
CTL� and ECTL� as fragments of the modal�-calculus 1Mads DamDepartment of Computer ScienceUniversity of Edinburgh
AbstractDirect embeddings of the full branching time logic CTL� and its extension ECTL�into the modal �-calculus are presented. The embeddings use tableaux as inter-mediate representations of formulas, and use extremal �xed points to characterisethose paths through tableaux that satisfy an admissibility criterion, guaranteeingeventualities to be eventually satis�ed. The version of ECTL� considered replacesthe entire linear time fragment of CTL� by B�uchi automata on in�nite strings.As a consequence the embedding of ECTL� turns out to be computable in lineartime while the embedding of CTL� is doubly exponential in the worst case.1 IntroductionDue to its inherent combinatorial di�culties, concurrency is an area of computerscience where formal and automated veri�cation methods have proved themselvesparticularly valuable, for instance in detecting errors di�cult or impossible to �ndby informal reasoning alone (c.f. Gries [17], Clarke and Mishra [7], Browne etal [3]). For programming errors to be exposed by exhibiting mismatch to formalproperties, those properties must correctly re
ect the intent of the programmer.The correctness of this representation may be obvious for a few very simple the-ories, but unfortunately the need for greater expressive power often seems to callfor a corresponding sacri�ce in transparency.A case in point is the modal �-calculus L� (Kozen [19]). This logic is obtainedas an enrichment of a simple modal base logic, Hennessy-Milner logic (Hennessy,Milner [18]), by least and greatest �xed points of formally monotone operators.The result is a very general branching-time temporal logic capable of expressing awealth of properties related to for instance partial and total correctness, liveness,1This work was supported by SERC Grant GR/F 32219.1

safety, and fairness, that are of crucial importance in practical program veri�cation(c.f. Brad�eld, Stirling [2], Walker [31]). Indeed L� encompasses a great manywell-known program logics such as PDL (Fischer, Ladner [15]), PDL-� (Streett[26]), linear-time temporal logic PTL (Gabbay et al [16]), CTL (Clarke, Emer-son [5]), and CTL� (Emerson, Halpern [11]). This can be shown by providingconstructive translations (c.f. Kozen [19], Emerson, Lei [13], Wolper [32]).In fact the containment in all these cases is strict. A typical example of aproperty expressible in L� but not, for instance, in CTL� is a cyclic property suchas \along any path, at all even moments � holds, and at all odd moments � mayhold or not" (c.f. Wolper [33]). Properties such as these are necessary in generalfor modular reasoning (Lichtenstein et al [20]). Despite this additional expressivepower, L� is decidable in deterministic exponential time, and thus essentially is notharder than PDL (Emerson, Jutla [12], Fischer, Ladner [15]). Moreover, for closedformulas L� preserves the characterisation of bisimulation equivalence (Hennessy,Milner [18]) and thus provides a natural temporal logic for process calculi suchas CCS (Stirling [24]). A model checker for checking L�-properties against �nite-state (CCS) processes due to Stirling and Walker [25] has been implemented inthe Edinburgh Concurrency Workbench (Cleaveland et al [9]) and used in severalcase-studies such as mutual exclusion algorithms (Walker [31]) and communicationprotocols (Bruns, Anderson [4]).Impeding the widespread practical use of L�, however, is its lack of trans-parency: Already at the second level of alternation formulas can become highlyunintelligible. And alternation is indeed needed to express for instance fairnessproperties. Consequently it is important to develop tools to aid users in manip-ulating, generating, and understanding L�-formulas. Constructive translationssuch as those referred to above can be very useful for these purposes. They can bemachine implemented to provide syntactical sugaring of L� properties. Moreoverthey can help also in understanding L� itself, provided they, and the results theyproduce, are su�ciently simple and intuitive. They mostly succeed very well inthis: A �rst step towards a working understanding of L� is certainly to understandwhy the CTL-formula EFX (\along some path X holds eventually") is translatedinto the least �xed point formula �Y:X _3Y where 3 is the existential nextstatequanti�er.In this respect CTL� is of particular interest. Beyond CTL, CTL� is capable ofexpressing properties such as EGFX (\along some path X holds in�nitely often"),useful for dealing with fairness (Emerson, Halpern [11]), and in general arbitrarynestings and boolean combinations of linear and branching time connectives forwhich the task of �nding equivalent L�-formulations may present considerabledi�culties. The previously only known translation of CTL� into L� is, however,rather indirect and not very transparent. It is obtained by composing Wolper'sunpublished translation of CTL� into PDL-� [32] with the translation of PDL-� into L� (c.f. Emerson, Lei [13]). It involves 5 stages: The �rst and secondstages builds a tableau and derives from it a deterministic Muller automaton (c.f.2

Emerson and Sistla [14]). Third stage derives from this automaton an equivalent!-regular expression (c.f. McNaughton [21]). As the fourth stage a PDL-� formulais obtained, and �nally this formula is translated into L�.In this paper we present a relatively simple and much more direct algorithmfor translating CTL� into L�. The idea is to represent a tableau directly as anequivalent L� formula. The notion of tableau used is fairly standard and closelyrelated to those of e.g. Ben-Ari et al [1] and Wolper [33]. Their role is to decom-pose formulas according to their structure, and to detect recursion in the naturalway of terminating when a tableau node is repeated. The problem is to use theconnectives of L� as an external means of characterising tableaux, and in partic-ular to use least and greatest �xed points to classify loops. The solution involvesan analysis of the admissible ways of \regenerating" nodes, using the terminologyof Streett and Emerson [27].An alternative way of allowing cyclic properties to be expressed, is to includein CTL� not only the linear-time modalities of PTL, but more generally all linear-time modalities expressible in Wolper's Extended Temporal Logic, ETL [33]. ETLextends PTL by allowing arbitrary �nite automata on in�nite words as tempo-ral operators. In this way the full power of the !-regular languages is obtained(Wolper et al [34]), whereas PTL is capable of describing only the star-free !-regular languages (Gabbay et al [16], Thomas [28]). Several expressively equiva-lent versions of extended CTL�, ECTL�, have been proposed (Vardi, Wolper [30],Clarke et al [6], Thomas [29]). Here we follow the approach of Thomas, addinglinear-time operators corresponding to B�uchi automata on in�nite words.Also for ECTL� the translation involves the building of tableaux and the use of�xed points to classify loops. The construction turns out to be simpler, however,than for CTL� for two reasons: First there is no need to consider the explicitnesting of linear-time connectives present in CTL�, and secondly the use of B�uchiautomata allows attention to be restricted to automata with a single acceptingstate.The remainder of the paper is organised as follows: In sections 2 and 3, L� andCTL� are introduced, sections 4, 5 and 6 describes the translation from CTL�, andin section 7 it is proved correct. In sections 8 and 9 ECTL� is introduced and itstranslation described, and �nally in section 10 we discuss issues such as e�ciencyand related work.2 The modal �-calculusFormulas �, ,
 of L� are built from propositional variables X, Y , booleanconnectives : and ^, the modal nextstate quanti�er 3, and the least �xed pointoperator �X:�. The latter is subject to the formal monotonicity condition thatall free occurrences of X in � lie in the scope of an even number of negations.Other connectives are derived in the usual way, and in particular: 2� �= :3:�,�X:� �= :�X::�[:X=X]. We use � as a metavariable ranging over f�; �g. Usually3

indexed modalities <a> are considered instead of the unindexed 3. For thepurpose of embedding CTL� and ECTL�, however, one program letter su�ces.For the semantics �x a transition system T = (S;R) where S is a set of statesranged over by s, and R a binary transition relation on S. The semantics of theformula � relative to T and a valuation V : X 7! B � S is the set k�kV � Sde�ned as follows:kXkV = V(X)k:�kV = S � k�kVk� ^ kV = k�kV \ k kVk3�kV = fs 2 S j 9s0 2 S: sRs0 and s0 2 k�kVgk�X:�kV = \fB � S j k�kV[X 7! B] � BgHere V[X 7! B] is the usual update V 0 of V which agrees with V except thatV 0(X) = B. The expected clauses are obtained for the derived connectives. Inparticular for greatest �xed points:k�X:�kV = [fB � S j B � k�kV[X 7! B]g:Intuitively, least �xed points are used for eventualities and greatest �xed points forinvariant properties. This intuition is brought out by the following characterisationof the relation of satisfaction s 2 k�kV due to Streett and Emerson [27]. Closelyrelated characterisations are due to Stirling and Walker [25], Brad�eld and Stirling[2], and Cleaveland [8].Relative to a transition system T , a choice relation is a minimal relation) onsequents s ` � such thats ` ::�) s ` �s ` �1 ^ �2) s ` �i for i = 1 and i = 2s ` �1 _ �2) s ` �i for i = 1 or i = 2s ` 2�) s0 ` � whenever sRs0s ` 3�) s0 ` � for some s0 s.t. sRs0s ` �X:�) s ` �[�X:�=X]Rooting) at s ` � restricts) to fs0 ` �0 j s ` �)� s0 ` �0g. Let) berooted at s ` �. Then) agrees with V, if whenever s ` �)� s0 ` (:)X thens0 2 V(X) (s0 62 V(X)). Regarding �xed points the crucial issue is to avoid havingto regenerate �-formulas in�nitely often. A �-formula �X:� is regenerated froms1 to sn if there is a derivations1 ` �1) s2 ` �2) � � �) sn ` �n4

such that n > 1, �1 = �n = �X:�, and �X:� is a subformula of �i for eachi : 1 � i � n. Then) is well-founded if the regeneration relation is well-foundedfor each �-formula. That is, there is no in�nite path sR�s0R�s1R�s2 � � � and no�-formula �X:� which is regenerated from si to si+1 for all i 2 !.Theorem 2.1 (Streett, Emerson [27]) There is a well-founded choice relation)from s ` � which agrees with V i� s 2 k�kV. 23 Computation Tree Logic, CTL�Formulas of CTL� are built from propositional variables using boolean connectives: and ^, the linear next-time and until-operators O and U, and the existentialpath-quanti�er E. The dual of E is the universal path-quanti�er de�ned by A� �=:E:�. Other connectives are derived as usual. In particular F� �= trueU� andG� �= :F:�. Also we let �1:U�2 �= :(�1U�2). An eventuality is a formula of theform either �U or O(�U) (or F� or OF� if F is taken as primitive).Formulas denote properties of in�nite paths through a transition system T =(S;R) with valuation V. Such a path is a mapping � 2 S! such that for all i 2 !,�(i)R�(i + 1). The i'th su�x of � is the path �i given by �i(j) = �(i + j) for allj 2 !. The relation R is total if for all s 2 S there is some s0 2 S such that sRs0.The assumption of totality allows attention to be restricted to in�nite paths. Thesemantics of formulas is given as follows (c.f. Emerson and Halpern [11]):� j=V X i� �(i) 2 V(X)� j=V :� i� � 6j=V �� j=V �1 ^ �2 i� � j=V �1 and � j=V �2� j=V O� i� �1 j=V �� j=V �1U�2 i� 9i 2 ! such that �i j=V �2 and 8j, if 0 � j < i then �j j=V �1� j=V E� i� 9�0 such that �(0) = �0(0) and �0 j=V �Let s j=V � i� for all paths � such that �(0) = s, � j=V �. We are particularlyinterested in formulas that depend only on the current state in the sense that� j=V � i� �(0) j=V �. This is true, in particular, for boolean combinations offormulas that are either propositional variables or contain an outermost occurrenceof the existential path-quanti�er. Formulas of this form are called state formulas.4 TableauxThe aim is to translate state formulas into semantically equivalent L� formulas.Substantial parts of this translation can be performed structurally (c.f. Wolper5

[32]). Variables can be translated into themselves, and boolean combinations ofstate formulas can be translated into boolean combinations of their translations.Furthermore substitutions of state formulas for variables can be preserved. Moreformally let �; mean that � is a state formula and � can be translated into theL�-formula . Moreover assume that; is correct in the sense that if �; then� and are semantically equivalent: for all transition systems T , for all s 2 STand all valuations V on T , s j=V � i� s 2 k kV. Then the following four rules arevalidated: X ; X �; :�; : �1 ; 1 �2 ; 2�1 ^ �2 ; 1 ^ 2�1 ; 1 � � � �n ; n �; �[�1=X1; : : : ; �n=Xn]; [1=X1; : : : ; n=Xn]where
[
1=X1; : : : ;
n=Xn] denotes the simultaneous substitution of the
i for Xiin
. By means of these rules attention can be restricted to formulas of the formE� where � is a linear-time formula, i.e. � does not contain occurrences of theexistential path-quanti�er E. Call such formulas basic. For formulas of this formthe translation uses tableaux as an intermediate representation. A tableau is arooted, �nite directed graph which is generated by applying exactly one of a smallset of rules to each node that is not a leaf. Leaves are propositional variablesor their negations. Other nodes are formulas of the form E� �= EV� where� is a �nite set of path-quanti�er free formulas. For simplicity of notation wegenerally use a sequential notation for nodes, writing, for instance, E(�; �) inplace of E(� [f�g). The purpose of the tableaux rules is to analyse the state-related structure of formulas by means of the basic L� connectives ^, _ and 3.Rules consequently have the form
 : ��1����n where
 is either ^, _, 3, or possiblyI, and a rule instance of this form is forwards and backwards sound if s j=V � i�s j=V
(�1; : : : ; �n) where 3 is interpreted as EO and I as the identity operator.The tableau rules are the following:I: E(�;::�)E(�; �) ^: E(�; X)E� X ^: E(�;:X)E� :XI: E(�; � ^)E(�; �;) _: E(�; � _)E(�; �) E(�;)_: E(�; �1U�2)E(�; �2) E(�; �1;O(�1U�2))_: E(�; �1:U�2)E(�;:�1;:�2) E(�;:�2;O(�1:U�2))3: E(O�1; : : : ;O�n)E(�1; : : : ; �n)6

For the operators F and G the following rules can be used instead of those derivedfrom the \until"-based ones above:I: E(�;G�)E(�; �;OG�) _: E(�;F�)E(�; �) E(�;OF�)It is not di�cult to see that tableaux are �nite, and that all tableau rules areforwards and backwards sound.5 Admissible pathsA key task is to isolate those in�nite paths through a given tableau � that areadmissible in the sense, intuitively, that eventualities are eventually also satis�ed.To get at this notion of eventual satisfaction, and thus of admissibility, we analysethe way tableau rules decompose individual linear time formulas. Let E�1 ! E�2if there is an edge from E�1 to E�2 in � . Each member of �2 is determined,or generated, by at least one member of �1. Consider for instance the transitionE(O(�U); �U) ! E(O(�U);). Relative to this transition O(�U) is gener-ated by O(�U), and similarly is generated by �U . On the other hand it isnot relative to this transition the case that O(�U) is generated by �U . It isthe purpose of the relation �� to formalise this notion of generation. Thus eachtransition E�1 ! E�2 determines the generation relation ��E�1!E�2 � �1 � �2in the following way where �(�) = f(�; �) j � 2 �g is the diagonal relation on �:��E(�;::�)!E(�;�) = f(::�; �)g [�(�)��E(�;(:)X)!E(�) = �(�)��E(�;�1^�2)!E(�;�1;�2) = f(�1 ^ �2; �1); (�1 ^ �2; �2)g [�(�)��E(�;�1_�2)!E(�;�i) = f(�1 _ �2; �i)g [�(�), i 2 f1; 2g��E(�;�U)!E(�;) = f(�U ;)g [�(�)��E(�;�U)!E(�;�;O(�U)) = f(�U ; �); (�U ;O(�U))g [�(�)��E(�;�:U)!E(�;:�;:) = f(�:U ;:�); (�:U ;:)g [�(�)��E(�;�:U)!E(�;: ;O(�:U)) = f(�:U ;:); (�:U ;O(�:U))g [�(�)��E(O�1;:::;O�n)!E(�1;:::;�n) = f(O�i; �i) j 1 � i � ngWe usually abbreviate ��E�1!E�2 by �� when the transition E�1 ! E�2 is un-derstood from the context. We use � for !-paths and � for ��-paths, and write� 2 � if � and � are of equal length, and for each i > 0 for which �(i) is de�ned,�(i�1)���(i) relative to the transition �(i�1)! �(i). Then an in�nite!-path� is admissible, if for each � 2 �, whenever �(i) = �U or �(i) = F then for7

_ E(XUY)Y ^ E(X;O(XUY))X 3 E(O(XUY))E(XUY)Figure 1: Tableau for E(XUY)
_ 3 E(OFX;OGOFX)E(FX;GOFX)E(FX;OFX;OGOFX)^ E(X;OFX;OGOFX)X E(OFX;OGOFX) (1) E(OFX;OGOFX) (2)Figure 2: Tableau for E(OFX;OGOFX)some j > i, �(j) = . Suppose that � visits the node E� in�nitely often. Considera segment �(i0; ik) �= �(i0) ! � � � ! �(ik) of � for which �(i0) = �(ik) = E�and let � 2 �. Then � is regenerated along �(i0; ik) if there is some � 2 �(i0; ik)such that �(0) = �(ik � i0) = �.Example 5.1 Here and below we use a tree-like notation for tableaux, terminat-ing the construction as soon as nodes are �rst repeated.(i) Fig. 1 shows a tableau for E(XUY). The eventuality XUY is regeneratedalong the !-path from the root to its repetition.(ii) Fig. 2 shows a tableau for the formula � = E(OFX;OGOFX). This issemantically equivalent to the formula EGFX expressing the fairness relatedproperty that X holds in�nitely often along some path. No eventuality isregenerated along the !-path from the root to its repetition labelled (1)whereas the eventuality OFX is regenerated along the !-path to (2).(iii) Similarly the formula E� of �g. 3 expresses that bothX and Y hold in�nitelyoften. In �g. 3 no eventuality is regenerated from the root to its repetitionlabelled (1), OFY is regenerated to (2), OFX is regenerated to (3) and bothare regenerated to (4).The following characterisation of the admissible !-paths is of central impor-tance to the translation procedure. Let a simple node be any node E� with theproperty that whenever �U 2 � (F� 2 �) then O(�U) 62 � (OF� 62 �). Clearlyany in�nite !-path � will in�nitely often visit the same simple node. Considerfor instance the set of all nodes visited by � to which the 3-rule applies.8

__̂ 3 E�E(GOFX;GOFY;FX;FY)E(�;FX;FY)E(�; X;FY)E(�; X; Y)E� (1) X Y E(�; X)E� (2) X _̂ E(�;FY)E(�; Y)E� (3) Y E� (4)Figure 3: Tableau with � = fOGOFX;OGOFY;OFX;OFY g.Lemma 5.2 Let � be an in�nite !-path through a tableau � , and let i0; i1; : : : bean in�nite, strictly increasing sequence such that �(ij) is the same simple nodeE� for all j 2 !. Then � is admissible i� for each eventuality � 2 � there arein�nitely many j 2 ! such that � is not regenerated along the segment �(ij; ij+1).Proof: The only if direction is clear. For the if direction suppose that � isinadmissible. Then there is an ��-path � 2 �, a k 2 !, and an eventuality� = �1U�2, say, such that for all k0 � k, either �(k0) = � or �(k0) = O�. As E� isa simple node it follows that either for all j such that ij � k, �(ij) = �, or for all jwith ij � k, �(ij) = O�. In any case either � is regenerated along every segment�(ij; ij+1) for which ij � k, or else O� is. 2The restriction to simple nodes in Lemma 5.2 is indeed necessary. To see thislet �1 be the !-pathE(OGFX;FX;OFX;OGOFX) ! E(OGFX;OFX;OGOFX)! E(GFX;FX;GOFX)! E(GFX;OFX;GOFX)! E(OGFX;FX;OFX;GOFX)! E(OGFX;FX;OFX;OGOFX)and let �2 be the !-pathE(OGFX;FX;OFX;OGOFX) ! E(OGFX;OFX;OGOFX)! E(GFX;FX;GOFX)! E(GFX;FX;OFX;OGOFX)! E(OGFX;FX;OFX;OGOFX)Notice that FX is not regenerated along �1, and that OFX is not regeneratedalong �2. Consider the in�nite !-path � = (�1 � �2)! obtained by alternatingbetween �1 and �2 ad in�nitum, and pick as the sequence i0; i1; : : : the largestsequence such that �(ij) = E(OGFX;FX;OFX;OGOFX). Clearly � is notadmissible, but both eventualities FX and OFX fails to be regenerated alongin�nitely many segments �(ij; ij+1). 9

6 Translating CTL�Let then a tableau � rooted in a formula �0 = E�0 be given. The translation of �0is determined by the labelling of rule instances in � , and least and greatest �xedpoints are used to characterise the admissible!-paths through � . The translationprocedure passes each node � at most twice in succession. The interesting caseis when � is a simple node. In this case a suitable context is built up in the �rstpass of �, using the label information together with �xed point quanti�ers to bindpropositional variables. For each simple node � = E� we assume distinguishedpropositional variables X� and Y ;� when 2 � is an eventuality. These variablesare used in the second pass, if it applies. Let � = E�. First, if there are noeventualities in � any in�nite!-path � that visits � in�nitely often is admissible.A suitable scheme for the translation of � in this case is consequently�X�:
(X�)where � in the second pass is translated into X�. In general, however, by Lemma5.2, each eventuality 2 � must in�nitely often be prevented from being regen-erated between subsequent visits to � by �. This suggests�X�:Veventualities 2��Y ;�:
(X�; Y ;�)as a general scheme for the translation of � where in the second pass � is translatedinto Y ;� if is regenerated along the path segment traversed since the �rst pass,and as X� otherwise.The translation algorithm is shown in �g. 4. A node � is translated into theL�-formula tr(�;�; ") where � is a path segment and " is an eventuality selector:a mapping which given a set � chooses an eventuality "(�) 2 �, if one exists.The role of � is to keep track of the path traversed so far, and " is used tohandle the conjunction over eventualities. We use � ! � to denote the !-pathobtained by appending � to �. Initially � is the empty !-path (), and " is anarbitrary eventuality selector "0. The translation algorithm works as follows: If� = E� is a leaf the translation is trivial. Otherwise if 9i : �(i) = � the procedureis in its second pass of �. Then � is translated into Y"(�);� if "(�) is de�nedand is regenerated along the segment traversed since � was passed �rst, and � istranslated into X� otherwise. Assume instead that the procedure is in its �rstpass. Three cases apply: If � is not simple or � is not reachable from any of itsown children then no �xed points are needed. Otherwise, as we have explained,the translation depends on whether or not � contains any eventualities.The translation relation ; is then completed by adding to the four rules ofsection 4 the axiom �0 ; 0 whenever �0 is a basic CTL� formula, a tableau �rooted in �0 is given, and relative to � , 0 = tr(�0; (); "0).Example 6.1 (i) From the tableau of �g. 1 the expected translation obtains:E(XUY); �Y 0:Y _ (X ^3Y 0):10

tr(�;�; ") =cases � of X: X j :X: :X j E�:if 9i : �(i) = �then if "(�) is de�nedthen if "(�) is regenerated along segment �(i)! � � � ! �(n)! �then Y"(�);�else X�else X�else let
 : ��1;:::;�m be the rule instance applied to �in if � is not simple or � is not reachable from any of the nodes �1; : : : ; �mthen
(tr(�1;�! �; "); : : : ; tr(�m;�! �; "))else if there are no eventualities in �then �X�:
(tr(�1;�! �; "); : : : ; tr(�m;�! �; "))else �X�: Veventualities 2��Y ;�:
(tr(�1;�! �; "[� 7!]); : : : ; tr(�m;�! �; "[� 7!]))Figure 4: CTL� translation algorithm tr(ii) For the tableau of �g. 2:E(OFX;OGOFX); �X 0: �Y 0: 3((X ^X 0) _ Y 0):The example serves to illustrate why the translation schema uses �-�-alter-nation. For comparison two possible translations of the (equivalent) formulaEGFX are �X 0: �Y 0: (X ^3X 0)_3Y 0 and �X 0: (X ^3X 0)_ �Y 0: 3((X ^X 0) _ (X ^ Y 0) _ Y 0).(iii) Similarly the tableau of �g. 3 illustrates why the conjunction of �-formulasis in general necessary. It is translated thus:E� ; �X 0:(�Y 0:3(X 0 ^X ^ Y) _ (Y 0 ^X) _ (X 0 ^ Y) _ Y 0)^(�Y 0:3(X 0 ^X ^ Y) _ (X 0 ^X) _ (Y 0 ^ Y) _ Y 0):The translation algorithm can be optimised in several respects. For instancewe avoid generally introducing variables that are never actually used. The topicof optimisations is returned to in the concluding section.Theorem 6.2 For any CTL� formula �, if �; then fs j s j=V �g = k kV.Proof: See section 7. 2
11

7 Proof of Theorem 6.2Let � be a tableau rooted in �0 = E�0, and let �0 ; 0 relative to � . Forsimplicity assume �0 to be in positive form, that is, with ^;_;U;:U primitiveand negations applied only to propositional variables. Similarly we also assume 0 to be in positive form. The proof is split into two parts:(i) If s0 j=V �0 then there is a successful choice relation rooted in s0 ` 0, i.e.one which is well-founded and agrees with V.(ii) If s0 6j=V �0 then there is a successful choice relation rooted in s0 ` : 0.This is su�cient by Theorem 2.1. Both (i) and (ii) are proved by �rst building achoice relation) agreeing with V, and then showing) to be well-founded.Note �rst that 0 determines a �nite set BV(0) = fX1; : : : ; Xng of proposi-tional variables bound in 0. Moreover each X 2 BV(0) is bound exactly once.Let �X denote the subformula of 0 binding X. Given any subformula of 0,unf() is the formula resulting from recursively replacing each X 2 BV(0) freein by �X: unf() �= [unf(�X1)=X1] � � � [unf(�Xn)=Xn]:The construction of) proceeds in stages, and is guided by the tableau and themodel. Initially we are given the tableau root node �0 and the sequent s0 ` (:) 0.At the completion of stage k, having reached tableau node � = E� and sequents ` (:) the following properties are maintained invariant:(a) s j=V (:)�, and(b) for some " and �, = unf(tr(�;�; ")).Note that, depending on �, tr(�;�; ") is either the variable X�, or the variableY"(�);�, or else tr(�;�; ") = �X�. We show how to complete stage k+1. For leavesthe construction of) is complete. Assume then that
 labels the rule instance��1;:::;�m , that � is simple, that � is reachable from one of the nodes �1; : : : ; �m,and that � contains an eventuality. The proofs where one of these assumptionsfail are easy special cases. In completing stage k + 1 the important issue is howto resolve choices, and this is dependent on whether we are proving (i) or (ii).(i). Here the problem cases are when
 = _ or
 = 3. From the assumptionthat s j=V � we know the existence of a path which validates each member of �.The procedure builds this path by indexing eventualities. An index � of � assignsa natural number to the toplevel eventualities of �: the subformulas of � of theform �1U�2 that do not occur within the scope of :U in �. The predecessor of � isthe index pred(�) de�ned by pred(�)(�1U�2) = �(�1U�2)� 1 when �(�1U�2) > 0and pred(�)(�1U�2) = 0 otherwise. Then �[�] indexes each member of � in thefollowing way:((:)X)[�] = (:)X; (�1 ^ �2)[�] = �1[�] ^ �2[�]; (�1 _ �2)[�] = �1[�] _ �2[�];12

(O�1)[�] = O(�1[pred(�)]); (�1:U�2)[�] = �1:U�2; (�1U�2)[�] = �1U�(�1U�2)�2where �1Ui�2 is the obvious approximation, i.e.�1U0�2 = �2�1Un+1�2 = �2 _ (�1 ^ O(�1Un�2)):It is clear that if s j=V � then there is some index � appropriate for � at s|i.e.such that s j=V �[�].The construction of) now proceeds as follows: First the rules for �xed points(and, if necessary, conjunction) are applied to s ` until a sequent of the forms `
(1; : : : ; m) is reached. The construction now depends on the tableau ruleapplied.(1) Double negation: � = �0;::�0. Then s j=V E(�0; �0)[�]. Moreover
 = I(so m = 1) and we proceed from the sequent s ` 1.(2) (Negated) propositional variable: � = �0; (:)X. Then s j=V E�0[�],
 = ^, 2 = (:)X, and we proceed from s ` 1.(3) Conjunction: � = �0; �01 ^ �02. Then s j=V E(�0; �01; �02)[�],
 = I and weproceed from s ` 1.(4) Disjunction: � = �0; �01 _ �02. Choose i 2 f1; 2g such that s j=V E(�0; �0i)[�0]where �0 is � restricted to the toplevel eventualities of �0; �0i. Also
 = _,and we proceed from s ` i.(5) Until: � = �0; �01U�02. We know that either s j=V E(�0; �02)[�0], or else s j=VE(�0; �01;O(�01U�02))[�0], where in either case �0 is the appropriate restrictionof �. Also
 = _, and we proceed from s ` 1 if the �rst case applies andfrom s ` 2 if the second does.(6) \Not until": � = �0; �01:U�02. Either s j=V E(�0;:�01;:�02)[�0] or s j=VE(�0;:�02;O(�01:U�02))[�0] where in either case �0 is an index agreeing with� on their common toplevel eventualities. Again
 = _ and the choice of iis guided as in (4).(7) Nexttime: � = O�01; : : : ;O�0n. Then there is some s0 such that sRs0 ands j=V E(�01; : : : ; �0n)[pred(�)]. Moreover
 = 3, and we proceed from s0 ` 1.We have thus veri�ed that the invariants (a) and (b) above are maintained, takingindexing into account.(ii). In this case the problem is to deal with the conjunction over eventualities.With each variable X�0 bound in 0 is associated a scheduler, f�0 , which picks outan eventuality ev(f�0) in �0 in a round-robin fashion. If there are no eventualities13

in �0 the scheduler is never applied. Assume �rst that tr(�;�; ") is identical toeither �X� or X�. Note that in this case : is a formula of the form�X�:Weventualities �02��Y�0;�::
(� � �): (1)The sequence of actions is as follows: The scheduler is updated, the �xed pointunfolding rule is applied to : , the scheduled disjunct: 0 = �Yev(f�);�::
(� � �) (2)is chosen, and the �xed point unfolding rule is applied to : 0. If on the otherhand tr(�;�; ") = Y"(�);� then : has the form (2) already and we merely ap-ply the �xed point unfolding rule to : . In either case a formula of the form:
(1; : : : ; m) results. Stage k + 1 is now completed in a fashion very similarto the corresponding construction in (i). It is in fact simpler as the only pointsinvolving choice is when
 = ^, and this is the case only when one conjunct is a(possibly negated) propositional variable which is chosen whenever possible.We have thus given strategies for building choice relations) that agree with V.It remains to show that any relation) built using these strategies is well-founded.Assume for a contradiction that it is not. Note that 0 is well-guarded in the sensethat whenever �X: is a subformula of 0 then each occurrence of X in is in thescope of a modal operator. It then follows that there is an in�nite path � 2 S!,a �-formula �X: , and an in�nite, strictly increasing sequence i0; i1; : : : such thatfor all j 2 !, �X: is regenerated from �(ij) to �(ij+1). The path � correspondsto an in�nite !-path �0 ! �1 ! � � � through � . Assume that each �i has theform E�i, and that the su�x of � corresponding to the !-path �i ! �i+1 ! � � �is �i. Again the proof splits according to whether we are proving (i) or (ii).(i). In this case we �nd some � = E� such that �X: is of the form unf(tr(�;�; "))where tr(�;�; ") = Y"(�);�. Let �i be the index assigned to the tableau node �iduring the choice relation construction. An easy induction on the structure of�0i 2 �i then shows that �i j=V �0i[�i].(1) �0i = (:)X. Here �i(0) 2 V(X) (�i(0) 62 V(X)) as) agrees with V.(2) �0i = ::�i;1. By the induction hypothesis �i j=V �i;1[�i] so also �i j=V �0i[�i].(3) �0i = �i;1 ^ �i;2. By the induction hypothesis, �i j=V �i;j[�i] for both j = 1and j = 2, so �i j=V �0i[�i].(4) �0i = �i;1 _ �i;2. By the induction hypothesis, �i j=V �i;j[�i] for either j = 1or j = 2, so �i j=V �0i[�i].(5) �0i = �i;1U�i;2. By the construction of) we obtain a smallest i0 � i suchthat �i;2 2 �i0 whence by the induction hypothesis, �i0 j=V �i;2[�i0]. Moreoverfor all i00 : i � i00 < i0, �i;1 2 �i00 , so �i00 j=V �i;1[�i00], so indeed �i j=V �0i[�i].14

(6) �0i = �i;1:U�i;2. We either obtain a smallest i0 � i such that :�i;1;:�i;2 2�i0 , so �i0 j=V :�i;j[�i0] for both j = 1 and j = 2. Moreover for all i00 : i �i00 < i0, :�i;2 2 �i00 , so �i00 j=V :�i;2[�i00], so indeed in this case �i j=V �0i[�i].Alternatively for all i0 � i :�i;2 2 �i0 , and using the induction hypothesiswe can conclude that �i j=V �0i[�i].(7) �0i = O�i;1. By the induction hypothesis, �i+1 = �1i j= �i;1[�i+1] and �i+1 =pred(�i). Hence �i j= �0i[�i].But we are then almost done, for the �-formula �X: is regenerated in�nitelyoften along � only if we �nd some in�nite ��-path � relative to the given in�nite�-path through � which from some point onwards always has one of the forms�1U�2 or O(�1U�2) for �xed �1, �2. But this contradicts the indexing strategy.(ii). Here �X: has the form :unf(tr(�;�; ")) where either tr(�;�; ") = X� ortr(�;�; ") = �X�. Completing the proof, we show by induction on the size offormulas that �i j=V �0i whenever �0i 2 �i, contradicting the assumption that�i(0) j= :�i. The only slightly di�cult case is for �0i = �i;1U�i;2. As �X: hasthe form (1) it cannot for all i0 � i be the case that �i;2 62 �i0 . For otherwise,by Lemma 5.2, for all i0 � i such that �i0 = �i, the eventuality �0i would beregenerated along the !-derivation from E�i to E�i0 . Moreover the schedulingmechanism ensures that a disjunct of the form�Y
;�i::
(� � �)is eventually visited for some i0 � i such that from the point i0 onwards �X:� cannever be regenerated. In particular
 may be �0i. Thus we can �nd a minimal i0such that �i;2 2 �i0 . By minimality of i0 for all i00 : i � i00 < i0, �i;1 2 �i00 . Butthen by the induction hypothesis, �i0 j=V �i;2 and �i00 j=V �i;1 whenever i � i00 < i0,i.e. �i j=V �i.8 Extended Computation Tree Logic, ECTL�Several natural extensions of CTL� merit consideration. One direction of prag-matic interest is to add nexttime operators indexed by labels or sets of labels as inBrad�eld, Stirling [2]. This direction is pursued in Dam [10]. Another direction ofmore fundamental interest is to extend the linear-time fragment of CTL� such asto give it the full power of the !-regular languages. Here we follow the approachof Thomas [29] by adding temporal operators corresponding to B�uchi automataon in�nite words.A B�uchi automaton over the �nite alphabet � is a nondeterministic �niteautomaton A = (Q; q0; f a!ga2�; F) with Q the �nite set of states, q0 2 Q theinitial state, a!� Q�Q the transition relation for each a 2 �, and F � Q the setof �nal states. We sometimes write A(q0) to emphasize the initial state q0. A runof A on the !-word � 2 �! is an !-word r 2 Q! with the property that r(0) = q015

is ssfY g; fX; Y gfXg ; ;; fXg; fY g; fX; Y g;; fXg; fY g; fX; Y gFigure 5: B�uchi automaton A1 for XUY .and r(i) �(i)! r(i+ 1) for each i 2 !. Then A accepts �, if there is a run r of A on� and a q 2 F s.t. r(i) = q for in�nitely many i, and the language recognised byA is L(A) = f� 2 �! j A accepts �g.Formulas of ECTL� are inductively de�ned as usual and built from proposi-tional variables using boolean connectives and containing the formula E(A) foreach B�uchi automaton A over an alphabet 2f�1;:::;�ng where the �i are ECTL�formulas. Note that all formulas of ECTL� are state-formulas; linear-time depen-dencies are accounted for by automata. Also the semantics is inductively de�ned.The clauses for variables and boolean connectives are the usual ones:s j=V X i� s 2 V(X)s j=V :� i� s 6j=V �s j=V �1 ^ �2 i� s j=V �1 and s j=V �2Let then A be a B�uchi automaton over the alphabet 2f�1;:::;�ng. The intuition isthat E(A) is true of a state s just in case there is an in�nite path � originating in ss.t. the !-word over 2f�1;:::;�ng that encodes the satisfaction of �1; : : : ; �n along � isin the language recognised by A. More precisely let the word �(�) be determinedby �(�)(i) = f�j j 1 � j � n; �(i) j=V �jgThe satisfaction clause for E(A) is then the following:s j=V E(A) i� 9�: �(0) = s; �(�) 2 L(A)Example 8.1 The ECTL� formula E(A1) where A1 is the B�uchi automaton of�g. 5 expresses the CTL� property E(XUY). Similarly the ECTL� formula E(A2)expresses EGFX (in�nitely often X) where A2 is the automaton of �g. 6. 2The closure properties of languages recognised by B�uchi automata providemechanisms for deriving various linear-time connectives. Complementation, forinstance, is derived by complementing the B�uchi automaton concerned. In thisway it is not too di�cult to see that any CTL� formula can be written as anequivalent ECTL� formula.Note in particular that the de�nition of the universal path quanti�er in termsof the existential one in the case of ECTL� requires complementation of B�uchi16

s is; fXgfXg;Figure 6: B�uchi automaton A2 for GFXautomata. In this respect the present account sacri�ces clarity to some extent.This can be remedied by using for instance deterministic Muller automata as in(Clarke et al [6]) at a cost, however, of a vastly more complicated translationprocedure.9 Translating ECTL�The use of B�uchi automata together with the existential path-quanti�er allowsattention to be restricted to formulas E(A) in a standard form where A is anautomaton over sets of propositional variables only, and for which the set F of�nal states is a singleton. For let F = fq1; : : : ; qmg and let each Ai be obtainedfromA by replacing F by fqig. If;e is the ECTL� correlate of; then in additionto the four rules of section 4 the following rule is validatedE(A1);e 1 � � � E(Am);e mE(A);e 1 _ � � � _ m (3)Tableaux are constructed using the following single rule. Let E(A(q)) be instandard form where the alphabet of A(q) is � = 2fY1;:::;Yng. Let a1; : : : ; am listthe members of � and for each i such that 1 � i � m let qi;1; : : : ; qi;ki list theq0 such that q ai! q0. Moreover for each a 2 � let a abbreviate the formulaV a ^ Vf:Y j Y 62 ag. The rule is then the following:
: E(A(q))E(A(q1;1)) � � �E(A(q1;k1)) � � �E(A(qm;1)) � � �E(A(qm;km))where
 is the operator that takes X1;1; : : : ; X1;k1; : : : ; Xm;1; : : : ; Xm;km into(a1 ^3X1;1) _ � � � _ (a1 ^3X1;k1) _ � � � _ (am ^3Xm;1) _ � � � _ (am ^3Xm;km):As we only consider tableau constructed from nodes in standard form, there isat most one node E(A(q)) for which q is an accepting state. The intention is totranslate this node as a �-formula and all other internal nodes as �-formulas. Forthis to work, however, we must ensure that all possible ways of \regenerating" qare captured. This is done by carrying along a set V � QA indicating the statesthat have been visited so far, and then resetting this \visited-table" whenever theaccepting state is �rst encountered. This is the idea of the translation algorithm17

tre(E(A(q)); V) =if q 2 Vthen Xqelse let
 : E(A(q))E(A(q1))���E(A(qk)) be the rule instance applied to E(A(q))in if q is acceptingthen �Xq:
(tre(E(A(q1)); fqg); : : : ; tre(E(A(qk)); fqg))else �Xq:
(tre(E(A(q1)); V [fqg); : : : ; tre(E(A(qk)); V [fqg))Figure 7: ECTL� translation algorithm tretre shown in �g. 7. The algorithm assumes for each state q a unique variableXq. A node � is translated into the L�-formula tre(�; V) where V � QA is thevisited-table, initially empty. The translation relation ;e is then completed byadding to the four rules of section 4 and the rule (3) above the axiom �0 ;e 0whenever �0 is in standard form and 0 = tre(�0; ;).Theorem 9.1 For any ECTL� formula �, if �;e then fs j s j=V �g = k kV.Proof: Let a tableau � for �0 = E(A(q0)) be given where A(q0) is in standardform. Let 0 = tre(�0; ;). Note that due to the way the visited-table V is resetwhen the accepting state q is �rst visited by the translation procedure the only�-subformula of 0 is the formula tre(E(A(q)); ;). By Theorem 2.1 it su�ces toshow that s0 j=V �0 i� there is a well-founded choice relation) from s0 ` 0which agrees with V.Corresponding to any choice relation) which agrees with V there is an in�nitepath � from s0 and a run r ofA(q0) on �(�). Conversely any run r of A(q0) on �(�)determines a choice relation) which agrees with V. Fix then a choice relation)which agrees with V. Note that there is exactly one in�nite derivation of), say,� = s0 ` 0) s1 ` 1) � � �originating in s0 ` 0. The proof is complete when it is shown that the run rcorresponding to � visits q in�nitely often i�) is well-founded. Assume the latter.Then for in�nitely many i, i = tre(E(A(q)); ;), and the result follows. Converselyassume that r visits q in�nitely often. Then there is an in�nite, strictly increasingsequence i0; i1; : : : such that for all j 2 ! is ij = tre(E(A(q)); ;). Moreover i0 isa subformula of each k for all k � i0. Hence there can be no �-formula �X:� forwhich k = �X:� for in�nitely many k and such that �X:� is a subformula of kfor almost all k. For then �X:� = tre(E(A(q)); ;), a contradiction. It follows that) is well-founded. 2Example 9.2 The formula E(A2) of example 8.1 is translated into the formula�X 0:(:X ^3X 0) _ (X ^3�)18

where � is determined in the following way:� = �Y 0:(:X ^3) _ (X ^3Y 0) = �X 0:(:X ^3X 0) _ (X ^3Y 0)Note that without resetting the \visited-table" � becomes instead� = �Y 0:(:X ^3X 0) _ (X ^3Y 0)equivalent to EFGX and inequivalent to E(A2).10 Concluding remarksAs the \standard translation", our translation from CTL� is doubly exponentialin the length of the input formula, and the translation from ECTL� is singlyexponential. The di�erence is accounted for by the exponential cost of representingCTL� in ECTL�. This suggests an alternative, also doubly exponential, translationfrom CTL� in three stages that �rst translates tableaux into ECTL� using forinstance Emerson and Sistla's construction [14], and then translates ECTL� intoL�. This translation shares, however, with the standard translation the pragmaticbut nonetheless important problem that their results are not very intuitive orreadable, and indeed best thought of as L� encodings of B�uchi automata.The existence of a translation of ECTL� into L� is not very surprising. It iswell known that ECTL� is strictly less expressive than Rabin's S2S (c.f. Thomas[29]), and Niwinsky [22] shows S2S to be expressively equivalent to a �-calculuswith, in e�ect, a left and right nexttime operator. This does not, however, give anembedding into L� itself. The standard translation, for instance, is easily modi�edfor this purpose, by translating B�uchi automata into L� via PDL-�. Our ECTL�translation can be considered a direct version of this algorithm. Note that fromthe existence of a translation into PDL-�, and Niwinsky's result that PDL-� isstrictly less expressive than L� it follows that also ECTL� is strictly less expressivethan L�.Although the CTL�-translation of section 6 is doubly exponential in the worstcase we hope that its complexity will nonetheless turn out to be manageable inmany practical situations. Many optimisations are possible to support this hope.By suitably encoding the conjuncts involved in the translation of internal nodestranslated formulas can be represented in size O(n2n). Note also that su�cientsyntactic criteria for classifying internal nodes as least or greatest �xed point nodescan easily be found: Suppose � contains a formula � of one of the forms �1U�2 orO(�1U�2), and � is not a subformula of any other �0 2 �. Then � is regeneratedalong any !-path E�0 ! � � � ! E�n for which �0 = �n = �. We expect thisin particular to cover a large number of applications, and where it applies thecomplexity can be cut to a single exponential.19

An alternative to the use of automata in the syntax of ECTL� is to use a�-calculus with basic modalities O and E. If �xed points are restricted such as toallow the formation of �X:� only when X does not occur within the scope of E in� yet another version of ECTL� results. This follows by the equivalence of the !-regular languages with the linear-time �-calculus (c.f. Park [23]). If the restrictionconcerning E is lifted the result, the full branching-time �-calculus (Stirling [24]),is at least as expressive as L�. It is open whether the containment is strict.Acknowledgements: Thanks to Colin Stirling for many valuable discussions andcomments.References[1] M. Ben-Ari, A. Pnueli and Z. Manna. \The temporal logic of branching time,"Acta Informatica 20 (1983) 207{226.[2] J. C. Brad�eld and C. P. Stirling. \Verifying temporal properties of pro-cesses," Lecture Notes in Computer Science 458 (Springer,1990) pp. 115{125.To appear in Theoretical Computer Science.[3] M. C. Browne, E. M. Clarke, D. L. Dill and B. Mishra. \Automatic veri�cationof sequential circuits using temporal logic," IEEE Transactions on ComputersC-35 (1986).[4] G. Bruns and S. Anderson. \The formalization and analysis of a commu-nications protocol," Tech. rep. ECS-LFCS-91-137, University of Edinburgh(1991).[5] E. M. Clarke and E.A. Emerson. \ Design and synthesis of synchronisationskeletons using branching time temporal logic," Lecture Notes in ComputerScience 131 (1981) pp. 52{71.[6] E. M. Clarke, O. Gr�umberg and R. P. Kurshan. \A synthesis of two ap-proaches for verifying �nite state concurrent systems," Manuscript, Carnegie-Mellon University (1987).[7] E. M. Clarke and B. Mishra. \Automatic veri�cation of asynchronous cir-cuits," Lecture Notes in Computer Science 164 (1983) 101{115.[8] R. Cleaveland. \Tableau-based model checking in the propositional mu-calculus. Acta Informatica 27 (1990) 725{747.[9] R. Cleaveland, J. Parrow and B. Ste�en. \A semantics based veri�cationtool for �nite state systems," Proc. 9th IFIP Symp. on Protocol Speci�cation,Testing, and Veri�cation North-Holland, 1989.20

[10] M. Dam. \Translating CTL� into the modal �-calculus," Tech. rep. ECS-LFCS-90-123, University of Edinburgh (1990).[11] E. A. Emerson and J. Halpern. \\Sometimes" and \not never" revisited: Onbranching versus linear time." Journal of the ACM 33 (1986) 151{178.[12] E. A. Emerson and C. S. Jutla. \The complexity of tree automata and logicsof programs," Proc. 29th Symp. on Foundations of Computer Science (1988)328{337.[13] E. A. Emerson and C. Lei. \ E�cient model checking in fragments of thepropositional mu-calculus," in Proc. 1st Ann. Symp. on Logic in ComputerScience (1986) 267{278.[14] E. A. Emerson and A.P. Sistla. \Deciding full branching time logic," Infor-mation and Control 61 (1984) pp. 175{201.[15] M.J. Fischer and R.E. Ladner. \ Propositional dynamic logic of regular pro-grams," Journal of Computer and System Science 18 pp. 194{211.[16] D. Gabbay, A. Pnueli, S. Shelah and J. Stavi. \On the temporal analysis offairness," Proc. 7th ACM Symp. on Principles of Programming Languages(1980) 163{173.[17] D. Gries. \An exercise in proving parallel programs correct," Communicationsof the ACM 20 (1977) pp. 921{930.[18] M. Hennessy and R. Milner. \Algebraic laws for nondeterminism and concur-rency," Journal of the ACM 32 (1985) 137{162.[19] D. Kozen. \Results on the propositional �-calculus," Theoretical ComputerScience 27 (North-Holland, 1983) 333{354.[20] O. Lichtenstein, A. Pnueli and L. Zuck. \The glory of the past," Lecture Notesin Computer Science 193 (1985) 97{107.[21] R. McNaughton. \Testing and generating in�nite sequences by a �nite au-tomaton," Information and Control 9 (1966) 521{530.[22] D. Niwinsky. \Fixed points vs. in�nite generation," in Proc. 3rd Ann. Symp.on Logic in Computer Science (1988) 402{409.[23] D. Park. \Concurrency and automata on in�nite sequences," Lecture Notesin Computer Science 104 (1981) 167{183.[24] C. P. Stirling. \Modal and temporal logics," to appear in: Handbook of Logicin Computer Science (S. Abramsky, D. Gabbay, T. Maibaum, eds.) OxfordUniversity Press (1991). 21

[25] C. P. Stirling and D. J. Walker. \Local model checking in the modal mu-calculus," Theoretical Computer Science 89 (1991) 161{177.[26] R. S. Streett. \Propositional dynamic logic of looping and converse is ele-mentarily decidable," Information and Control 54 (Academic Press, 1982)pp. 121{141.[27] R.S. Streett and E.A. Emerson. \An automata theoretic decision procedurefor the propositional mu-calculus," Information and Computation 81 (1989)249{264.[28] W. Thomas. \Star-free regular sets of !-sequences," Information and Control42 (1979) 148{156.[29] W. Thomas. \Computation tree logic and regular !-languages," Lecture Notesin Computer Science 354 (1988) 690{713.[30] M. Y. Vardi and P. Wolper. \Yet another process logic," Lecture Notes inComputer Science 164 (1984) 501{512.[31] D. J. Walker. \Automated analysis of mutual exclusion algorithms usingCCS," Tech. rep. ECS-LFCS-89-91, University of Edinburgh (1989).[32] P. Wolper. \A translation from full branching time temporal logic to oneletter propositional dynamic logic with looping," unpublished manuscript.[33] P. Wolper. \Temporal logic can be more expressive," Information and Control56 (1983) 72{99.[34] P. Wolper, M. Y. Vardi and A. P. Sistla. \Reasoning about in�nite computa-tion paths," in: Proc. 24th IEEE Symp. on Foundations of Computer Science(1983) 185{194.

22

