alpha \wedge (\alpha \mathbf{U} \beta)$$

$$t_2 = t_0 : \underbrace{a}_{t_1}, \alpha \wedge q, \dots, \alpha \wedge q, \underbrace{\beta}_{t_2=t_0} \quad \beta \wedge (\alpha \wedge qS a)$$

$$t_2 < t_0 : \underbrace{a}_{t_1}, \alpha \wedge q, \dots, \alpha \wedge q, \underbrace{\beta \wedge q}_{t_2}, q, \dots, q, \underbrace{\dots}_{t_0} \quad (qS \beta \wedge q \wedge (\alpha \wedge qS a))$$

→

Some more equivalences for the proof of the key lemma

$$\begin{aligned}\models_{PLTL} \neg(\alpha \mathbf{U} \beta) &\Leftrightarrow \square \neg \beta \vee (\neg \beta \mathbf{U} \neg \beta \wedge \neg \alpha) \\ &\Leftrightarrow \square \neg \beta \vee (\alpha \wedge \neg \beta \mathbf{U} \neg \beta \wedge \neg \alpha)\end{aligned}$$

$$\begin{aligned}\models_{PLTL} \neg(\alpha \mathbf{S} \beta) &\Leftrightarrow \boxdot \neg \beta \vee (\neg \beta \mathbf{S} \neg \beta \wedge \neg \alpha) \\ &\Leftrightarrow \boxdot \neg \beta \vee (\alpha \wedge \neg \beta \mathbf{S} \neg \beta \wedge \neg \alpha)\end{aligned}$$

Proof of the key lemma (2): $(qSa \wedge \neg(\alpha \mathbf{U} \beta))$

$$\models_{PLTL} (qSa \wedge \neg(\alpha \mathbf{U} \beta)) \Leftrightarrow \underbrace{(qSa \wedge \square \neg \beta)}_A \vee \underbrace{(qSa \wedge (\neg \beta \mathbf{U} \neg \beta \wedge \neg \alpha))}_B$$

A direct check shows that $\models_{PLTL} A \Leftrightarrow (\neg \beta \wedge qSa) \wedge \neg \beta \wedge \square \neg \beta$.

By the equivalence (1) about $(qSa \wedge (X \mathbf{U} Y))$,

$$\begin{aligned} \models_{PLTL} B \Leftrightarrow & \underbrace{[(qSa) \wedge (\neg \beta Sa) \wedge \neg \beta \wedge (\neg \beta \mathbf{U} \neg \beta \wedge \neg \alpha)] \vee}_C \\ & [\neg \beta \wedge \neg \alpha \wedge (\neg \beta Sa) \wedge (qSa)] \vee \\ & (qS \neg \beta \wedge \neg \alpha \wedge q \wedge (\neg \beta Sa) \wedge (qSa)) \end{aligned}$$

By distributivity, $\models A \vee C \Leftrightarrow (\neg \beta \wedge qSa) \wedge \neg \beta \wedge (\square \neg \beta \vee (\neg \beta \mathbf{U} \neg \beta \wedge \neg \alpha))$, which is equivalent to $(\neg \beta \wedge qSa) \wedge \neg \beta \wedge \neg(\alpha \mathbf{U} \beta)$. Hence

$$\begin{aligned} \models_{PLTL} (qSa \wedge \neg(\alpha \mathbf{U} \beta)) \Leftrightarrow & [(q \wedge \neg \beta Sa) \wedge \neg \beta \wedge \neg(\alpha \mathbf{U} \beta)] \vee \\ & [\neg \beta \wedge \neg \alpha \wedge (\neg \beta \wedge qSa)] \vee \\ & (qS \neg \beta \wedge \neg \alpha \wedge q \wedge (q \wedge \neg \beta Sa)) \end{aligned}$$

Proof of the key lemma (3): $(q \vee (\alpha \mathbf{U} \beta) \mathbf{S} a)$:

$$\models_{PLTL} \neg(q \vee (\alpha \mathbf{U} \beta) \mathbf{S} a) \Leftrightarrow \Box \neg a \vee \underbrace{(\neg a \mathbf{S} \neg a \wedge \neg q \wedge \neg(\alpha \mathbf{U} \beta))}_F$$

and F is an instance of $(\mathbf{Q} A \wedge \neg(\alpha \mathbf{U} \beta))$, already considered as case (2).

(4): $(q \vee \neg(\alpha \mathbf{U} \beta) \mathbf{S} a)$:

A direct check shows that

$$(q \vee \neg(\alpha \mathbf{U} \beta) \mathbf{S} a) \Leftrightarrow (\neg a \wedge [(\neg a \wedge \alpha \mathbf{S} \neg q \wedge \neg a) \Rightarrow \neg \beta] \mathbf{S} a) \wedge ((\neg a \wedge \alpha \mathbf{S} \neg q \wedge \neg a) \Rightarrow \neg [\beta \vee (\alpha \wedge (\alpha \mathbf{U} \beta))]).$$

Proof of the key lemma (5): $(q \vee (\alpha \mathbf{U} \beta) \mathbf{S}a \wedge (\alpha \mathbf{U} \beta))$:

$$(q \vee (\alpha \mathbf{U} \beta) \mathbf{S}a \wedge (\alpha \mathbf{U} \beta)) \Leftrightarrow (\alpha \mathbf{S}a) \wedge [\beta \vee (\alpha \wedge (\alpha \mathbf{U} \beta))] \vee \\ \left(\begin{array}{l} (\beta \vee \alpha \vee \neg(\neg \beta \mathbf{S} \neg q) \mathbf{S} \beta \wedge (\alpha \mathbf{S}a)) \wedge \\ \{[\beta \vee (\alpha \wedge (\alpha \mathbf{U} \beta))] \vee \neg(\neg \beta \mathbf{S} \neg q)\} \end{array} \right)$$

(6): $(q \vee (\alpha \mathbf{U} \beta) \mathbf{S}a \wedge \neg(\alpha \mathbf{U} \beta))$:

$(q \vee (\alpha \mathbf{U} \beta) \mathbf{S}a \wedge \neg(\alpha \mathbf{U} \beta))$ is equivalent to

$$[(q \wedge \neg \beta \mathbf{S}a) \wedge \neg \beta \wedge \neg(\alpha \wedge (\alpha \mathbf{U} \beta))] \vee \\ (q \vee (\alpha \mathbf{U} \beta) \mathbf{S} \neg \alpha \wedge \neg \beta \wedge (q \vee (\alpha \mathbf{U} \beta)) \wedge (q \wedge \neg \beta \mathbf{S}a)).$$

which can be given the required form using the equivalences (3) and (5).

Proof of the key lemma (8): $(q \vee \neg(\alpha \mathbf{U} \beta) \mathbf{S} a \wedge \neg(\alpha \mathbf{U} \beta))$

By $\models_{PLTL} \neg(ASB) \Leftrightarrow \Box \neg B \vee (A \wedge \neg B \mathbf{S} \neg B \wedge \neg A)$ we have

$$\begin{aligned} \models_{PLTL} \neg(q \vee y \mathbf{S} a \wedge x) &\Leftrightarrow \Box(\neg a \vee \neg x) \vee \\ &(\neg a \vee \neg x \mathbf{S} \neg q \wedge \neg y \wedge \neg a) \vee \\ &(\neg a \vee \neg x \mathbf{S} \neg q \wedge \neg y \wedge \neg x), \end{aligned}$$

For $x \doteq y \doteq \neg(\alpha \mathbf{U} \beta)$, we derive

$$\begin{aligned} \models_{PLTL} (q \vee \neg(\alpha \mathbf{U} \beta) \mathbf{S} a \wedge \neg(\alpha \mathbf{U} \beta)) &\Leftrightarrow \Box(\neg a \vee (\alpha \mathbf{U} \beta)) \vee \\ &(\neg a \vee (\alpha \mathbf{U} \beta) \mathbf{S} \neg q \wedge (\alpha \mathbf{U} \beta) \wedge \neg a) \vee \\ &(\neg a \vee (\alpha \mathbf{U} \beta) \mathbf{S} \neg q \wedge (\alpha \mathbf{U} \beta)). \end{aligned}$$

The middle disjunctive member of this formula can be excluded. The first disjunctive member is, by definition, $\neg(\top \mathbf{S} a \wedge \neg(\alpha \mathbf{U} \beta))$ and can be given the required form using case (2). The second can be handled using case (5).

Proof of the key lemma (7): $(q \vee \neg(\alpha \mathbf{U} \beta) \mathbf{S}a \wedge (\alpha \mathbf{U} \beta))$

$$\begin{aligned}(q \vee \neg(\alpha \mathbf{U} \beta) \mathbf{S}a \wedge (\alpha \mathbf{U} \beta)) &\Leftrightarrow \\(q \vee \neg(\alpha \mathbf{U} \beta) \mathbf{S}\beta \wedge (q \vee \neg(\alpha \mathbf{U} \beta)) \wedge (\alpha \wedge q \mathbf{S}a)) \vee \\[(\alpha \wedge q \mathbf{S}a) \wedge \beta] \vee \\[(\alpha \wedge q \mathbf{S}a) \wedge (\alpha \mathbf{U} \beta)]\end{aligned}$$

By distributivity, the first disjunctive member is equivalent to

$$\begin{aligned}(q \vee \neg(\alpha \mathbf{U} \beta) \mathbf{S}\beta \wedge q \wedge (\alpha \wedge q \mathbf{S}a)) \vee \\(q \vee \neg(\alpha \mathbf{U} \beta) \mathbf{S}\beta \wedge (\alpha \wedge q \mathbf{S}a)) \wedge \neg(\alpha \mathbf{U} \beta)\end{aligned}$$

and can be given the required form using cases (4) and (8).

Sources for the proof of the key lemma

This proof:

Dov Gabbay, Ian Hodkinson and Mark Reynolds, *Temporal Logic: Mathematical Foundations and Computational Aspects. Volume I*, OUP, 1994

For another proof of the key lemma see:

E. Clarke and B.-H. Schlingloff, Model Checking, Chapter 24 of *Handbook of Automated Reasoning*, A. Robinson and A. Voronkov (eds), Elsevier, 2001.

also available at:

http://www2.informatik.hu-berlin.de/~hs/Publikationen/2000_Handbook-of-Automated-Reasoning_Clarke-Schlingloff_Model-Checking.ps

Proof of Gabbay's separation theorem: more lemmata

Lemma 3 Let α and β be purely propositional and the only (.U.)-subformula of θ be $(\alpha \mathbf{U} \beta)$. Then θ is equivalent to a boolean combination of $(\alpha \mathbf{U} \beta)$ and past formulas.

Proof: Induction on the nesting depth of the occurrences of $(\alpha \mathbf{U} \beta)$ in (.S.)-subformulas of θ . \dashv

Lemma 4 Let α_i and β_i be purely propositional, $i = 1, \dots, n$. Let the only (.U.)-subformulas of θ be $(\alpha_1 \mathbf{U} \beta_1), \dots, (\alpha_n \mathbf{U} \beta_n)$. Then θ is equivalent to a boolean combination of $(\alpha_1 \mathbf{U} \beta_1), \dots, (\alpha_n \mathbf{U} \beta_n)$ and past formulas.

Proof: Induction on n . Apply the previous lemma to

$$\theta' \doteq [u_i / (\alpha_i \mathbf{U} \beta_i) : i = 2, \dots, n] \theta$$

to obtain a b. c. of $(\alpha_1 \mathbf{U} \beta_1)$ and past formulas containing u_2, \dots, u_n . \dashv

Gabbay's separation theorem: last lemma and proof of the theorem

Lemma 5 Formulas θ with no occurrences of (.S.) in the scope of (.U.) are separable.

Proof: Obtain θ' from θ by substituting $(a_i \mathbf{U} b_i)$ for the occurrences of $(\alpha_i \mathbf{U} \beta_i)$ which are not in the scope of (.U.) themselves. Separate θ' first and then replace a_i, b_i by α_i, β_i . \dashv

Exchanging (.S.) and (.U.) preserves the validity of all the lemmata.

Proof: [of the separation theorem] Induction on the alternating depth of the nesting of (.U.) and (.S.) in the given formula φ . φ is either separated or φ has subformulas ψ of the form $(\alpha \mathbf{U} \beta)$ $((\alpha \mathbf{S} \beta))$ where α and β are past (future) and at least one of them has an occurrence of (.S.) (.U.).

In the latter case alternation depth can be decreased by replacing the ψ s with equivalent separated formulas. \dashv

Elimination of (.S.) in *PLTL*

Theorem 2 Let φ be a *PLTL* formula. Then there exists a **future** *PLTL* formula ψ such that for all models σ

$$\sigma, 0 \models \varphi \Leftrightarrow \psi.$$

Proof: Obtain ψ by replacing all the (.S.)-subformulas by \perp in a separated equivalent of φ . \dashv

Expressive completeness of *PLTL*

$\sigma : \omega \rightarrow \mathbf{L}$ can be viewed as a model for the monadic first order theory of the linear order $\langle \omega, < \rangle$ with a unary predicate symbols P for every $p \in \mathbf{L}$:

$$P^\sigma(n) \leftrightarrow p \in \sigma(n) \text{ for all } n < \omega.$$

A *PLTL* formula φ defines the unary predicate $\sigma, n \models \varphi$ on n . This predicate is definable in the first order theory via the standard translation ST :

$$\text{ST}(\perp) \Rightarrow \perp, \quad \text{ST}(p) \Rightarrow P(n), \quad \text{ST}(\varphi \Rightarrow \psi) \Rightarrow \text{ST}(\varphi) \Rightarrow \text{ST}(\psi)$$

$$\text{ST}((\varphi \mathbf{U} \psi)) \Rightarrow \exists k (n < k \wedge [k/n] \text{ST}(\psi) \wedge \forall i (n < i \wedge i < k \Rightarrow [i/n] \text{ST}(\varphi)))$$

$$\text{ST}((\varphi \mathbf{S} \psi)) \Rightarrow \exists k (k < n \wedge [k/n] \text{ST}(\psi) \wedge \forall i (k < i \wedge i < n \Rightarrow [i/n] \text{ST}(\varphi)))$$

where k and i do not occur $\text{ST}(\varphi)$, $\text{ST}(\psi)$.

Q: Is every f.o.-defined unary predicate definable in *PLTL* too?

Expressive completeness of *PLTL* (Hans Kamp, 1968)

Theorem 3 Every f.o. definable unary predicate is definable in *PLTL*.

Definition 1 A temporal connective $\#$ of arity k is **f.o. definable**, if there is a f.o. formula $\alpha_\#$ with just one free variable t and possibly having occurrences of P_1, \dots, P_k such that

$$\sigma, n \models \#p_1 \dots p_k \leftrightarrow \langle \omega, \langle \rangle, \lambda i. (\sigma, i \models p_1), \dots, \lambda i. (\sigma, i \models p_k), n \models \alpha_\#.$$

ST can be defined for such connectives $\#$ in the obvious way.

Corollary 2 All f.o.-definable connectives can be regarded as **derived** in *PLTL* with (.S.) and (.U.) as the basic connectives.

Proof: Since $\alpha_\#(n, P_1, \dots, P_k)$ is equivalent to some temporal formula $\varphi[\alpha_\#]$ written with (.S.) and (.U.) using p_1, \dots, p_k , we can define $\#$ by the clause

$$\#(p_1, \dots, p_k) \Rightarrow \varphi[\alpha_\#]. \dashv$$

Expressive completeness of *PLTL*: proof

predicate formula $\alpha(t) \rightarrow$ temporal formula $\varphi[\alpha]$ s.t.

$$\sigma, i \models \varphi[\alpha] \leftrightarrow \langle \omega, < \rangle, \lambda n. (p_1 \in \sigma_n), \dots, \lambda n. (p_k \in \sigma_n), i \models \alpha$$

Induction on the \exists -height $d_{\exists}(\alpha)$ of α .

$$\varphi[t < t] \Rightarrow \perp, \quad \varphi[P_i(t)] \Rightarrow p_i, \quad \varphi[\alpha_1 \Rightarrow \alpha_2] \Rightarrow \varphi[\alpha_1] \Rightarrow \varphi[\alpha_2] \quad (1)$$

Let α be $\exists x\beta$. We can assume $t \notin BV(\beta)$. Then, by the equivalences

$$\beta \Leftrightarrow P_i(t) \wedge [\top/P_i(t)]\beta \vee \neg P_i(t) \wedge [\perp/P_i(t)]\beta, \quad i = 1, \dots, k,$$

β is equivalent to a $\bigvee_i \delta_i \wedge \beta_i$ where δ_i are \exists -free, $x \notin FV(\delta_i)$, $d_{\exists}(\beta_i) \leq d_{\exists}(\beta)$,

and the only occurrences of t in β_i have the forms $t < y$ and $y < t$ for some $y \in BV(\beta_i) \cup \{x\}$. We only need to handle $\exists x\beta_i$, because

$$\models \exists x(\delta_i \wedge \beta_i) \Leftrightarrow \delta_i \wedge \exists x\beta_i.$$

Expressive completeness of *PLTL*: Proof

$\exists x\beta$; t occurs in β only in $y < t$, $t < y$

We introduce fresh predicate symbols $R_{t < .}$, $R_{. < t}$. Let

$$\beta' \Rightarrow [R_{t < .}(y)/t < y, R_{. < t}(y)/y < t]\beta$$

Then

$$\langle \omega, < \rangle, \lambda n. (p_1 \in \sigma_n), \dots, \lambda n. (p_k \in \sigma_n), \lambda n. (i < n), \lambda n. (n < i), i \models \exists x\beta \Leftrightarrow \exists x\beta'$$

$FV(\beta') = \{x\}$ and $d_{\exists}(\beta') < d_{\exists}(\alpha)$. By the induction hypothesis there exists a temporal $\varphi[\beta']$ such that for $\sigma' : \omega \rightarrow \mathcal{P}(\{p_1, \dots, p_k, r_{t < .}, r_{. < t}\})$

$\sigma', i \models \varphi[\beta']$ iff

$$\langle \omega, < \rangle, \lambda n. (p_1 \in \sigma'_n), \dots, \lambda n. (p_k \in \sigma'_n), \lambda n. (r_{t < .} \in \sigma'_n), \lambda n. (r_{. < t} \in \sigma'_n), i \models \beta'$$

We put $\varphi[\exists x\beta'] \Rightarrow \Diamond\varphi[\beta'] \vee \varphi[\beta'] \vee \Diamond\varphi[\beta']$

Expressive completeness of *PLTL*: Proof

We have $\sigma', i \models \varphi[\exists x\beta']$ iff

$$\langle \omega, < \rangle, \lambda n. (p_1 \in \sigma'_n), \dots, \lambda n. (p_k \in \sigma'_n), \lambda n. (r_{t<} \in \sigma'_n), \lambda n. (r_{<t} \in \sigma'_n), i \models \exists x\beta'$$

and

$$\langle \omega, < \rangle, \lambda n. (p_1 \in \sigma'_n), \dots, \lambda n. (p_k \in \sigma'_n), \lambda n. (i < n), \lambda n. (n < i), i \models \exists x\beta' \Leftrightarrow \exists x\beta.$$

Hence

$$\langle \omega, < \rangle, \lambda n. (p_1 \in \sigma'_n), \dots, \lambda n. (p_k \in \sigma'_n), \lambda n. (i < n), \lambda n. (n < i), i \models \exists x\beta$$

is equivalent to

$$\sigma', i \models \varphi[\exists x\beta'], \quad (\varphi[\exists x\beta'] \text{ is } \Diamond\varphi[\beta'] \vee \varphi[\beta'] \vee \Diamond\varphi[\beta'])$$

provided that for all n we have $r_{t<} \in \sigma'_n \leftrightarrow i < n$, $r_{<t} \in \sigma'_n \leftrightarrow n < i$.

Expressive completeness of PLTL: Proof

The only remaining problem is that $r_{t<}, r_{.<t} \in \text{Var}(\varphi[\exists x\beta'])$.

ψ - a separated equivalent to $\varphi[\exists x\beta']$

Let ψ' is the result of applying the substitutions

$[\perp/r_{t<}, \perp/r_{.<t}]$ to the **variables** in ψ not in the scope of (.S.) and (.U.),

$[\perp/r_{t<}, \top/r_{.<t}]$ to the **(.S.)-subformulas** of ψ

and

$[\top/r_{t<}, \perp/r_{.<t}]$ to the **(.U.)-subformulas** of ψ , respectively.

If $r_{t<} \in \sigma'_n \leftrightarrow i < n$ and $r_{.<t} \in \sigma'_n \leftrightarrow n < i$ for all n , then $\sigma', i \models \psi \Leftrightarrow \psi'$.

Finally, $\sigma', i \models \psi'$ iff $\sigma, i \models \psi'$, because $r_{t<}, r_{.<t} \notin \text{Var}(\psi')$. Hence

$\langle \omega, < \rangle, \lambda n. (p_1 \in \sigma_n), \dots, \lambda n. (p_k \in \sigma_n), i \models \exists x\beta$ iff $\sigma, i \models \psi'$

and we can define $\varphi[\exists x\beta]$ as ψ' .

Interval temporal logic: a more expressive linear temporal logic

$PLTL$ is as expressive as the MFO theory of $\langle \omega, < \rangle$.

MSO theory of $\langle \omega, < \rangle$ is decidable too. It is captured by

automata on infinite words

(ω -)regular expressions, whose general form is

$$\bigcup_i L_i \cdot M_i^\omega.$$

where L_i and M_i denote regular expressions and

$$L^\omega = \{\alpha_0 \cdot \alpha_1 \cdot \dots \cdot \alpha_n \cdot \dots : \alpha_i \in L \text{ for all } i < \omega\}.$$

Interval Temporal Logic (ITL , Moszkowski, 1985).

Two variants: finite or infinite intervals of time.

ITL on finite intervals

$$\varphi ::= \perp \mid p \mid \varphi \Rightarrow \varphi \mid \circ \varphi \mid (\varphi; \varphi) \mid \varphi^*.$$

Models finite sequences $\sigma \in (\mathcal{P}(\mathbf{L}))^+$.

$|\sigma|$ - the length of σ minus 1. $\sigma = \sigma_0 \sigma_1 \dots \sigma_{|\sigma|}$.

$$\sigma \not\models \perp$$

$$\sigma \models p \quad \text{iff} \quad p \in \sigma_0$$

$$\sigma \models \varphi \Rightarrow \psi \quad \text{iff} \quad \sigma \not\models \varphi \text{ or } \sigma \models \psi$$

$$\sigma \models \circ \varphi \quad \text{iff} \quad |\sigma| > 0 \text{ and } \sigma_1 \dots \sigma_{|\sigma|} \models \varphi$$

$$\sigma \models (\varphi; \psi) \quad \text{iff} \quad \text{there exists an } i \in \{0, \dots, |\sigma|\} \text{ such that}$$

$$\sigma_0 \dots \sigma_i \models \varphi \text{ and } \sigma_i \dots \sigma_{|\sigma|} \models \psi$$

$$\sigma \models \varphi^* \quad \text{iff} \quad \text{either } |\sigma| = 0 \text{ or there exists an } n < \omega$$

$$\text{and a finite sequence } 0 = i_0 < \dots < i_n = |\sigma|$$

$$\text{such that } \sigma_{i_{k-1}} \dots \sigma_{i_k} \models \varphi \text{ for } k = 1, \dots, n.$$

Derived constructs in *ITL*

$$\text{empty} \quad \cong \quad \neg \circ \top$$

$$\text{skip} \quad \cong \quad \circ \text{empty}$$

$$\diamond \varphi \quad \cong \quad (\top; \varphi)$$

$$\square \varphi \quad \cong \quad \neg \diamond \neg \varphi$$

$$\varphi^+ \quad \cong \quad (\varphi; \varphi^*)$$

Guarded normal form in *ITL*

Exercise 3 Prove that every *ITL* formula has an equivalent one of the form

$$\xi \wedge \text{empty} \vee \bigvee_i \alpha_i \wedge \circ\psi_i$$

where ξ and the α_i s have no occurrences of temporal operators and the α_i s form a full system.

Fact 1 Given an arbitrary formula φ , there exists a finite set of formulas X such that $\varphi \in X$ and a system of purely propositional formulas ξ_ψ , $\psi \in X$ and $\alpha_{\psi,\chi}$, $\psi, \chi \in X$ such that $\{\alpha_{\psi,\chi} : \chi \in X\}$ is a full system for each $\psi \in X$ and

$$\models_{ITL} \psi \Leftrightarrow \xi_\chi \wedge \text{empty} \vee \bigvee_{\chi \in X} \alpha_{\psi,\chi} \wedge \circ\chi. \quad (2)$$

Propositional quantification in *ITL*

$\sigma \models \exists p\varphi$ iff there exists a $\sigma' \in (\mathcal{P}(\mathbf{L}))^{|\sigma|+1}$ such that
 $\sigma'_i \setminus \{p\} = \sigma_i \setminus \{p\}$ for all $i = 0, \dots, |\sigma|$ and $\sigma' \models \varphi$

Theorem 4 Propositional existential quantification is definable in *ITL*, that is, every formula of the form $\exists p\varphi$ is equivalent to a quantifier-free formula.

Propositional quantifier elimination in *ITL*

We assume that φ is quantifier-free. Let X be as in Fact 1. Then for $\psi \in X$

$$\models_{ITL} \exists p\psi \Leftrightarrow ([\perp/p]\xi_\chi \vee [\top/p]\xi_\chi) \wedge \text{empty} \vee \bigvee_{\chi \in X} ([\perp/p]\alpha_{\psi,\chi} \vee [\top/p]\alpha_{\psi,\chi}) \wedge \circ \exists p\chi.$$

This is equivalent to

$$\exists p\psi \Leftrightarrow \eta_\chi \wedge \text{empty} \vee \bigvee_{\chi \in X} (\beta_{\psi,\chi} \wedge \text{skip}; \exists p\chi).$$

which is a system of equations wrt the unknowns $\exists p\chi$.

$\sigma \models \beta_{\psi,\chi} \wedge \text{skip}$ does not depend on $\sigma_{|\sigma|}$.

If δ_1, δ_2 have this property, then so do $\delta_1 \vee \delta_2$, $(\delta_1; \delta_2)$ and δ_1^* .

Propositional quantifier elimination in *ITL*

Assume a system of equations

$$\exists p\psi \Leftrightarrow \gamma_\chi \vee \bigvee_{\chi \in X} (\delta_{\psi,\chi}; \exists p\chi). \quad (3)$$

where $\delta_{\psi,\chi}$ are s.t. $\sigma \models \delta_{\psi,\chi}$ does not depend on $\sigma|_{\sigma|_\psi}$.

Then we can solve the system wrt any chosen $\exists p\psi$:

$$\exists p\psi \Leftrightarrow (\delta_{\psi,\psi}^*; \gamma_\chi) \vee \bigvee_{\chi \in X \setminus \{\psi\}} (\delta_{\psi,\psi}^*; (\delta_{\psi,\chi}; \exists p\chi)).$$

Substituting this formula for $\exists p\psi$ elsewhere in the system and using that

$$\models_{ITL} (\alpha; \beta_1 \vee \beta_2) \Leftrightarrow (\alpha; \beta)_1 \vee (\alpha; \beta)_2,$$

we obtain system of the same form with fewer equations. Finally we reach a defining formula for $\exists p\varphi$.

Note that \neg and \wedge occur only in the purely propositional subformulas of the quantifier-free formula for $\exists p\varphi$. The price for this is the heavy use of $(.)^*$.

Infinite intervals

The clauses for \models_{ITL} on infinite intervals differs only for $(.;.)$ and $(.)^*$:

$\sigma \models (\varphi; \psi)$ iff either $\sigma \models \varphi$ or
 there exists an $i < \omega$ such that
 $\sigma_0 \dots \sigma_i \models \varphi$ and $\sigma_i \dots \models \psi$

$\sigma \models \varphi^*$ iff there exists a finite sequence $0 = i_0 < \dots < i_n$
 s. t. $\sigma_{i_{k-1}} \dots \sigma_{i_k} \models \varphi$ for $k = 1, \dots, n$, and $\sigma_{i_n} \dots \models \varphi$

The definition for $(\varphi; \psi)$ allows the class of the infinite intervals to be defined by the constant

$$\inf \Rightarrow (\top; \perp).$$

The End