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Abstract

BAN logic is an epistemic logic for verification of cryptographic protocols. A number of semantics have
been proposed for BAN logic, but none of them capture the intended meaning of the epistemic modality in
a satisfactory way. This is due to the so-calledlogical omniscience problem: Agents are ”ideal reasoners”
in existing semantics, while agents in BAN logic have only limited cryptographic reasoning powers. Logical
omniscience is unavoidable in Kripke semantics, the standard semantical framework in epistemic logic. Our
proposal is to generalize the epistemic accessibility relation of Kripke semantics so that it changes not only the
current execution point, but also the currently predicatedmessage. When instantiated on message passing sys-
tems, the semantics validates BAN logic. It makes agents introspective (”self-aware”) of their own knowledge
and of their own actions of sending, receiving and extracting.
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1 Introduction

BAN logic, proposed by Burrows, Abadi and Needham in the lateeighties, is an epistemic logic for verification
of cryptographic protocols ([4]). From a practical point ofview, BAN logic has turned out to be quite successful:
It produces short, informative derivations that can revealsubtle protocol errors. However, despite a number of
semantics proposed for BAN and BAN-like logic (cf. [1, 5, 8, 10, 11, 12, 14]), the semantics of the epistemic
(knowledge) modality in BAN logic remains problematic. This is a serious problem, since it makes it unclear what
a proof in BAN logic establishes, and it makes an analysis of BAN logic in semantical terms, for instance using
model checking, of limited value.

The basic problem when interpreting BAN’s knowledge modality is the well-knownlogical omniscience prob-
lem. As an example, under BAN’s idealized treatment of cryptography it is reasonable to assume the entailment
M fresh |= {M}k fresh. However, the entailmenta knows M fresh|= a knows{M}k freshshould not be val-
idated since in BAN logic agenta knows M is inside{M}k only whena knows k. From the point of view
of modal logic, the example shows the failure of therule of normality that allows inference of an entailment
a knowsF1 |= a knowsF2 from the entailmentF1 |= F2. As another example, in the context of the NSSK proto-
col it is reasonable to assume the entailments saidn, b, k, {k, a}kb

|= kb good forb · s since the former message
is only ever uttered bys when it so happens thatkb is b:s server key (and therefore is good for communication
betweenb ands). Yet, the entailment

a knowss saidn, b, k, {k, a}kb
|= a knowskb good forb · s (1)

∗Work supported by the Swedish Research Council grants 621-2003-2597 and 622-2003-6108

1



should not be validated, since in BAN logic agenta can deduce what key{k, a}kb
is locked with only ifa already

knowskb. In fact, from (1) together with BAN’s message meaning rule,we would get the entailment

a sees{from s: n, b, k, {k, a}kb
}ka

, a knowska good fora · s |= a knowskb good forb · c

which diverges even more strongly from the intended meaningin BAN logic.
Logical omniscience (the rule of normality) is intimately tied to the use of Kripke semantics. In this type of

semantics the modalitya knowsis interpreted through an epistemic accessibility relation ∼a connecting execution
points that are equivalent up toa’s restricted power of observation: At execution points, a knowsF just in case
F holds at every accessible execution points′, s ∼a s′.

Since all Kripke semantics validate the rule of normality, it follows that we need to look to non-Kripkean
semantics to avoid validities that are unfaithful to the intended meaning in BAN logic. We suggest a generalization
of Kripke semantics that lets the jump from the current execution point to an epistemically accessible execution
point affect the predicated messages. The intuition is as follows. Say an agenta views a cipher textM at the
current execution points. As in Kripke semantics we assume thata may be unsure about what execution point she
is at, becauses and some other execution points′ share the same history up toa’s observation powers. In addition,
a may be unsure about what the cipher text contains, becausea has observed the same properties ofM at s as
she would have observed of some corresponding cipher textM ′ ats′. For instance, ifa extractsM from the third
messagea received ats, thena extractsM ′ from the third messagea received ats′; if a cannot decryptM at s,
thena cannot decryptM ′ ats′, and so on.

To reflect the correspondence between messages at differentexecution points we relativize accessibility to
message renamings. We writes ∼r

a s′ when renamingr carries each messageM at s to a corresponding message
r(M) ats′. With the relativized accessibility relation, a generalization of Kripke semantics is immediate:

s |= a knowsF (M) ⇔ ∀s′ : ∀r : s ∼r
a s′ ⇒ s′ |= F (r(M)) .

For instance, agenta knows thatM is fresh, if all corresponding messages at epistemically accessible execution
points are fresh.

This semantics avoids logical omniscience, since the predicated messageM might change underr as we move
from s to an epistemically accessible points′. There is, however, an interesting weakening of normality which
continues to hold, namely the closure of knowledge under validities that only mention keys used by the agent.

F1 |= F2 ⇒ a uses Keys(F1, F2), a knowsF1 |= a knowsF2

whereKeys(F1, F2) contains all message terms that are applied as keys inF1 and F2. To illustrate, from the
entailmentx fresh |= {x}y fresh we can infer the entailmenta usesy, a knowsx fresh |= a knows{x}y fresh.
By universal substitution of message terms for variables, we can then conclude the entailment

a usesK, a knowsM fresh |= a knows{M}K fresh (2)

for arbitrary (complex) message termsK andM , even when keys other thanK are applied inM .
After instantiating the semantics on message passing systems, we show that agents are introspective of their own

knowledge, i.e. the modal logicS5axioms hold, as is the custom in computer science applications of epistemic
logic. Furthermore we show that agents are introspective oftheir own actions of sending, receiving and extract-
ing (decryption and un-pairing of received messages). For instance, we show introspection of received messages:
a received M|= a knows a received M. While this is immediate from the truth condition for knowledge, it is rather
significant. Firstly, it is the central point when validating BAN logic. The unsoundness of BAN logic in related
Kripke semantics, such as [1, 12, 14], can ultimately be tiedback to the fact that agents are not introspective (in
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the above sense) of their received messages1. As soon as a Kripke semantics hides part of an agents local state to
the agent herself, as these semantics do, we lose introspection of received messages. Secondly, introspection of re-
ceived messages in combination with the above weakening of normality has an interesting implication: knowledge
of cryptographic structure may at times transcend the discerning power of the keys used.

We complete the model construction by interpreting the atomic BAN predicates on message passing systems
and show soundness of BAN logic. The interpretation we propose involves a fixed point construction to identify
keys used with keys known, a construction which may be of independent interest. Finally the paper is closed by
a discussion of related and future work, in particular the prospects for using the weakened rule of normality to
eliminate BAN’s idealization step.

Our semantical investigations so far cover only the symmetric key part of BAN logic. We expect no difficulties
in extending the semantics to asymmetric cryptography.

2 BAN Logic

Language Assume a set of agentsa, b, ..., a set ofmessage atomsk, n, ..., a set ofmessage variablesx, y, z, ....,
and a set ofatomic predicatesp. The set ofmessage termsandstatementsare defined by:

StatementsF ::= p(M) | a knowsF
Message termsM,M ′ ::= F | a | k | x | M,M ′ | {M}M ′ | from a : M

A closed message term, ormessage, is a message term with no variables. A message term is open ifit is not
closed. Though the BAN language lacks negation, we prove a result (Theorem 9.2) for a language extended with
negation (¬) of statements.

Intuitively, atomic statementp(M) expresses the proposition that messageM satisfies propertyp, the operator
·, · represents pairing of messages, the operator{·}· represents encryption and the operatorfrom · : · represents
sender field annotation. Message terms include sender field annotations and statements, because as BAN logic
is usually applied, it proves properties of so calledidealizedprotocols, protocols where messages may include a
sender field and messages may contain statements expressingpropositions.

The set of atomic predicates includes, at least, the fouratomic BAN predicates: a sees, a said, fresh, good fora·b
as well as the special atomic predicatea uses. Their intended informal meaning is as follows. The predicate a
seesis true of a message ifa can extract the message from somethinga received. Analogously,a said is true of a
message ifa can extract the message from somethinga sent. A messagefreshif it did not circulate until recently.
A message satisfiesgood fora · b if every circulated message encrypted with this message as key was said bya or
b. Finally, a usesa message ifa uses that message as a key for decryption and encryption.

Proof rules The rules of BAN logic are summarized in Table 1. We useKnowsto represent an arbitrary sequence
of 0 or more epistemic modalities. Table 1 leaves some conditions implicit: We have omitted symmetric variations
and closure under cut and weakening. Note that certain rulesassume that agents do not misuse idealizations. For
instance, ruleR1, themessage meaning rule, assumes that sender fields inside cipher texts are reliable. Also, rule
R7, thenonce verification rule, assumes that agents only say statements known to be true while fresh.

While the original BAN paper ([4]) reads the epistemic modality as ”agenta believes that”, BAN logic is
intuitively consistent with a knowledge interpretation. As in [8, 10], we adopt a knowledge interpretation and add
the axiomT . The atomic BAN predicatejurisdiction thereby becomes superfluous, and is therefore removed.
For a more detailed discussion we refer the reader to [8]. Notice that we generalize the customary modal logic
axiom T (a knows F⊢ F) to arbitrary iterations of epistemic modalities, by adding Knows to antecedent and
consequent.

1Only [1] was intended to validate BAN.
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R1. a sees{from b : M}M ′ , a knowsM ′ good fora · b ⊢ a knows b said M

R2. a knowsM fresh⊢ a knowsM,M ′ fresh
R3. a knowsM fresh, a knowsM ′ good fora · b ⊢ a knows{M}M ′ fresh
R4. a seesM,M ′ ⊢ a seesM
R5. a sees{M}M ′ , a knowsM ′ good fora · b ⊢ a seesM
R6. a knows b saidM,M ′ ⊢ a knows b saidM
R7. a knowsM1, ..., F, ...,Mn fresh, a knows b saidM1, ..., F, ...,Mn ,⊢ a knows b knowsF
T. Knows a knowsF ⊢ KnowsF

Table 1: BAN proof rules

3 Semantics for the Non-Epistemic Language Fragment

In computer science, epistemic logics are customarily interpreted onmulti-agent systems[6], pairs S = 〈S, |〉,
whereS is a non-empty set of execution points and| is a local state projection assigning a local states|a to each
agenta and execution points. Intuitively, the local state contains all the data currently accessible to that agent. For
instance, when modeling a communication protocol, the local state of an agent might be derived from the initial
condition plus the sequence of send and receive actions she has performed so far. Amulti-agent modelon S is a
triple M = 〈S, |, I〉, whereI is an interpretation of atomic predicates. That is, to each atomic predicatep and each
execution points ∈ S, the interpretationI assigns the setI(p, s) of messages (closed message terms) that satisfy
p ats.

Closed statements are true w.r.t. an execution points in a modelM. The truth condition for atomic closed
statements and negation (of closed statements) are as expected: s |=M p(M) ⇔ M ∈ I(p, s) ands |=M ¬F ⇔
s 2M F . The truth condition for epistemic closed statements is left to section 4. Open statements are true w.r.t. an
assignmentV of messages to message variables, and an execution points in a modelM. Assignments are lifted to
arbitrary message terms in the usual way; write|M |V for the value ofM underV . The truth condition for open
statements is:V, s |=M F (M) ⇔ s |=M F (|M |V ).

If ∆ is a set of statements, we writeV, s |=M ∆ if V, s |=M F , for all F ∈ ∆. If C is a class of models:
∆ |=C F , if and only if, for all modelsM in C, for all execution pointss in M and for all assignmentsV , if
V, s |=M ∆ thenV, s |=M F .

4 Semantics for Knowledge

We interpret the epistemic modality through a generalized accessibility relation∼a that relates not only execution
points, but also messages at one execution point to messagesat another. The intuition is that a cipher textM at
the current execution points may correspond, fora, to a different cipher textM ′ at an epistemically accessible
execution points′. That is,M at s could, for alla knows, beM ′ at s′. Let r be arenamingof messages, i.e. a
function in the set of messages, defined for all messages. Ifr maps every message ats to a corresponding message
at s′, we say thatr is acounterpart mappingbetweens ands′ for agenta, and writes ∼r

a s′. Given this ternary
accessibility relation∼a, Kripke semantics can be generalized in an obvious way:

s |=M a knows F(M)⇔ ∀s′ ∈ S : ∀r : s ∼r
a s′ ⇒ s′ |=M F (r(M)) .

Here,F (M) is any statement in the message termM . We do not assume that messageM is somehow accessible to
agenta in s, such as once said, or seen, bya. Agents may well know things about messages that are not accessible
to them. In fact, this is an essential part of BAN logic (as witnessed by, for instance, axiomR2).

Counterpart mappings must be transparent to the set of available keys. A renamingr is transparentto a setΠ
of messages, in symbolsΠ � r, if r respects all cryptographic structure accessible when using Π as keys:Π (used
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C1. M ′ ∈ Π ⇒ r({M}M ′) = {r(M)}r(M ′) C2. r(M,M ′) = r(M), r(M ′)

C3. r is injective C4.r is surjective
C5. r(F (M)) = F (r(M)) C6. r(from a : M) = from r(a) : r(M)
C7. r(k) = k, k is agent name or message atom

Table 2: Requirements forΠ � r

as keys) cannot distinguish a sequenceM1,M2, ... from r(M1), r(M2), .... Formally, we stipulate thatΠ � r, if
and only if, each condition in Table 2 above is satisfied. Condition C1 says that encryption structure is plain, or
clear, when the appropriate key is available, condition C2 says that pairing structure is always plain, conditions
C3 and C4 say that distinct messages appear distinct, condition C5 says that atomic predicates and propositional
operators are plain text, condition C6 says that sender fieldstructure is plain, and condition C7, finally, says that
agent names and message atoms are plain text.

Lemma 4.1

1. Π � ι whereι is the identity on messages

2. Π � r, r(Π) � r′ ⇒ Π � (r′ ◦ r)

3. Π � r ⇒ r(Π) � r−1

4. Π � r, Π ⊇ Π′ ⇒ Π′
� r

Proof. (1) and (4) are immediate. We prove (2) here. The proof of (3) is similar. AssumeΠ�r andr(Π)�r′. Only
requirement C1 of Table 2 is non-trivial. AssumeM ′ ∈ Π. By the assumptions,r({M}M ′) = {r(M)}r(M ′) and
r(M ′) ∈ r(Π). Thus,r′({r(M)}r(M ′)) = {r′(r(M))}r′(r(M ′)) = {(r′◦r)(M)}(r′◦r)(M ′), i.e.,(r′◦r)({M}M ′) =
r′({r(M)}r(M ′)) = {r′(r(M))}r′(r(M ′)) = {(r′ ◦ r)(M)}(r′◦r)(M ′). 2

Counterpart mappings must, furthermore, respect the current local state of the agent; we assume a renaming can
be lifted pointwise to a permutation on local states. Forr to be a counterpart mapping betweens and some other
point s′, we require thatr transforms the local state of the agent ats into her local state ats′.

The idea, then, is to relate the statess ands′ under the renamingr for agenta, in symbolss ∼r
a s′, just in case

r transforms the local state ofa at s into the local state ofa ats′ andr respects the keys used by the agent ats:

s ∼r
a s′ ⇔ r(s|a) = s′|a andI(a uses, s) � r . (3)

Each multi-agent model thus determines a unique ternary epistemic accessibility relation∼a. In section 9 below
we address the apparent asymmetry of (3) and show that under the definitions ofuseswhich we consider, whenever
s ∼r

a s′ thens′ ∼r−1

a s.

5 Crypto Normality

The semantics avoids logical omniscience (the rule of normality). To see this, letS = {s}, I(p, s) = {{M}M ′},
I(a uses, s) = ∅ ands|a = ∅. Then there is a renamingr such thatr({M}M ′) 6= {M}M ′ ands ∼r

a s. Thus,2M

a knows p({M}M ′). Yet, |=M p({M}M ′).
There is, however, an interesting weakening of normality which continues to hold. To formulate this, let

Keys(M) be the set of message terms applied as keys inM such thatKeys({M}M ′) = {M ′} ∪ Keys(M) ∪
Keys(M ′), Keys(M,M ′) = Keys(M) ∪ Keys(M ′), Keys(from a : M) = Keys(M), Keys(P (M)) = Keys(M),
Keys(k) = ∅, if k is message atom or agent name, andKeys(x) = ∅, for message variablesx. For example,
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Keys({w, {x, k}y}z) = {y, z}. Let Keys(Π) = ∪M∈ΠKeys(M), write a usesΠ for the set{a uses M| M ∈ Π},
and writea knows∆ for the set{a knowsF | F ∈ ∆}.

Lemma 5.1 |Keys(M)|V � r ⇒ r(|M |V ) = |M |r◦V

Proof. By induction over the structure ofM . The base step, whereM is a variable, an agent name or message
atom, is immediate from requirement C7 of Table 2. For the induction step, assume that the property holds for
messagesM1 andM2, i.e. |Keys(M1)|V � r ⇒ |M1|r◦V = r(|M1|V ) and |Keys(M2)|V � r ⇒ |M2|r◦V =
r(|M2|V ). Assume|Keys({M1}M2

)|V � r. Then,|Keys(M1)|V ∪ |Keys(M2)|V ∪{|M2|V }� r. By the induction
assumption and Lemma 4.1.4,|M1|r◦V = r(|M1|V ) and|M2|r◦V = r(|M2|V ). Then, by requirement C1 of Table
2, r(|{M1}M2

|V ) = r({|M1|V }|M2|V ) = {r(|M1|V )}r(|M2|V ) = {|M1|r◦V }|M2|r◦V
= |{M1}M2

|r◦V . Showing
that pairing and idealization constructions preserve the property is analogous. 2

From Lemma 5.1 we get the weak normality rule.

Theorem 5.2 (Crypto Normality) If ∆ |=M F then a uses Keys(∆, F ), a knows∆ |=M a knowsF .

Crypto normality says that an agents knowledge is closed under logical validities in which all the keys applied are
used by the agent. By itself, crypto normality may appear overly restricted, since all keys used in∆ or F must also
be used bya. Crypto normality becomes more powerful, however, when combined with the rule of substitution.

Theorem 5.3 (Rule of Substitution) Letσ be any substition of (possibly open) message terms for message vari-
ables. If∆ |=M F thenσ(∆) |=M σ(F ).

In conjunction, the two rules allow interesting inferencesto be made, such as (2) in section 1.

6 Message Passing Systems

We instantiate models in message passing systems (cf. [6]),as in the BAN literature. Since the definitions are
standard and well-known, we will only briefly hint at them. Ina message passing system execution proceeds
in rounds. During the first round, initial shared and privatepossessions are established. From then on, at each
round, every agent either sends a message, receives a message or performs some unspecified internal action. By a
message passing modelwe mean a multi-agent systemM = 〈S, |, I〉 based on a message passing systemS. We
require that the local states|a of an agenta consists of a first round of initializations followed bya’s local history
of send and receive actions. As an immediate consequence, agents know which messages they send and receive.
Assume predicatesa receivedanda sent, with I(a received, s)= {M | a has receivedM ats}, and I(a sent, s)
interpreted analogously. The following introspection principle is easily seen to be valid:

Proposition 6.1 (Receive and send introspection) For message passing models:

1. a receivedM |= a knows a receivedM

2. a sentM |= a knows a sentM

To see this, assumes ∼r
a s′. Then,r(s|a) = s′|a, i.e. if a receivedM at s thena receivedr(M) at s′, and

correspondingly for messages sent bya. While easily proved, Proposition 6.1 is nonetheless of some consequence.
To begin with, the unsoundness of BAN logic in related Kripkesemantics, such as [1, 12, 14], ultimately ties back
to the failure of Proposition 6.1. When a Kripke semantics hides part of an agents local state from the agent,
as these semantics do, we lose receiving and sending introspection: Saya received a cipher textM at s. Then
there might be some points′ which is indistinguishable fora from the current points, but wherea received a
different cipher textM ′, notM . Moreover, Proposition 6.1 in combination with crypto normality (Theorem 5.2)
has some interesting, and perhaps surprising, implications for knowledge of cryptographic structure. We explore
these implications in the section 7.
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7 Knowledge of the Unseen

Prima facie it might be thought that an agents knowledge of cryptographic structure depends solely on what
keys she uses. However, the mere finding of a cipher text at a certain place might alone indicate something
about its contents. For instance, after the second protocolstep in the Needham Shröder shared key protocol
(NSSK) between principalsa and b and with key servers, agenta knows the contents of the ticket she is to
forward to b, despite the fact that she cannot decrypt it. The semantics respects such intuitions. To illustrate,
assume that message passing modelM implements NSSK betweena, b ands. We may expect the following:
a received{n, b, k, x}ka

, ka good fora · s |=M x containsk, a. (The meaning ofcontainsshould be clear from
the context, while the precise semantics ofgood is not an issue in this example.) By crypto normality (Theorem
5.2) and universal substitution (Theorem 5.3),a knows a received{n, b, k, {k, a}kb

}ka
, a knowska good fora ·

s, a useska |=M a knows{k, a}kb
containsk, a. By receiving introspection (Proposition 6.1),a received{n, b, k,

{k, a}kb
}ka

, a knowska good fora ·s, a useska |=M a knows{k, a}kb
containsk, a. Thus, ifka is a’s server key

anda receives{n, b, k, {k, a}kb
}ka

, thena knows the contents of{k, a}kb
even thougha is not usingkb as a key.

The reason why the semantics supports deductions such as theabove is that the set of counterpart mappings is
limited not only by the current keys, but also by the current local state. Say renamingr is transparent to the keys
used at the current points, in symbolsI(a uses, s) � r. This does not guarantee, however, thatr is a counterpart
mapping froms to any execution points′: There might be nos′ in the given system such thatr(s|a) = s′|a. In
this case the agent can rule outr even thoughr is transparent to her current keys.

8 Interpreting BAN’s Atomic Predicates

To complete the semantics for BAN logic, only the atomic predicates remain. This is a subject of subtle and
somewhat bewildering variability (cf. [1, 8, 10]). We do notclaim our definitions are canonical. Our goal is to
show that the renaming semantics can be completed to a meaningful interpretation which validates BAN.

The way the predicates are explained informally in section 2, once the interpretation ofusesis fixed, the inter-
pretation ofsees, said andgood follow in a fairly straightforward fashion. Specifically, for seeswe require that
I(a sees, s) is the smallest setΠ that includesa’s initial possessions, the messagesa has received ats and such
thatΠ is closed under decryption with keys used ({M}M ′ ∈ Π andM ′ ∈ I(a uses, s) ⇒ M ∈ Π) and un-pairing
(M,M ′ ∈ Π ⇒ M ∈ Π andM ′ ∈ Π) and sender-field removal (from b:M ∈ Π ⇒ M ∈ Π). The predicatesaid
is defined analogously for sent messages, except thata’s initial possessions are not included. Forgoodwe require
thatM ∈ I(good fora · b, s), if and only if, whenever{M ′}M is a sub term of some message inI(c received, s),
then bothM ′ and{M ′}M are inI(a said, s) or bothM ′ and{M ′}M are inI(b said, s), for any agentc and any
messageM ′. We leave the interpretation of the predicatefreshopen, merely requiring that it is independent of the
interpretation ofusesand that it is closed under the sub-term relation (M ∈ I(fresh, s) ⇒ M,M ′ ∈ I(fresh, s),
M ′,M ∈ I(fresh, s), {M}M ′ ∈ I(fresh, s), and{M ′}M ∈ I(fresh, s)). One could satisfy these requirements
by defining, similarly to [8], a message as fresh if it is not a subterm of any message said by anyone more thand

rounds back, for some fixedd. Interpreting the predicatefreshis somewhat problematic, but it is peripheral to the
issues addressed in this paper. We refer the reader to [8, 10]for more detailed discussions.

We then turn to the predicateuses. An immediate observation is that the interpretation ofusesmust validate the
entailment

aknowsM good fora · b |= a usesM . (4)

This requirement is fundamental, since otherwise rulesR1, R3, andR5(Table 1) will not be validated.
A possible approach to the definition ofusesis to view usesand seesas synonyms, so that a key is used

by an agent just in case it is possessed initially or it is received, or it can be obtained by decryption and un-
pairing from used messages. This kind of “operational” viewis taken, with variations, in most papers on se-
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mantics for BAN like logics. The problem with this definitionis that it does not validate (4), unless the class
of message passing systems is restricted in some way. For instance a modelM may satisfy an entailment such
as: a receivesk, a, b |=M k, x good fora · b. Then, by crypto normality (Theorem 5.2) and receive introspec-
tion (prop. 6.1.1),a receivesk, a, b |=M a knowsk, x good fora · b, but it might well be thata has not seen
k, x, contradicting (4). This counterexample can be fixed, of course, by disallowing complex terms as keys.
But other, similar counterexamples would still require restricting the class of allowed message passing systems.
For instance, if we allowed a model specific dependency between properties of different message atoms, say
a receivesk, a, b |=M k′ good fora · b, thena might be able to conclude thatk′ is good without actually seeing it,
again contradicting (4).

We propose an alternative definition ofuseswhich we believe is of independent interest. The idea is to consider
a key to be used by an agent just in case the agent knows some property p of that key. Since properties (sees,
said, etc.) are defined by means ofusesitself, a recursive definition is called for. An inductive, rather than
a coinductive, definition seems appropriate, sincea usesshould contain the set of keys thata has gathered some
positive information about. Adopting this approach we thusdefine the interpretation function on a message passing
systemS as a least interpretation functionI (in an order extended point wise from set containment) such that
s |=〈S,I〉 a uses M, if and only if, s |=〈S,I〉 knowsp(M) for some atomic BAN predicatep. (We leave the local
state projection| implicit.) If we call models that use this definition of the interpretation functioninductive, we
obtain:

Theorem 8.1 Every message passing system determines a unique inductivemodel.

Proof. Assume a message passing systemS. The interpretation function in an inductive model onS is, by
definition, the least fixed point of the following functionf that assigns an interpretation functionf(I) to every
possible interpretation functionI on S. For predicateuses, f(I)(a uses, s) = {M | ∃ atomic BAN predicatep :
s |=〈S,I〉 a knowsp(M)} and, for atomic BAN predicatesp, f(I)(p, s) is defined withf(I)(a uses, s′) as the keys
used for any agenta at any points′. From lemma 4.1.4,f is monotone. Therefore,f has a least fixed point. 2

Inductive models obviously satisfy the requirement (4) above. In fact, as far as requirement (4) is concerned,
we could have definedusesin terms of predicatesgood alone, so thats |= a uses M, if and only if, s |=
a knows M good fora · b for some agentb. Perhaps, such a solution would be even more faithful to intuitions
in BAN logic, but it would not be quite satisfactory for some protocols (Yahalom is an example) where keys
need to be used before they are known to be good. Inductive models offer, in our opinion, an interesting, more
extensional, alternative to the more traditional operational models.

9 Introspection Properties

We have already seen (Proposition 6.1) that agents in message passing models are introspective of their received
and sent messages. In this section, we observe some further introspection properties in inductive models. We
emphasize that these results also hold for models based on anoperational interpretation ofuses.

Lemma 9.1 For inductive modelsM:

1. s ∼ι
a s

2. s ∼r
a s′, s′ ∼r′

a s′′ ⇒ s ∼r′◦r
a s′′

3. s ∼r
a s′ ⇒ s′ ∼r−1

a s
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Proof. (1) Immediate from Lemma 4.1.1. The proof of (2) is similar to(3) and left out. For (3) we first prove,
using fixed point induction, thats ∼r

a s′ ⇒ I(a uses, s′) ⊆ r(I(a uses, s)) whereI is the interpretation function
in M. Let Ij be the interpretation function at stepj in the fixed point construction of the proof of Theorem 8.1,
such thatI0 = ∅, Ij+1 = f(Ij), andIδ = ∪j<δIj, if δ is a limit ordinal. LetMIj

beM with the interpretationI
replaced byIj. We show for allj that

Ij(a uses, s) � r ∧ r(s|a) = s′|a ⇒ Ij(a uses, s′) ⊆ r(Ij(a uses, s)) (5)

The property holds forI0, sinceI0(a uses, s′) = ∅. For successor ordinals, assume (5) holds forj. Assume
Ij+1(a uses, s) � r andr(s|a) = s′|a. Pick any messageM ′ such thatM ′ ∈ Ij+1(a uses, s′). By C4 in Table
2, M ′ = r(M) for some messageM . Thens′ |=MIj+1

a uses(r(M)). By the definition ofIj+1, there is an

atomic predicatep such thats′ |=MIj
a knowsp(r(M)). SinceIj ⊆ Ij+1, by Lemma 4.1.4,Ij(a uses, s) � r.

By Lemma 4.1.3,r(Ij(a uses, s)) � r−1, so by the induction hypothesis and Lemma 4.1.4,Ij(a uses, s′) � r−1.
SinceM ′ = r(M), we want to show thatM ∈ Ij+1(a uses, s). By definition ofIj+1, it suffices to show that
s |=MIj

a knowsp(M). So pick any renamingr′ and any execution points′′ ∈ S such thatIj(a uses, s) � r′

andr′(s|a) = s′′|a. SinceIj(a uses, s) � r, by the induction hypothesis, and conditions C3 and C4 of Table 2,
r−1(Ij(a uses, s′)) ⊆ Ij(a uses, s). By Lemma 4.1.4,r−1(Ij(a uses, s′)) � r′. By Lemma 4.1.2 it follows that
Ij(a uses, s′) � r′ ◦ r−1. By the assumptions onr′ we get thatr′ ◦ r−1(s′|a) = r′(r−1(s′|a)) = r′(s|a) = s′′|a.
Since we showeds′ |=MIj

a knowsp(r(M)) we obtain thats′′ |=MIj
p(r′ ◦ r−1 ◦ r(M)). Sincer′ ands′′ are

arbitrary, it follows thats |=MIj
a knowsp(M) which completes the successor part of the induction argument.

The limit case is routine.
For the proof of the main statement (3), assume then thats ∼r

a s′, i.e. I(a uses, s) � r andr(s|a) = s′|a. By
Lemma 4.1.3,r(I(a uses, s))�r−1. We also obtain, from the above induction, thatI(a uses, s′) ⊆ r(I(a uses, s)).
By Lemma 4.1.4,I(a uses, s′) � r−1, sos′ ∼r−1

a s, which completes the proof. 2

Using Lemma 9.1 the modal logic S5 properties follow directly.

Theorem 9.2 (Knowledge introspection) For inductive models:

1. a knows F|= F

2. a knowsF |= a knows a knowsF

3. ¬ a knowsF |= a knows¬ a knows F

Validity (1) in Theorem 9.2 is, of course, not an introspection property. Rather, it can be seen as the distinguishing
line between knowledge and belief. In fact, (1) holds in all models, not only inductive models. From Theorem 9.2,
it follows that agents are also introspective of used and seen messages:

Corollary 9.3 (Use and sees introspection) For inductive models:

1. a usesM |= a knows a usesM

2. a seesM |= a knows a seesM

Proof. (1) is immediate from Theorem 9.2. (2) follows from crypto normality (Theorem 5.2), rule of substitution
(Theorem 5.3), receive introspection (Proposition 6.1.1), and use introspection (1). 2

Loosely speaking, sees introspection implies that agents are introspective of extracted messages. Since sees intro-
spection depends on receive introspection (Proposition 6.1) it fails in the related Kripke semantics of [1, 12, 14].
For similar reasons (see section 6), use introspection alsofails in these semantics, when cipher texts are allowed
as keys.
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10 Soundness of BAN logic

As observed in section 2, some BAN rules assume that agents donot misuse idealizations. Accordingly, in our
soundness result we restrict attention tohonestmodels, models wherefrom b:M ∈ I(a said, s) ⇒ a = b and
whereM1, ..., F, ...,Mn fresh, a saidM1, ..., F, ...,Mn |= a knows F. Again, we refer the reader to [8] for details.

Soundness for each BAN rule (Table 1) is now a rather immediate application of the following corollary, where
a knows{M1, ...,Mn} good is short fora knowsM1 good fora · b1, ...,a knowsMn good fora · bn.

Corollary 10.1 Let σ be any substitution of message terms for variables. For inductive modelsM: If ∆ |=M F

then a knowsσ(Keys(∆, F )) good, a knowsσ(∆) |=M a knowsσ(F ).

Proof. Immediate from crypto normality (Theorem 5.2), rule of substitution (Theorem 5.3) and requirement (4)
in section 8. 2

Theorem 10.2 BAN logic is sound w.r.t. honest inductive models.

Proof. Rule R4 (Table 1) is immediate. Rule R5 is immediate from requirement (4) in section 8. Each remaining
rule is a direct application of Corollary 10.1 on some trivial validity. For instance, rule R3 follows from the fact
that y fresh |= {y}z fresh. Rule R1 needs, in addition, sees introspection (Corollary9.3.2), while ruleT needs
Theorem 9.2.1. 2

11 Related Work

Our use of a ternary accessibility relation is most closely related to possibility relations in counterpart semantics
[9]. It is, as far as we know, the first computationally grounded such semantics in epistemic logic.

In the BAN logic literature the semantics most closely related to ours are the Kripke semantics of [1, 12, 14]
where the local state of an agent is partly hidden from the agent. In our framework we can recover a binary
accessibility relation similar to those used in [1, 12, 14] by letting s ∼a s′ iff s ∼r

a s′ for some renamingr. In
fact, our notion of transparent renaming can be seen as related to the message congruences of [1], and to the states
of knowledge and belief of [3, 13]. As we have pointed out, however, a Kripke semantics resulting from such a
binary accessibility relation∼a is both too strong and too weak for BAN: It makes agents logically omniscient,
yet fails essential introspection principles2.

There are, of course, semantics in the literature that do in fact avoid logical omniscience (cf. [6]). But no
such semantics has been shown to work for BAN-like logics. Furthermore, these semantics tend to break rather
more radically than ours with Kripke semantics. One possible approach is to subdivide knowledge into an implicit
and an explicit part. Implicit knowledge would be “ideal” knowledge to which logical omniscience applies, and
explicit knowledge would be somehow circumscribed to reflect agents limited reasoning abilities. For instance, [7]
specifies adversary capabilities in terms of abstract knowledge extraction algorithms, and [2] uses an awareness
predicate to constrain, at each state, the predicates whichof which an agent is aware, related to the comprehended
messages of [12].

12 Conclusion

We have introduced a semantics that validates BAN logic, yetavoids the rule of normality (logical omniscience).
The semantics satisfies crypto normality, a weak version of normality that filters out infeasible cryptographic
reasoning powers. The semantics makes agents introspective of their own knowledge and their own actions of

2But we acknowledge that only [1] was intended as a semantics for BAN.
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sending, receiving and extracting. We have showed how knowledge of cryptographic structure may at times
transcend the discriminatory power of the keys used. Finally, we found that knowledge and keys used could be
defined as simultaneous fixed points, making the keys used equal to the keys known.

A semantical foundation for BAN logic opens up the possibility of sound model checking of BAN logic spec-
ifications. Also, the semantics might be used to improve various elements of the protocol verification process in
BAN. The crypto normality rule is a case in point. Using this rule we can sidestep the often criticized ”idealization
step” in BAN verifications. To illustrate, say we want to establish the following property of NSSK:

a knowska good fora · s, a knows n fresh, a sees{n, b, k, {k, a}kb
}ka

|= a knowsk good fora · b (6)

As BAN is usually applied, one would instead prove a propertyof an ”idealization” of the protocol where the
message{n, b, k, {k, a}kb

}ka
has been annotated with sender field and the goodness predicate. As an alternative,

we introduce non-epistemic protocol specific validities:

ka good fora · s, n fresh, s said{n, b, k, x}ka
|= k good fora · b (7)

ka good fora · s |= ¬ a said{n, b, k, x}ka
(8)

which arguably express the required properties of the protocol rather more precisely. Starting from a (protocol
independent) triviality,

¬ a said{x}y, a sees{x}y , y good fora · s |= s said{x}y, (9)

we get specification (6) by lifting (7), (8) and (9) to epistemic validities using crypto normality (Corollary 10.1),
then applying sees introspection (Corollary 9.3) and knowledge introspection (Theorem 9.2)

We have focused on BAN logic, not in particular deference to BAN, but simply because BAN is the standard
logic in its family. A first question to answer is whether our semantics really captures the intended meaning of
BAN formulas. A completeness result for a collection of rules which stays acceptably close to BAN’s original
set-up would help answer this question affirmatively, and weare currently working to address this issue.

It would be of interest also to use our semantics to support epistemic security protocol logics beyond the propo-
sitional level. An extension to first-orderµ-calculus with rudimentary temporal operators would allowthe BAN
primitives to be defined, and thus eliminate much of the apparent arbitrariness in the choice of basic vocabulary in
the BAN literature. Furthermore, a first-order extension would allow reasoning that exploits partial knowledge of
complex data structures; this may be useful in the context ofe.g. payment protocols, where different parts of the
negotiated data structure remain hidden from different principals.
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