A derivation for p = p




Past Linear Temporal Logic PLTL

Expressive completeness of L7T'L




The definition of PLTL:
(.U.) and (.S.) under the strict interpretation

p == Llple=¢]|(eUp)]| (¥Sy)

s,n = (pUy) if there exists a k > 0 s.t.
ssn+iEpforie{l,....k—1}and s,n+ k =

s,n = (pSy) if thereexistsa ke {1,...,n} s.t.
ssn—iE=pforie{l,...;k—1}, and s,n—k =

{1,...,0} stands for 0.

op = (LUy)

(.Urrr.) - (.U.) under the non-strict interpretation.

(PUrLrry) = ¥ V (0 A (pUy)), (pUy) = o(pUrrr1).




Abbreviations and variants of the notation

O and <& have strict variants too:
Cp=(TUp),  Op=-C-p
The beginning of time:
| = =(TST)

Abbreviations about the past:

oA = (LSA), OA = (TSA), HA = -6-A4

Alternative "computer” notation for the temporal operators:

o & O & © H
X F G Y P H

Exercise 1 Describe the extensions to be made to the model-checking
algorithm in order to enable model-checking past LT'L formulas.




Gabbay’s separation theorem

A formula is
past (future) if it is (\U.)-free ((.S.)-free);
strictly future (past) if it has the form op (&¢) with a future (past) ;

boolean combination of 1, ..., v, if it has the form
pu=Ller]...[onle=;

separated if it is a boolean combination of past and future formulas.

Exercise 2 Every future (past) formula is equivalent to a boolean combination
of propositional variables and strictly future (past) formulas.

Theorem 1 (Gabbay's separation theorem) Every PLTL formula is equivalent

to a separated formula.

Remark 1 The theorem applies to models with unbounded past as well.




Proof of Gabbay’s separation theorem: lemmata

Lemma 1 The following equivalences are valid in PLTL:

aUy) A (BUy)
aSy) A (857)
(YUa) Vv (vUB)

Proof: Direct check. -




Proof of Gabbay’s separation theorem: Lemmata

Lemma 2 [key lemma] a, ¢, @ and § be propositional variables. Then each of
the formulas

(qSa A (aUpB))
(¢Sa A =(aUpB))
(¢ V (aUpB)Sa)

(¢ V —(aUpB)Sa)

has an equivalent one in which (.U.) occurs only in the subformula (aUp)

aUB)Sa A (aUp))
aUB)Sa A —~(aUg))
aUB)Sa A (aUpB))
aUB)Sa A =(aUp))

(q
(q
(q
(q

(
al

which itself is not in the scope of a (.S.).

Corollary 1 Let o and 3 be purely propositional, and y and 6 be boolean
combinations of (aUB) and past formulas. Then (8Sy) is equivalent to a
boolean combination of («Uf3) and past formulas.

Proof: Convert 0, x to CNF, DNF, resp., apply Lemma 1, then Lemma 2. -




Proof the key lemma, (1): (¢Sa A (aUg))
(¢Sa N (aUp)) is equivalent to
[(gSa) A (aSa) A a A (aUB)|V
1B A (aSa) A (g5a)|V
(4SB A g A (aSa) A (gSa))

Proof: tyg = (¢Sa A (aUp)) iff there exist t; < tg and t5 > t; such that
ti1E=a, ta =B, t Eqforx e (ti,ty), and t =« fort € (t1,t2). 3 possibilities:

a ,aNg,...,aNq_«a ,a,...,a, B (aAqSa)NaA (aUf)
t1 to

a ,aNg,... B A (a A qSa)

t1

a ,aNg,... qg...,q, . (¢SBAgAN (aAqSa))

t1




Some more equivalences for the proof of the key lemma

|:PLTL ﬁ(OéUﬁ) & D_Iﬁ V U—Iﬁ VAN —IOé)

|:PLTL —I(OéSﬁ) A=AV, —lﬁS—lﬁ AN —IOé)
s B0V (aA-65-8 A -a)

(=

< O0-0V (aA—=pU-F A —a)
(
(




Proof of the key lemma (2): (¢Sa A —~(aUp))
=prr (¢Sa N —(aUf)) < (¢Sa N T-5)V (qgSa A (=FU-3 A —«))

\ . 7 \ . 7
~" ~~

A B
A direct check shows that Eprr, A < (=0 A qSa) A =G A O-p.

By the equivalence (1) about (¢Sa A (XUY)),

=prr B [(¢Sa) A (=6Sa) A =8 A (~BU-B A —a)] V

\ . 4

C
(=8 A=A (=85a) A (¢Sa)]V

(¢S=B N —a Ag A (=55a) A (q5a))

By distributivity, = AV C < (=8 A qSa) A =B A (O=0V (=U=3 A —«a)),
which is equivalent to (=8 A ¢Sa) A =3 A —(aU3). Hence

=prrr (¢Sa N —(aUpB)) & (¢ AN—BSa) A= A =(aUB)]V
=6 A —a A (=8 A qSa)|V
(¢S—B A —aAqA (qgN—-8Sa))




Proof of the key lemma (3): (¢ V (aUB)Sa):

=prrr —(qV (aUB)Sa) < H-a V (maS—a A ~g A —~(aUS))

\ . 7
Vo

F

and F'is an instance of (QUA A =(aUf)), already considered as case (2).

(4): (¢ V ~(aUpB)Sa):
A direct chech shows that

(qV—=(aUB)Sa) & (—a A[(-a A aS—qg A —a) = —F]|Sa)A
(maAaS=gA—a) = =BV (an (alUp)))).




Proof of the key lemma (5): (¢ V (aUB)Sa A (aUpB)):

(qV (aUB)Sa A (aUp)) & (aSa) A BV (a A (aUf))|V

(BV aV=(=85-¢)S5 A (aSa))A
{8V (an(aUp))]V-(=85-q)}

(6): (¢ V (aUB)Sa A =(aUp)):
(qV (aUB)Sa A =(aUp)) is equivalent to

[(g A =BSa) A= A =(aA (aUf))]V
(qV (aUB)S—a A =B A (qV (aUB)) A (g A —=5Sa)).

which can be given the required form using the equivalences (3) and (5).




Proof of the key lemma (8): (¢ V —(aUB)Sa A =(aUp))
By ):PLTL _I(ASB) < H-BYV (A A BS—B A _IA) we have

|:PLTL ﬂ(q V ySa A ZC) = E(—la V —|CIJ)\/
(ma VvV —xS—g A -y A —a)V
(ma V —xS=q A —~y A —x),

For x = y = —(aUf), we derive

=prrn (¢ V= (aUB)Sa A —(aUB)) & H(—aV (aUB))V
(ma VvV (@UB)S—g A (aUB) A —a)V
(ma V (aUB)S—q A (aUp)).

The middle disjunctive member of this formula can be excluded. The first
disjunctive member is, by definition, =(TSa A =(aUfB)) and can be given the
required form using case (2). The second can be handled using case (5).




Proof of the key lemma (7): (¢ V —(aUB)Sa A (aUpB))

(qV—=(aUB)Sa A (aUp)) &
(qV —=(aUB)SB A (¢ V —(aUB)) A (a A qSa))V
[(a A ¢Sa) N BV
(A gSa) A (aUp)]

By distributivity, the first disjunctive member is equivalent to

(qV —=(aUB)SB A qA (aAqSa))V
(¢ vV = (aUB)SB A (a A gSa)) A =(alp)

and can be given the required form using cases (4) and (8).




Sources for the proof of the key lemma

This proof:

Dov Gabbay, lan Hodkinson and Mark Reynolds, Temporal Logic:
Mathematical Foundations and Computational Aspects. Volume I, OUP,

1994

For another proof of the key lemma see:

E. Clarke and B.-H. Schlingloff, Model Checking, Chapter 24 of Handbook of
Automated Reasoning, A. Robinson and A. Voronkov (eds), Elsevier, 2001.

also available at:

http://www2.informatik.hu-berlin.de/"hs/Publikationen/
2000_Handbook-of-Automated-Reasoning _Clarke-Schlingloff
_Model-Checking.ps




Proof of Gabbay’s separation theorem: more lemmata

Lemma 3 Let a and § be purely propositional and the only (.U.)-subformula
of 8 be (aUB). Then 6 is equivalent to a boolean combination of (aUg3) and
past formulas.

Proof: Induction on the nesting depth of the occurrences of (aUf3) in
(.S.)-subformulas of 0. -

Lemma 4 Let «; and (3; be purely propositional, t = 1,...,n. Let the only
(.U.)-subformulas of 6 be (a;UB1), ..., (a,UB,). Then 6 is equivalent to a
boolean combination of (a1Uf31), ... (a,UB,) and past formulas.

Proof: Induction on n. Apply the previous lemma to
0 = [u@/(OézUﬁz) 1 =2,... ,n]@

to obtain a b. c. of (a;UB1) and past formulas containing us, ..., u,.




Gabbay’s separation theorem:
last lemma and proof of the theorem

Lemma 5 Formulas 6 with no occurrences of (.S.) in the scope of (.U.) are

separable.

Proof: Obtain 6’ from 6 by substituting (a;Ub;) for the occurrences of
(a;UB;) which are not in the scope of (.U.) themselves. Separate 0’ first and

then replace a;, b; by o, 3;.
Exchanging (.S.) and (.U.) preserves the validity of all the lemmata.

Proof: [ of the separation theorem] Induction on the alternating depth of
the nesting of (.U.) and (.S.) in the given formula . ¢ is either separated or

¢ has subformulas 1) of the form (aUg3) ((aS(3)) where o and 3 are
past (future) and at least one of them has an occurrence of (.S.) (\U.).

In the latter case alternation depth can be decreased by replacing the s with
equivalent separated formulas. -




Elimination of (.S.) in PLTL

Theorem 2 Let p be a PLTL formula. Then there exists a future PLTL
formula v such that for all models o

0,0 = ¢ < .

Proof: Obtain 1 by replacing all the (.S.)-subformulas by 1 in a separated
equivalent of ¢. -




Expressive completeness of PLTL

o : w — L can be viewed as a model for the monadic first order theory of the
linear order (w, <) with a unary predicate symbols P for every p € L:

P?(n) <> p € og(n) forall n < w.

A PLTL formula ¢ defines the unary predicate o,n = ¢ on n. This predicate
is definable in the first order theory via the standard translation ST:

ST(L) = 1, ST(p) = P(n), ST(p = 1) =ST(p) = ST(Y)
ST((pUy)) = Jk(n < kA [k/n]ST(W) AVin <iNi < k= [i/n]ST(p)))
ST((eSy)) = Fk(k <n A [k/n|ST(Y) AVi(k <iANi<n= [i/n|ST(p)))
where k and ¢ do not occur ST (), ST ().

Q: Is every f.o.-defined unary predicate definable in PLTL too?




Expressive completeness of PLTL (Hans Kamp, 1968)

Theorem 3 Every f.o. definable unary predicate is definable in PLTL.

Definition 1 A temporal connective # of arity k is f.o. definable, if there is a
f.o. formula ax with just one free variable ¢ and possibly having occurrences of
Py, ..., P, such that

o,nE=#p1...pp = (W, <), Ai(0,i =D1),..., (0,1 FEpr),n E ax.
ST can be defined for such connectives # in the obvious way.

Corollary 2 All f.o.-definable connectives can be regarded as derived in PLTL
with (.S.) and (.U.) as the basic connectives.

Proof: Since ay(n, Py, ..., P;) is equivalent to some temporal formula o]
written with (.S.) and (.U.) using p1, ..., pr, we can define # by the clause

#0155 k) = plag].




Expressive completeness of PLTL: proof

predicate formula «(t) — temporal formula ¢[a] s.t.

0,1 = pla) « (w, <), In.(p1 € 0n), ..., A\n.(pr € 0n),1 E @

Induction on the 3-height d3(a) of a.
plt <t]=1, @[P(t)] =pi, ¢lar = as] = plaa] = play] (1)
Let o be dx(3. We can assume t ¢ BV (). Then, by the equivalences

B e Pit) N[T/POIBY -Pi(t) NL/P(E)B, i =1,...,k,

3 is equivalent to a \/ J; A B; where §; are I-free, x & FV (6;), d3(5;) < d3(f3),

and the only occurrences of ¢ in 3; have the forms ¢t < y and y < t for some
y € BV (8;) U{x}. We only need to handle 3z3;, because




Expressive completeness of PLTL: Proof
Jx; t occursin Bonly iny <t, t<y
We introduce fresh predicate symbols R, , R ;. Let
B =R (y)/t <y, R<:(y)/y < t]B

Then
(W, <), An.(p1 € on), ..., An.(px € o), In.(i < n), An.(n <i),i | Iz < Jxf’

FV (') = {z} and d3(3") < d3(«). By the induction hypothesis there exists a
temporal ¢[3’] such that for 0/ : w — P({p1, ..., Dk, Tt<., 7. <1})

o'si = o] iff

(w, <), An.(pr€0cl),...., n(pr €0, ), \n.(ri-. €cl ), n(r-y o ),i=0

We put p[Izf'] = Sp|F'] V |3 V Op| 5]




Expressive completeness of PLTL: Proof
We have o', i = ¢|dz3] iff
(w, <), An.(pr € cl),...., \n.(px €0.), \n.(ric. €0o.), n(r-€0c.),iEIxf
and
(w, <), An.(p1 € 0cl),..., n.(px € o), n.(i <n),\n.(n <1i),i = Jzf < Jz0.
Hence
(w, <), An.(p1 €a)),...., \n.(pp € o)), n.(i <n),\n.(n <1i),i = Jz8

Is equivalent to

o',i = p[3x6], (p[Fz0 is ©p[F'] V @[3V Op[F])

provided that for all n we have ;o € 0], — i <n,r -4 €0, < n <i.




Expressive completeness of PLTL: Proof
The only remaining problem is that . ,r -, € Var(p|[3z3']).
) - a separated equivalent to ¢|dz(’]

Let 1)’ is the result of applying the substitutions

| L/ri—~, L /r.~4] to the variables in ) not in the scope of (.S.) and (.U.),

| L/, T /r 4] to the (.S.)-subformulas of

[T /ri<., L/r -] to the (.U.)-subformulas of 1, respectively.

Ifr,o €0, —i<mnandr_, €o, < n<iforall n, then o',i =y < .

Finally, o’,i = 4" iff 0,7 = 1’, because ;- , 7~ & Var(y'). Hence
(w, <), An.(p1 € o), ..., In.(px € 0p),i = TxB iff 0,1 =’

and we can define ¢[3x(] as ¢’.




Interval temporal logic: a more expressive linear temporal
logic
PLTL is as expressive as the MFO theory of (w, <).
MSO theory of (w, <) is decidable too. It is captured by
automata on infinite words

(w-)regular expressions, whose general form is

LMy

where L; and M, denote regular expressions and

LY ={ag-a1-...-ap-...:qa; € L forall i <w}.

Interval Temporal Logic (ITL, Moszkowski, 1985).

Two variants: finite or infinite intervals of time.




ITL on finite intervals

pu=Llple=¢lop|(pe)|e"
Models finite sequences o € (P(L))™.

o] - the length of 0 minus 1. 0 = 0oy ...0Y,.

P € 0g

o poro =y

o] >0and o1...01, F ¢

there exists an ¢ € {0,...,|o|} such that
0p...0; =@ and o;...01, =

either |o| = 0 or there exists an n < w

and a finite sequence 0 =iy < ... < i, = |0]

such that o, ,...0;, Fofork=1,...,n.




Derived constructs in /7L




Guarded normal form in ITL

Exercise 3 Prove that every ITL formula has an equivalent one of the form

& N\ empty V \/ozi A o

where & and the a;s have no occurrences of temporal operators and the a;s

form a full system.

Fact 1 Given an arbitrary formula ¢, there exists a finite set of formulas X
such that ¢ € X and a system of purely propositional formulas &, ¥ € X and
Qs ¥, X € X such that {ay , 1 x € X} is a full system for each ¢ € X and

|=1TL V& fx A empty V \/ Quyp N\ OX. (2)
XEX




Propositional quantification in /7L

ol=3pp iff  there exists a o/ € (P(L))I°I*! such that

g, \{p} =o; \ {p} forall i =0,...,|o| and ¢’ = ¢

Theorem 4 Propositional existential quantification is definable in ITL, that is,
every formula of the form dpy is equivalent to a quantifier-free formula.




Propositional quantifier elimination in [7TL

We assume that ¢ is quantifier-free. Let X be as in Fact 1. Then for ¢ € X

=rrr 3pY < ([L/pl&x V(T /pléx) AemptyV \/ ([L /Pl 5 V[T /Dl 5 ) AoTpx.

This is equivalent to

Ipp < ny Aempty V. \/ (By,x A skip; Ipx).
xeX

which is a system of equations wrt the unknowns dpy.
o = By, /\ skip does not depend on 0/,
If 41,02 have this property, then so do d; V s, (d1;62) and 67




Propositional quantifier elimination in [7TL

Assume a system of equations
I < 1V Gy 3px0)-
xeX

where 0y, are s.t. o |= dy, , does not depend on oy,

Then we can solve the system wrt any chosen dpi):

Ip = (0,400 V(0543 (5y,x:3pX)).

x€X\{¢}
Substituting this formula for dpy elsewhere in the system and using that

=L (o5 81V B2) & (a;8), V (@; 8)4,

we obtain system of the same form with fewer equations. Finally we reach a
defining formula for dpp.

Note that — and A occur only in the purely propositional subformulas of the
quantifier-free formula for dpp. The price for this is the heavy use of (.)*.




Infinite intervals
The clauses for =771 on infinite intervals differs only for (.;.) and (.)*:
o = (p;) iff  either o = @ or
there exists an ¢ < w such that

gg...0; =pand o;... EY

o E p* ' there exists a finite sequence 0 = ip < ... < iy,

s.t. o4 _,...00, Epfork=1,...,n, ando;_ ... =

The definition for (y; ) allows the class of the infinite intervals to be defined

by the constant

inf = (T;L).




The End
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